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ABSTRACT: The difference in [3 + 2] cycloaddition reactivity between fac-
[MO3(tacn)]

+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane) complexes has been
reexamined with a selection of unsaturated substrates including sodium 4-
vinylbenzenesulfonate, norbornene, 2-butyne, and 2-methyl-3-butyn-2-ol
(2MByOH). None of the substrates was found to react with the Re cation in
water at room temperature, whereas the 99Tc reagent cleanly yielded the [3 + 2]
cycloadducts. Interestingly, a bis-adduct was obtained as the sole product for
2MByOH, reflecting the high reactivity of a 99TcO-enediolato monoadduct. On the
basis of scalar relativistic and nonrelativistic density functional theory calculations of
the reaction pathways, the dramatic difference in reactivity between the two metals
has now been substantially attributed to differences in relativistic effects, which are
much larger for the 5d metal. Furthermore, scalar-relativistic ΔG values were found
to decrease along the series propene > norbornene > 2-butyne > dimethylketene,
indicating major variations in the thermodynamic driving force as a function of the unsaturated substrate. The suggestion is made
that scalar-relativistic effects, consisting of greater destabilization of the valence electrons of the 5d elements compared with those of
the 4d elements, be viewed as a new design principle for novel 99mTc/Re radiopharmaceuticals, as well as more generally in heavy-
element coordination chemistry.

■ INTRODUCTION
Technetium-99m, a metastable nuclear isomer of technetium-
99, is the most commonly used radioisotope in medicine, and
the demand for 99mTc radiopharmaceuticals with novel
biodistribution properties is considerable.1−4 A common
early step toward the development of these products involves
model chemistries with 99Tc and Re. Although the two
elements are chemically very similar, they exhibit quantitative
differences in reactivity, reflecting the somewhat greater
stability (and lower reduction potentials) of the higher
oxidation states of Re. In a seminal finding, Pearlstein and
Davison in the 1980s showed that fac-[99TcVIIO3]

+ complexes
undergo [3 + 2] cycloadditions with olefins to yield 99TcVO
diolate derivatives.5 The analogous ReVO-diolate species, in
contrast, were found to be unstable, undergoing the opposite
reaction when thermalized. We built on this finding to develop
fac-[99mTcVIIO3]

+ complexes as aqueous-phase labeling agents
for olefins.6−8 The factors underlying the difference in
reactivity between the two group 7 elements, however, have
remained obscure. Physicochemical measurements at the
Tromsø laboratory on analogous pairs of 4d and 5d
metallocorroles,9−11 including those involving Mo12/W,13
99TcVO14/ReVO,15 RuVIN16/OsVIN,17 and Ag/Au,18,19 sug-
gested that relativistic effects might partly explain the

difference in cycloaddition reactivity between 99m/99Tc and
Re.20

Unfortunately, little is known about the importance of
relativistic effects for transition-metal reactivity.21−23 For most
of the 20th century, relativistic effects were not considered
important for chemistry. Indeed, in 1929, Paul Dirac asserted
that the only imperfections remaining in quantum mechanics
“give rise to difficulties only when high-speed particles are
involved, and are therefore of no importance in the
consideration of atomic and molecular structure and ordinary
chemical reactions in which it is, indeed, usually sufficiently
accurate if one neglects relativity variation of mass and velocity
and assumes only Coulomb forces between the various
electrons and atomic nuclei.”24 This view started changing
only in the 1970s.25,26 Today the importance of relativistic
effects is well recognized for the static properties of sixth- and
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seventh-period elements.27 Relativity thus accounts for such
well-known effects as the liquid state of Hg28 and the yellow
color of elemental Au29 and Cs as well as a host of less well-
known effects in heavy-element chemistry.30−33

■ RESULTS AND DISCUSSION
Synthetic and Reactivity Studies. With the above as the

backdrop, we chose to perform a comparative study of fac-
[MO3(tacn)]

+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane)
complexes with respect to their [3 + 2] cycloaddition reactivity
with a selection of unsaturated substrates including sodium 4-
vinylbenzenesulfonate, norbornene, 2-butyne, and 2-methyl-3-
butyn-2-ol (2MByOH; Scheme 1). Because we already knew

from our recent work that fac-[99TcO3(tacn)]
+ reacts with a

broad range of olefins to yield 99TcO-diolate products, we
focused here particularly on complexes of the type fac-
[ReO3(tacn)]X (X = Cl, BPh4).

34 We verified that the Re
complexes do not react with olefins and alkynes, as indeed was
expected from Pearlstein and Davison’s original observations.6

Because alkynes had not been examined as substrates until
now, we chose to examine the interaction of the water-stable
complex fac-[99TcO3(tacn)]Cl

8 with the water-soluble prop-
argylic alcohol 2MByOH. After the addition of 2 equiv of the
propargylic alcohol to an aqueous solution of fac-
[99TcO3(tacn)]Cl, a quick color change was observed from
yellow to green. After stirring for 2 h at room temperature, the
dinuclear complex [{99Tc(O)O2(tacn)}2(2MByOH)]Cl2 was
isolated as the sole product following removal of all volatiles
under high vacuum. No mononuclear intermediate was
detected by either high-performance liquid chromatography
(HPLC) or NMR. This finding suggests that the expected
99TcO-enediolate intermediate acts as a highly reactive
substrate for a second equiv of fac-[99TcO3(tacn)]

+ to yield
the observed bis-adduct (Scheme 2).
The Fourier transform infrared spectrum of [{99TcV(O)-

O2(tacn)}2(2MByOH)]Cl2 was found to exhibit a νTcO band
at 967 cm−1, considerably upshifted relative to that in
[99TcO(tacn)(eg)]+ (949 cm−1; eg = ethane-1,2-diolato).35

Given that two symmetry-nonequivalent addition modes are
conceivable for the second equiv of fac-[99TcO3(tacn)]

+, 1H
and 1 3C NMR sp e c t r o s c op y o f [ { 9 9T c V (O) -

O2(tacn)}2(2MByOH)]Cl2 understandably indicated the
formation of two diastereomers in a 2:1 ratio (Scheme 3).36

Slow evaporation of an aqueous solution of the product in the
presence of excess KBr led to crystallization of the major
diastereomer of [{99TcV(O)O2(tacn)}2(2MByOH)]Br2 (iso-
mer 1 in Scheme 3). Single-crystal X-ray diffraction analysis
(Table 1 and Figure 1) revealed an intramolecular N4−H···O7
hydrogen bond, which, along with less overall steric crowding,
appears to be responsible for the formation of isomer 1 as the
major product. In contrast to the [3 + 2] cycloadducts of fac-
[99TcO3(tacn)]

+ with alkenes, slow decomposition of isomer 1
of the bisadduct (formation of ([TcO4]

−) was observed over
days.

Theoretical Modeling. Relativistic and nonrelativistic
density functional theory (DFT) calculations (typically with
large all-electron STO-TZ2P basis sets; see Experimental
Section for details) were used to investigate the [3 + 2]
cycloaddition of the cationic complexes [MO3(tacn)]

+ (M =
Tc, Re) with four different olefins, namely, propene,
dimethylketene, 2-butyne, and norbornene, in acetonitrile
(MeCN) as a solvent (Table 2). Relativity was taken into
account either via effective core potentials (ECPs) or with a
scalar-relativistic treatment with the zeroth-order regular
approximation (ZORA). Two-component spin−orbit relativ-
istic calculations were undertaken in a few cases as random
checks on the quality of the ECP and scalar-relativistic results;
the latter results were indeed found to be adequate, with
minimal differences relative to the spin−orbit calculations. The
data in Table 1 led to the following conclusions.
Relativistic calculations indicate dramatically lower (in an

algebraic sense) reaction free energies (ΔG) and free energies
of activation (ΔG⧧) for Tc than for Re, consistent with the
experimentally observed difference in reactivity between the
two metals. These translate to substantially “earlier” transition
states for Tc than for Re; in other bonds, key bonds affected by
the reaction are rather similar in length to the starting materials
for the Tc reactions compared with the Re reactions (Figure
2). In sharp contrast, nonrelativistic calculations (B3LYPnrel
and PBE0nrel in Table 2) indicate similar ΔG and ΔG⧧ values
for the two metals. The fact that these generalizations hold
regardless of the exchange-correlation functional and the
organic substrate indicates that the difference in reactivity
between the two metals is largely a relativistic effect.
The above interpretation is supported by computations of

the adiabatic electron affinities (EAs) for the M(VII) d0

complexes MeTcVIIO3 and MeReVIIO3 (Me = methyl). At
the scalar relativistic level, the B3LYP values are 3.44 and 2.79
eV, respectively, i.e., the EA of the Tc(VII) complex is 650
meV higher than that of the Re(VII) complex. The scalar-
relativistic PBE0 values are similar, 3.31 and 2.65 eV, as are the

Scheme 1. Cycloaddition of [99TcO3(tacn)]
+ with Alkenes

Scheme 2. Double [3 + 2] Cycloaddition of Two fac-[99TcO3(tacn)]
+ Cations with 2MByOH (Showing One of the Two

Diastereomers Formed)

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.1c00995
Inorg. Chem. 2021, 60, 11090−11097

11091

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00995?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00995?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00995?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00995?fig=sch2&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c00995?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


PBE-D2ECP values, 3.67 and 3.02 eV. At the nonrelativistic
level, the B3LYP EAs are 3.64 and 3.32 eV, while the PBE0
EAs are 3.51 and 3.20 eV, respectively, which translates to a
difference of just over 300 meV between the two metals. These
results prove that the difference in the EAs or reduction
potentials between the Tc(VII) and Re(VII) species is
substantially ascribable to the relativistic destabilization of
the Re 5d orbitals relative to the Tc 4d orbitals. Much the same
considerations should apply to the cycloaddition reaction of
interest in this study because it also involves a reduction, albeit
a two-electron one, of the M(VII) centers.

Another key observation from Table 2 is that the ΔG values,
which decrease along the series propene > norbornene > 2-
butyne > dimethylketene, reflect dramatic variations in the
thermodynamic driving force as a function of the olefinic
substrate. In fact, for propene, all of the relativistic methods
yield positive ΔG values, consistent with the experimental
observation that simple, unstrained olefins do not react with
cationic [ReVIIO3]

+ reagents at room temperature.37 Interest-
ingly, much smaller variations are observed among the ΔG⧧

values for the four substrates. Again, for Re, the calculations
generally indicate the highest ΔG⧧ value for propene and lower
values for dimethylketene and norbornene.
The above calculations are far from perfect. While the ΔG

values are moderately consistent across different functionals
(for the relativistic calculations), the ΔG⧧ values exhibit much
wider variations. Of the different functionals examined, PBE-
D2ECP appears to yield the lowest, and probably most realistic,
ΔG⧧ values, which has also been observed in a DFT study of
Ir-catalyzed reactions.38 Overall, our results underscore the
need for substantial additional benchmarking of different
functionals vis-a-̀vis transition-metal-mediated redox reactions,
especially for 4d and 5d elements.

■ CONCLUSION
In earlier studies of metalloporphyrin-type compounds,9−11 we
concluded that the difference in redox potential between

Scheme 3. Observed Isomers of [{99TcV(O)O2(tacn)}2(2MByOH)]Cl2

Table 1. Crystal Data and Structure Refinement for
[{99TcV(O)O2(tacn)}2(2MByOH)]Br2·2.2H2O

empirical formula C17H42Br2N6O9.20Tc2
diffractometer Xcalibur, Ruby diffractometer
wavelength (Å) 0.71073
fw 833.58
cryst syst monoclinic
space group P21/c
a (Å) 16.5494(7)
b (Å) 13.3352(5)
c (Å) 14.509(2)
α (deg) 90
β (deg) 114.955(11)
γ (deg) 90
volume (Å3) 2903.1(6)
Z 4
density (calcd) (g cm−3) 1.907
temperature (K) 183.1
abs coeff (mm−1) 3.758
F(000) 1662
cryst size (mm3) 0.234 × 0.145 × 0.075
cryst description green block
θ range for data collection
(deg)

2.715−30.508

index ranges −23 ≤ h ≤ 23, −19 ≤ k ≤ 19, −19 ≤ l ≤
20

reflns collected 41201
indep reflns 8809 [R(int) = 0.0396)
reflns obsd 7686
criterion for observation I > 2(I)
completeness to θ = 25.242°
(%)

99.0

abs corrn semiempirical from equivalents
max and min transmn 1.000 and 0.789
data/restraints/param 8809/6/362
GOF on F2 1.054
final R indices [I > 2σ(I)] R1 = 0.0469, wR2 = 0.1202
R indices (all data) R1 = 0.0550, wR2 = 0.1250
largest diff peak and hole (e
Å−3)

2.533 and −2.461

CCDC 2071332

Figure 1. Thermal ellipsoid (50% probability) plot for [{99TcV(O)-
O2(tacn)}2(2MByOH))Br2. Bromide ions and water molecules have
been omitted for clarity. Selected bond distances (Å) and angles
(deg): Tc1−O1 1.661(3), Tc1−O2 1.926(3), Tc2−O4 1.665(3),
Tc2−O5 1.946(3), Tc1−N8 2.163(4), Tc1−N9 2.175(4), Tc1−N10
2.295(4), Tc2−N11 2.185(3), Tc2−N12 2.147(4), Tc2−N13
2.250(4); O1−Tc1−O2 112.86(16), O2−Tc1−O3 81.73(12), O4−
Tc2−O5 108.23(16), O5−Tc2−O6 81.42(12), O2−C13−O5
107.6(3), O3−C14−O6 108.8(3).
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analogous 4d and 5d complexes is largely attributable to scalar
relativistic effects, much as calculated for ΔG and ΔG⧧ values
in the present study. The greater relativistic destabilization of

the valence electrons of the 5d elements compared with those
of the 4d elements thus may be viewed as a reliable design
principle for novel 99mTc radiopharmaceuticals, as well as more

Table 2. Scalar-Relativistic and Nonrelativistic DFT Energetics (eV) for Different Substrates in CH3CN

B3LYPscalar
a B3LYPnrel

a PBE0scalar
a PBE0nrel

a OPBE0scalar
a PBE-D2ECP

b

substrate metal ΔG ΔG⧧ ΔG ΔG⧧ ΔG ΔG⧧ ΔG ΔG⧧ ΔG ΔG⧧ ΔG ΔG⧧

propene Tc −0.38 0.83 −0.77 1.09 −0.91 1.13 −1.31 0.98 −0.71 1.46 −0.48 0.59
Re 1.28 1.86 −0.81 1.10 0.33 1.69 −1.38 0.98 0.54 2.01 0.55 1.09

dimethylketene Tc −1.44 1.28 −1.83 1.17 −2.02 1.20 −2.42 1.10 −1.77 1.62 −1.47 0.50
Re −0.21 1.91 −1.74 1.05 −0.76 1.77 −2.41 0.92 −0.50 2.32 −0.41 0.93

2-butyne Tc −1.20 1.35 −1.62 1.26 −1.76 1.25 −2.18 1.14 −1.58 1.61 −1.35 0.70
Re −0.21 1.91 −1.50 1.25 −0.48 1.74 −2.10 1.09 −0.30 2.07 −0.21 1.11

norbornene Tc −0.73 1.10 −1.14 0.92 −1.25 0.98 −1.67 0.83 −1.00 1.35 −0.96 0.32
Re 0.48 1.67 −1.20 0.80 −0.02 1.49 −1.77 0.66 0.24 1.87 0.07 0.73

aObtained with ADF. bObtained with Gaussian.

Figure 2. Ball-and-stick diagrams, with key distances (Å), for the optimized PBE-D2ECP stationary points for the [3 + 2] cycloaddition of
[MO3(tacn)]

+ and norbornene. M = Tc (left), Re (right).
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generally in heavy-element coordination chemistry. In other
words, higher-valent technetium species such as pertechnetate
or fac-[99/99mTcO3]

+ derivatives should be much more easily
reduced (i.e., accept electrons in their 4d orbitals) than
isoelectronic Re species (where electrons would be added to
5d orbitals). This predictionin this case, a postdictionis
nicely illustrated by the facile synthesis of 99(m)Tc(I)
organometallic39 compounds via the reduction of pertechne-
tate, the analogous synthesis of Re(I) organometallics being far
less facile. We look forward to seeing additional applications of
relativity as a design principle in the synthesis of new classes of
heavy/element coordination compounds.

■ EXPERIMENTAL SECTION
Instrumental Methods. IR spectra were measured as KBr pellets

on a PerkinElmer BXII spectrometer. 1H and 13C NMR were
recorded on a Bruker AV2-500 500-MHz spectrometer. Reactivity
studies with Re compounds were performed on a Waters Acquity
UPLC System coupled to a Bruker Daltonics HCTTM electrospray
ionization mass spectrometer, using an Acquity UPLC BEH C18 1.7
μm (2.1 × 50 mm) column. Ultraperformance liquid chromatography
(UPLC) solvents were formic acid (0.1% in Millipore water) (solvent
A) and UPLC-grade MeCN (solvent B). Applied UPLC gradient: 0−
0.5 min, 95% A and 5% B; 0.5−4.0 min, linear gradient from 95% A
and 5% B to 0% A and 100% B; 4.0−5.0 min, 0% A and 100% B. The
flow rate was 0.6 mL min−1. Detection was performed at 250 and 480
nm (DAD). Reactivity studies with Tc compounds were performed
on a Merck Hitachi LaChrom L7100 pump coupled to a Merck
Hitachi LaChrom L7200 tunable UV detector. The detection of
radioactive 99Tc complexes was performed with an equipped Berthold
LB508 radiodetector. Separations were achieved on a Macherey-Nagel
C18 reversed-phase column (EC-250/3 Nucleosil 100-5 C18), using a
gradient of triethylamine phosphate (TEAP)/MeCN as the eluent,
with a flow rate of 0.5 mL min−1. TEAP method: t = 0−3 min, 100%
TEAP; 3−3.1 min, 100−75% TEAP; 3.1−9 min, 75% TEAP; 9−9.1
min, 75−66% TEAP, 9.1−12 min, 66% TEAP; 12−12.1 min, 66−0%
TEAP, 15−15.1 min, 0−100% TEAP; 15.1−18 min, 100% TEAP.
Synthetic and Reactivity Studies. Caution! 99Tc is a weak β

emitter. All experiments were performed in laboratories approved for
working with low-level radioactive materials.
[99TcO3(tacn)]Cl was prepared as previously reported.40 Double-

distilled water (dd-water) was used throughout. All chemicals were of
reagent-grade quality or higher and were obtained from commercial
suppliers.
Synthesis of [ReO3(tacn)][ReO4].

41 Dirhenium heptoxide (520 mg,
1.1 mmol) was dissolved in dry tetrahydrofuran (THF; 5.0 mL). A
solution of 1,4,7-triazacyclononane (125 mg, 0.96 mmol) in dry THF
(1.0 mL) was added, and the resulting mixture was stirred for 30 min
at room temperature. The colorless precipitate was filtered off and
dried under vacuum. Yield: 98% (589 mg, 0.96 mmol).
Synthesis of [ReO3(tacn)](BPh4). The aforementioned complex

[ReO3(tacn)][ReO4] (188 mg, 0.31 mmol) was dissolved in distilled
water (10 mL). A solution of sodium tetraphenylborate (210 mg, 0.61
mmol) dissolved in water (5 mL) was added, and the resulting
mixture was stirred for 30 min at room temperature. The product
precipitated as a pale-gray solid and was filtered off. Yield: 59% (121
mg, 0.18 mmol). Analytical data are in agreement with the literature.
Synthesis of [ReO3(tacn)]Cl. DOWEX-1 anion-exchange resin in

chloride form (1000 mg) was washed with dd-water until the
washings showed a pH of 7.0. The resin was then added to a solution
of [ReO3(tacn)][ReO4] (183 mg, 0.3 mmol) in water (5.0 mL), and
the suspension was stirred for 30 min at room temperature. The resin
was filtered off, and [ReO3(tacn)]Cl was isolated by evaporation of
the solvent under high vacuum. The successful exchange of [ReO4]

−

by Cl− was proven by IR and electrospray ionization mass
spectrometry (negative mode). Yield: 66% (79 mg, 0.20 mmol).
Analytical data are in agreement with the literature.42

Reactions of [ReO3(tacn)](BPh4) in MeCN with Alkenes and
Alkynes. To a solution of [ReO3(tacn)](BPh4) (36 mg, 0.05 mmol)
in MeCN (3.0 mL) was added the olefin or alkyne of interest (0.5
mmol), and the reaction mixture was stirred for 2 h at room
temperature, followed by UPLC−MS analysis. If no reaction was
observed, the temperature was raised to 85 °C for 2 h, and the
reaction mixture was again analyzed by UPLC−MS. We found no
evidence for the formation of a [3 + 2] cycloadduct for either
norbornene or 2-butyne.

Reactions of [ReO3(tacn)]Cl in Water with Alkenes and Alkynes.
To a solution of [ReO3(tacn)]Cl (18 mg, 0.05 mmol) dissolved in dd-
water (2.0 mL) was added a water-soluble olefin or alkyne (0.5
mmol), and the reaction mixture was stirred for 2 h at room
temperature, followed by UPLC−MS analysis. If no reaction was
observed, the temperature was raised to 85 °C for 2 h, and the
reaction mixture was again analyzed by UPLC−MS. We found no
evidence for the formation of a [3 + 2] cycloadduct for either
2MByOH or sodium 4-vinylbenzenesulfonate.

Synthesis of [{99Tc(O)O2(tacn)}2(2MByOH)]Cl2. To a yellow
solution of [99TcO3(tacn)]Cl (6.23 mg, 0.02 mmol) in dd-water
(1.0 mL) was added 2MByOH (4 μL, 0.04 mmol), resulting in a rapid
color change to green. After stirring for 2 h at room temperature, the
solvent and other volatiles were removed under high vacuum,
affording [{99Tc(O)O2(tacn)}2(2MByOH)]Cl2 in quantitative yield.
IR [cm−1]: 3456s, 3412s, 3120m, 2991w, 2913w, 2845w, 2050w,
1637s, 1619s, 1541w, 1488w, 1455w, 1423w, 1381w, 1356w, 1286w,
1264w, 1230w, 1174w, 1110w, 1064m, 1014m, 967s, 931m, 847w,
837m, 802w, 746w, 716w, 676w, 621w, 601w, 565w, 525w, 467w,
436w. 1H NMR (500 MHz, D2O): δ 8.11 (s, CH isomer 1, 1 H), 7.58
(s, CH isomer 2, 1 H), 3.77−2.20 (m, tacn, 36 H), 1.60 (s, CH3
isomer 1, 6 H), 1.45 (s, CH3 isomer 2, 3 H), 1.24 (s, CH3 isomer 2, 3
H). 13C NMR (125 MHz, D2O): δ 129.21 (O2CRR′, 1 C), 123.94
(CH isomer 2, 1 C), 120.07 (CH isomer 1, 1 C), 57.94−45.21 (tacn,
6 C), 28.02 (CH3 isomer 2, 1 C), 26.98 (CH3 isomer 1, 2 C), 25.07
(CH3 isomer 2, 1 C). See Scheme 3 for a definition of isomers 1 and
2.

Crystals of [{99Tc(O)O2(tacn)}2(2MByOH)]Br2 suitable for
single-crystal X-ray diffraction analysis were obtained by slow
evaporation of an aqueous solution of the product in the presence
of excess KBr.

X-ray Structure Analysis. Crystallographic data were collected at
183(2) K with Mo Kα radiation (λ = 0.7107 Å) monochromatized
with graphite on an Oxford Diffraction Xcalibur system with a Ruby
detector. Suitable crystals were covered with oil (Infineum V8512,
formerly known as Paratone N), mounted atop a glass fiber, and
immediately transferred to the diffractometer. The CrysAlisPro43

program suite was used for data collection, semiempirical absorption
correction, and data analysis. The structure was solved with direct
methods using SIR9744 and refined by full-matrix least-squares
methods on F2 with SHELXL-201845 using the Olex2 GUI.46 The
refinement was done with anisotropic thermal parameters for all non-
H atoms, unless otherwise indicated. The positions of the H atoms
were calculated using the “riding atom” option in SHELXL-2018.
More details on data collection and structure calculations are given in
Table 1 and in the crystallographic information file.

Computational Methods. The majority of DFT calculations
(including full geometry optimizations in the presence of a solvent)
were carried out with the ADF 2018 program system.47 Relativistic
effects were taken into account with the ZORA48 method, applied
both as a scalar correction and with spin−orbit coupling at the two-
component level. A parallel set of calculations were carried out with
the same basis set but with a nonrelativistic Hamiltonian. Specially
optimized all-electron ZORA STO-TZ2P basis sets were used
throughout. A variety of exchange-correlation functionals were tested,
including OLYP,49,50 B3LYP,51,52 PBE0,53,54 and OPBE0.55 The
potential influence of dispersion corrections was examined, and, in
general, they did not make a significant difference. Our results
therefore generally refer to the pristine functionals. Zero-point energy
and thermal corrections (vibrational, rotational, and translational)
were made to the electronic energies in the calculation of the
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thermodynamic parameters. Enthalpies (H) and Gibbs free energies
(G) were calculated from

U E Eel nuc= + (1)

H U RT= + (2)

G H TS= − (3)

where U is the gas-phase thermodynamic energy, Eel the total
electronic energy, and Enuc the nuclear internal energy (sum of the
vibrational, rotational, and translational energies and the zero-point
energy correction); R is the ideal gas constant, T the temperature, and
S the entropy. S was calculated from the temperature-dependent
partition function in ADF at 298.15 K. Solvent effects were taken into
account with COSMO (conductor-like screening model),56−58 as
implemented59 in ADF. The type of cavity used is Esurf,60 and the
solvent used was MeCN (eps = 37.5; Rad = 2.76).
The Gaussian 16 program system61 was used for the PBE-D26263

calculations. The basis set was 6-311G(d,p) on all nonmetallic atoms
and LANL2DZ with an ECP augmented with one f-polarization
function on Re (0.869) and Tc (1.134). The polarizable continuum
model (PCM)64 as its integral equation formalism variant
(IEFPCM)65 was used for solvent (MeCN) calculations in Gaussian.
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