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Abstract: Antimicrobial resistance (AMR) is one of the most significant public health
threats today. The need for new antimicrobials against multidrug-resistant infections is
growing. The development of computational models capable of predicting new drug–target
interactions is an interesting strategy to reposition already known drugs into potential
antimicrobials. The objective of this review was to compile the latest advances in the
development of computational models capable of identifying drugs already registered
by the Food and Drug Administration for other indications with potential capacity to be
applied as antimicrobials. We present studies that apply in silico methods such as machine
learning, molecular docking, molecular dynamics and deep learning. Some of these studies
have in vitro/in vivo results that demonstrate the reliability of this computational method-
ology in terms of the identification of effective molecules and new targets of interest in the
treatment of infections. In addition, we present the methods that are under development
and their future prospects in terms of the search for new antimicrobials. We highlight the
need to implement these strategies in the research of effective drugs in the treatment of
infectious diseases and to continue to improve the available models and approaches to gain
an advantage against the rapid emergence of AMR.

Keywords: computational models; drug repositioning; antimicrobial resistance; mathematical
prediction models; machine learning; deep learning; molecular docking; molecular dynam-
ics; QSAR models; topological data analysis

1. Introduction
Antimicrobial resistance (AMR) is one of today’s most important public health

threats [1]. The most recent data on estimates associated with bacterial AMR assumed
4.71 million deaths in 2021, of which 1.14 million were directly attributable to AMR. In order
to address this global health problem, different approaches aimed at treating multidrug-
resistant infections have been studied in the current therapeutic arsenal. Examples include
the application of monoclonal antibodies, nanoparticles, antimicrobial peptides and phage
therapy, among others [2]. Although these approaches have shown some efficacy in terms of
prevention and improved prognosis in infectious diseases, their clinical use remains comple-
mentary to traditional antimicrobial therapy, acting as antimicrobial adjuvants. Therefore,
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the search for new antimicrobials effective against multidrug-resistant microorganisms
remains imperative.

The emergence of the SARS-CoV-2 virus has accelerated the implementation of new
strategies to find effective treatments [3]. Among these strategies is the development of
mathematical predictive models. The development of computational models capable of
predicting drugs and/or drug targets with potential antimicrobial capacity from biomedical
datasets is a strategy increasingly used in preclinical trials. The methodology of these
models allows for an acceleration of development times and, consequently, a reduction in
the costs associated with these processes (Figure 1).

 

Figure 1. Duration of drug development from de novo synthesis compared to the use of computational
methods and drug repositioning.

The application of computational methods such as machine learning (ML) or molecular
docking (MD) is, according to recent studies, the future for the development of new drugs,
including antimicrobials [4–6]. The potential of these bioinformatic techniques includes the
ability to reposition drugs, i.e., to provide new therapeutic applications for drugs already
used in the clinic for other diseases [7,8]. Among the drugs that can be detected by these
prediction models are those that, despite being used in the clinic for non-infectious diseases,
have a certain affinity for microbial targets [9]. It is also possible to find antimicrobials that
are commonly indicated for certain microorganisms that, according to some models, would
be able to broaden their spectrum.

The aim of this review is to analyse strategies, individually or in combination, that have
predicted the possible repositioning of non-antimicrobial drugs to potential antimicrobials
against certain infections and antimicrobials with the ability to broaden their spectrum.

2. Computational Strategies with the Ability to Predict Repositioning of
Known Drugs to Antimicrobials

Computational models can present different approaches within the development of
new antimicrobials or the repositioning of non-antimicrobial drugs [10]. In this section,
we present the most recent advances in computational strategies, such as ML, MD or
systems biology, which have been able to identify drug candidates with potential efficacy
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for antimicrobial application. As the reading progresses, we will be able to observe different
combinations of the models presented in this work. Figure 2 shows a summary of the
combinations of models observed in the literature and their frequency.

Figure 2. The main computational strategies for the discovery of new antimicrobials and their
combinations. The combinations have been classified into 3 categories: the widely applied ones
(solid line) are the most used because they are employed separately, and their results have a known
criterion; the frequently applied ones (large dashed line), although they do not present as great a
criterion as the previous ones, when combined, provide information that cannot be obtained with the
separate methods; and the occasionally applied ones (small dashed line) are carried out for specific
questions or needs of the study to be carried out (genomic data of interest or molecular structures
that cannot be observed with more traditional computational models); however, they are young
computational models with limited reliability.

2.1. Machine Learning

The application of artificial intelligence (AI) in computational models has proven to be
very useful in the current era of Big Data [9]. The use of large biomedical databanks poses a
difficulty in information management that is being solved by tools such as ML. We use ML
to define any computational methodology that is capable of rapidly predicting drug–target
interactions (DTI) by providing the model with data banks and an algorithm capable of
processing them through training [11].

Model training is defined as the process by which a model is taught to make predictions
with the input data. For proper training, algorithms are generally developed that are
capable of processing data of interest previously obtained by other methods, such as in vitro
assays. A clear example is the work of Shehadeh et al., in which they used the results
of a high-throughput liquid infection assay by methicillin-resistant Staphylococcus aureus
(MRSA) in a model of Caenorhabditis elegans to develop an ML model to predict compounds
with antibiotic activity [12] (Table 1). The model identified among 22,768 compounds
45 molecules with potential antimicrobial activity that the first in vitro screen was unable to
identify. These results translate into resource savings, as the model demonstrated a higher
predictive efficiency than the high-throughput in vitro screening used as the first database.
Another example of ML is the Condition-specific Antibiotic Regimen Assessment using
Mechanistic Learning (CARAMeL) approach by Chung et al. where a flow-based model
was designed to simulate the impact of pathogen metabolic heterogeneity on DTIs [13].
This is a model that applies pathogen chemogenomic and transcriptomic databanks to
design condition-specific antibiotic regimens, thus predicting more specific treatments for
each infection. In this study, they focused on the CARAMeL model with Escherichia coli,
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which was able to interpret metabolic issues and resistance mechanisms of this pathogen
from the data provided, predicting a total of 24 effective combination therapies, some
already in routine clinical use. These in silico predictions of combination therapies allow for
the broadening of the spectrum of antibiotics already known, not only against bacteria, but
also against fungi and some cancers [13].

Table 1. Drugs predicted as potential antibiotics with ML models.

Method Predictions ML Algorithm Accurate Predictions Reference

Mol2vec model
(Morgan algorithm)

Machine learning-assisted
high-throughput screening of

low-molecular-
weight molecules.

Balanced random
forest classifier to

predict molecules for
anti-MRSA

compounds.

AUC 2 of 0.795 with
a sensitivity of 81%

and a specificity
of 70%.

[12]

CARAMeL

Simulating metabolic flux data
using GEMs 1 and developing

an ML model to predict
combination therapy outcomes

using flux from GEMs 1.
Impact of pathogen metabolic
heterogeneity on drug–target

interactions predictions.

Random forest to
predict combination
therapy outcomes for

E. coli and
Mycobacterium

tuberculosis.

AUROC 3 = 0.83 for
synergy,

AUROC 3 = 0.98 for
antagonism.

[13]

1 GEMs: genome-scale metabolic models; 2 AUC: area under the curve; 3 AUROC: area under the receiver
operating curve.

2.2. Molecular Docking

MD is a computational tool capable of predicting the most promising interaction
between a ligand and a three-dimensional protein structure to form a complex [14]. It is
one of the most widely applied computational tools in drug discovery and development,
both alone and in combination with other in silico tools. In this case, the MD analyses the
interaction of drugs of interest against specific proteins of pathogenic microorganisms [15].
Therefore, this methodology requires a deep understanding of the bacterial proteome
to identify promising targets, such as essential pathogen proteins or virulence factors
involved in host colonisation or intracellular survival [16]. An example of this is the
work by Madugula et al., which presented a polypharmacological approach with the
aim of discovering antimycobacterial activity by performing high-throughput docking
studies against 20 M. tuberculosis targets of interest [17]. These targets were extracted from
the Molecular Property Diagnostic Suite–Tuberculosis library and were tested alongside
300 Food and Drug Administration (FDA)-approved drugs. Following MD and subsequent
predictive activity spectra for substances (PASS) analysis, 34 drugs were identified as
having antituberculosis activity, of which 21 were antibiotics, demonstrating the reliability
of the in silico study. As for the rest of the drugs identified by the model, it was observed
that they were in different stages of discovery for the treatment of different diseases, such
as cancer, degenerative diseases and dengue virus infection, among others.

Many studies perform in silico methods prior to in vitro and in vivo assays. This is
because they seek to apply computational tools as a first filter to reduce variables such as
the number of drugs or proteins to be tested in vitro [18]. This order of procedures allows
for an acceleration in each of the subsequent in vitro and in vivo assays and, consequently,
a reduction in the costs associated with these processes. However, there are interesting
studies where these tools are applied once the molecules of interest have been selected,
confirming and identifying the reason for the antimicrobial activity observed in vitro or
in vivo. An example of this is the work by Zhou et al. in which they searched for inhibitors of
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fungal phosphotidylserine synthase (Cho1), an enzyme with a crucial role in the virulence
and viability of several pathogenic fungi [19]. After different in vitro assays, the authors
identified seven compounds with the ability to inhibit the Cho1 enzyme of Candida albicans.
It was via MD that the competition of serine and CBR-5884 with yeast Cho1 was observed.
CBR-5884 is a preclinical drug with the ability to inhibit de novo serine synthesis in addition
to inhibiting the proliferation of cancer cell lines, such as melanoma and breast cancer,
which have a high propensity for serine synthesis [20]. In this work, CBR-5884 was
shown to interact directly with two residues essential for Cho1 activity, inhibiting Cho1 by
competing with serine. Using similar methodology, Shaikh et al. identified the possibility
of repositioning ebselen against Serratia marcescens infections [21]. Although in vitro assays
already demonstrated the antibacterial activity of ebselen against S. marcescens, a subsequent
MD study identified the strong binding of ebselen to specific quorum sensing (QS) proteins
through hydrogen bonding and aromatic interactions. These results showed not only the
antibiotic capacity of ebselen but, more specifically, its antibiofilm capacity.

In addition to identifying drugs with intrinsic antimicrobial capabilities, MD is also
able to predict the efficacy of certain molecules as antimicrobial adjuvants. A study of syn-
ergism between the antidepressant sertraline and Cinnamomum verum essential oil against
Candida species and their biofilms identified the association of these compounds in vitro [22].
This synergy allows a large decrease in the amounts of both compounds compared to their
individual use in the treatment of yeast infections. For in silico testing, the cytochrome P450-
dependent lanosterol 14α-demethylase (CYP51) target of C. albicans was selected because of
its involvement in ergosterol synthesis and its inhibition as a mechanism of action of several
antifungal agents. After a search in the Protein Data Bank (PDB) database (5V5Z), the target
was entered into the Maestro environment using the Protein Preparation Wizard. The main
component of the essential oil ((E)-cinnamaldehyde) was also entered into Maestro, gener-
ating its three-dimensional SMILES chain structure using Open Babel. Once the structures
were obtained, and using AutoDock 4.2.6, MD was performed, obtaining different poses
modelled with the Lamarckian genetic algorithm (LGA). Finally, the model predicted the
most plausible pose, being the binding of the compound to the heme group of the protein
and the intervention of the iron atom in this binding. The results demonstrated not only the
antifungal activity of the essential oil, but also the antimicrobial and adjuvant properties
that antidepressants are capable of exhibiting [23–25]. Another example of post-in vitro MD
application and drug replacement is the study by Yang et al. investigating the activity of
the natural alkaloid harmaline to combat Klebsiella pneumoniae strains with tmexCD1-toprJ1
gene clusters, which are capable of expressing plasmid-mediated efflux pumps that confer
resistance to multiple drugs, including tigecycline [26,27]. In vitro studies evaluating the
synergism of harmaline and tigecycline against tmexCD1-toprJ1-positive and -negative K.
pneumoniae strains showed that tmexCD1-toprJ1-positive strains had significantly enhanced
tigecycline activity compared to tmexCD1-toprJ1-negative strains. Using AutoDock Vina
(v1.1.2) software and the PDB database, MD assays were performed where harmaline was
docked to the target structures. Visualisations using PyMOL and Discovery Studio 2020
Client of the complex confirmed, together with the specific binding site mutation, the
interaction of harmaline to the TMexC1/TMexD1/TOprJ1 subunits predicted by MD. The
in silico results defined that harmaline was able to alter the secondary structure of all three
targets. Therefore, harmaline could be repositioned as an antibiotic adjuvant due to its
ability to prevent the development of tigecycline resistance in tmexCD1-toprJ1-positive
bacteria, disrupt the bacterial membrane and trigger the proton motive force, thereby
inhibiting the activity of efflux pumps.

These examples, among many others, have demonstrated the ability of MD to confirm
and understand the antimicrobial properties of non-antimicrobial drugs [28–33]. The
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ability of this strategy to individually reposition drugs has been a breakthrough in the
investigation of potential new antimicrobials (Table 2). Importantly, despite its advantages,
MD has limitations and requires experimental validation to confirm predicted interactions.
In fact, there are studies in which the possibility of finding effective drugs by MD has been
reported, yet the subsequent in vitro results do not correlate with the results observed in
silico [34]. This is why many authors propose to validate and improve the accuracy of the
results obtained using strategies that combine MD with other computational tools.

Table 2. Drugs repositioned as antimicrobials by MD.

Molecules Class of Drug Known Target New Target New Indication
Predicted Reference

Promethazine First-generation
antihistamine

Histamine H1, H2,
NMDA, muscarinic,

alpha-adrenergic and
dopamine receptors;

purinoceptors;
voltage-gated

potassium or sodium
channel; calmodulin

Quorum sensing
(proteins btaR1, btaR2

and btaR3) of
Burkholderia thailandensis

Biofilm formation
inhibition and lipase

activity by
suppression of

quorum sensing of
B. thailandensis

[28]

Derivates of
entinostat Antitumorals Human histone

deacetylase
Histone deacetylase of

M. tuberculosis

Metabolism inhibitors,
antimicrobial peptides

promoters and
rifampicin adjuvants

against M. tuberculosis

[29]

Nitrofural
Antibiotic,

treatment of
trypanosomiasis

Glutathione reductase

Proteins 1BVR, 1P9L,
1W66, 1XFC, 1U2Q,

1YLK, 1ZAU, 2FUM,
2CIN, 2WGE,

2A86,2JCV, 2A5V, 2QO1,
2QKX, 1E9X, 1W2G and
1EYE of M. tuberculosis

Antimicobacterial and
antitubercular

[17]

Stavudine Antiretroviral Reverse transcriptase

1BVR, 1P9L, 1XFC,
1U2Q, 1ZAU, 2FUM,
2CIN, 2WGE, 2A86,
2JCV, 2QO1, 2QKX,
1E9X and 1W2G of

M. tuberculosis

Quinine Antiparasitic Protoporphyrin IX of
Plasmodium falciparum

Proteins 1BVR, 1DF7,
1P9L, 1XFC, 1U2Q,

4FDO, 1ZAU, 2FUM,
2CIN, 2WGE, 2A86,
2JCV, 2A5V, 2QO1,

2QKX, 1E9X and 1W2G
of M. tuberculosis

Quinidine Antiparasitic
Antiarrhythmic Sodium channel

Proteins 1BVR, 1DF7,
1P9L, 1XFC, 1U2Q,

1ZAU, 2FUM, 2CIN,
2WGE, 2A86, 2JCV,
2A5V, 2QO1, 2QKX,
1E9X and 1W2G of

M. tuberculosis
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Table 2. Cont.

Molecules Class of Drug Known Target New Target New Indication
Predicted Reference

Amlodipine
Calcium channel

blocker.
Antihypertensive

Voltage-dependent
calcium channel RNA polymerase

β’subunit (RpoC) of
Streptococcus pyogenes

Inhibition of RpoC of
S. pyogenes [30]

Ranitidine Histamine H2
antagonist

Histamine H2
receptors

Floxuridine Antitumoral

Riboside
phosphorylase,

thymidylate
synthetase

SLY gene, sly, fabps, gap
and ef genes of

Streptococcus suis

Hemolytic activity and
expression levels of

virulence-related
genes of S. suis

[31]

Atovaquone Antipaludic

Cytochrome bc1
complex and

dihydroorotate
dehydrogenase

FtsZ protein Inhibition of FTsZ of
M. tuberculosis

[34]
Paroxetine Selective serotonin

reuptake inhibitor
5-HT reuptake

transporter

Nebivolol Antihypertensive Beta-1 adrenergic
receptor

Atosiban

Inhibitor of
oxytocin and
vasopressin

Delays preterm
birth in pregnancy

Oxytocin receptors

Enzyme HemD Inhibition of HemD of
M. tuberculosis

[32]

Rutin Flavonoid, vitamin
supplement

Aldo-keto reductase
and carbonyl

reductase

Disulfiram
Treatment of

alcohol
dependence

Dopamine
beta-hydroxylase and

aldehyde
dehydrogenase,
mitochondrial

Aldehyde
dehydrogenase of

Cryptococcus neoformans

Inhibition of aldehyde
dehydrogenase of

C. neoformans
[33]

2.3. Molecular Dynamics

One of the most commonly used in silico methods complementary to MD is molecular
dynamics [35]. It is a tool that provides insight into the strength and stability of DTIs by
predicting molecular and structural changes that occur in these interactions under the
influence of intermolecular and intramolecular forces [36].

There are interesting studies with drug repurposing approaches and the application
of molecular dynamics. One example is the study by Ohra et al. that aimed to identify
drugs with potential antimicrobial activity from a pharmacovigilance approach [37]. Using
the OpenVigil 2.1 tool, they queried the FDA Adverse Event Reporting System (FAERS)
database for drugs with antimicrobial potential based on known adverse events. This
type of DTI, the adverse events recorded for each drug and the targets of Pseudomonas
aeruginosa, S. aureus and Streptococcus pneumoniae were processed in the Maestro module
for MD and Desmond for molecular dynamics. After performing both in silico processes,
several drugs with the potential to be repositioned as antimicrobials were identified, such
as the antihypertensives lisinopril, olmesartan and valsartan, the statin atorvastatin, the
antidiabetic rosiglitazone and the smoking cessation drug varenicline. However, molecular
dynamics results identified stability issues in the lisinopril molecule against the penicillin-
binding protein 3 (PBP3) of P. aeruginosa.
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In addition to the discovery of potential antibiotics against Gram-positive and Gram-
negative bacteria [38], there are numerous studies that apply both MD and molecular
dynamics to identify effective drugs against mycobacteria [39–42]. Studies such as those by
Medha et al. and Ezquerra-Aznárez et al. address the repositioning of non-antibiotic drugs
using in silico models with a similar common methodology; based on the three-dimensional
structures of the M. tuberculosis proteins of interest and drugs obtained from different
databases, MD simulations are performed to find out the DTIs with the most stable binding
energies. To find the best orientation in the binding site of the M. tuberculosis proteins,
they allowed the drug to adopt different conformations. Once these energies have been
calculated and after appropriate processing of the obtained DTIs, molecular dynamics
simulations were performed to check the stability of the most stable complex predicted by
the software used. In other words, they record the movement and interactions of the target
with the ligand over a given time to observe whether it remains stable in the active site,
whether it changes position or whether the binding unravels. Using this methodology, DTIs
capable of inhibiting the growth and virulence of M. tuberculosis from different proteins
were identified.

It is also possible to find literature on models that apply molecular dynamics to predict
molecules capable of repositioning to drugs for the treatment of yeast infections [43,44].
Borgio et al. and David et al. conducted studies focused on the repositioning of non-
antifungal drugs capable of being applied against Candida yeast infections. Both studies
present a similar methodology observed in previous studies (MD + subsequent molecular
dynamics), with the difference that each extracted the molecules for the study from different
databases: ZINC in the case of Borgio et al. and DrugBank in the case of David et al. It
is probably due to this difference in consultation that each study ascertained the possible
antifungal repositioning of different drugs applied in the clinic for other types of diseases
(Table 3).

Table 3. Drugs identified as potential antimicrobials from molecular dynamics.

Molecules Class of Drug New Indication Predicted Docking
Score

Binding Score
(Kcal/mol) References

Lisinopril Antihypertensive

Inhibition of:
3-deoxy-manno-octulosonate

cytidylyltransferase
UDP-2,3-diacylglucosamine

hydrolase
PBP3 1

of P. aeruginosa

−10.8
−9.2
−9.4

−89.3
−50.7
−70.6

[37]

Olmesartan Antihypertensive Inhibition of lipotheichoic acids
flippase LtaA of S. aureus

−9.0 −75.4

Atorvastatin
Lipid-lowering

drug, statin

−8.6 −96.9

Inhibition of CDP-activated ribitol for
teichoic acid precursors of

S. pneumoniae
−7.4 −74.6

Rosiglitazone Antidiabetic
Inhibition of d-alanine ligase of

S. aureus

−7.3 −70.4

Varenicline Aid in smoking
cessation −7.1 −48.7

Valsartan Antihypertensive Inhibition of peptidoglycan
deacetylase of S. pneumoniae −7.4 −62.6
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Table 3. Cont.

Molecules Class of Drug New Indication Predicted Docking
Score

Binding Score
(Kcal/mol) References

Verapamil Antihypertensive
Inhibition of protein PE_PGRS45 of

M. tuberculosis

−6.2 to −5.9 −58.8

[39]Entacapone
Tolcapone

Treatment of
Parkinson’s disease

−7.3 to −6.3
−7.9 to −6.3

−40.0
−39.3

Dutasteride
Antiandrogenic.

Treatment of prostate
cancer

Inhibition of
1,3-β-glucanosyltranferase from

Candida auris
- ≤−10 [43]

Digoxin Cardiac glycoside,
treatment of heart failure

Ergotamine

Vasoconstrictor,
treatment of cluster

headaches and
migraines

Paritaprevir
Antiviral, treatment of

infections caused by the
hepatitis C virus

Acarbose Hypoglycemic Inhibition of alfa-glucosidase of
C. albicans −11.5 - [44]

Adapalene Treatment of acne,
retinoid

Inhibition of NDM-1 2 enzyme of
E. coli and K. pneumoniae alone or in

combination with meropenem
- −9.2 [38]

Selamectin
Parasiticide and
antihelminthic in

veterinary medicine

Inhibition of DprE1 enzyme of
M. tuberculosis. Possible multitarget

antibacterial compound
- - [40]

Accolate Prophylaxis and
treatment of asthma

Inhibition of FadD32 protein of
M. tuberculosis

−9.3 −45.1

[41]Sorafenib Antitumoral −10.0 −32.7

Mefloquine Antimalarial −8.0 −26.8

Loperamide Antidiarrheal −8.5 −21.5

Phytochemicals
of Withania
somnifera

Complement in
anti-inflammatory,

antidiabetic,
antimicrobial, analgesic,
antitumoral, anti-stress,

neuroprotective,
cardioprotective,
rejuvenating and

immunomodulatory
treatments

Inhibition PyrG protein of
M. tuberculosis

−12.6 to
−10.8 - [45]

Glimepiride Hypoglycemic

Inhibition of Tap protein of
M. tuberculosis

−9.7 −51.9

[42]

Flecainide Antiarrhythmic agent −9.1 −44.6

Flupirtine
Investigated for

treatment of
fibromyalgia

−8.9 −46.4

Nimodipine
Calcium channel blocker,

improvement in
neurological outcomes

−7.0 −46.1

Amlodipine Calcium channel blocker,
antihypertensive −7.2 −42.6

1 PBP3: penicillin-binding protein 3; 2 NDM-1: New Delhi metallo-β-lactamase 1.
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Most of the molecules listed in Table 3 correspond to non-antibiotic drugs that
have demonstrated in silico and/or in vitro activity as potential antimicrobials. How-
ever, there are also studies that have demonstrated an interesting ability to broaden the
antimicrobial spectrum of some drugs, potentially enriching the available therapeutic
arsenal [40,41,43,45]. Research such as that conducted by Shailaja et al. supports the im-
perative need to broaden the spectrum of already known antimicrobials, in addition to
identifying adjuvants capable of preserving the antimicrobial activity of the available thera-
peutic arsenal [38,46]. Thus, the authors performed a virtual screening in the ZINC database
in order to reposition molecules for the treatment of infections caused by superbugs pro-
ducing the New Delhi metallo-β-lactamase 1 (NDM-1) enzyme, an enzyme that allows
bacteria to inactivate the entire arsenal of β-lactam antibiotics, including carbapenemics,
and is also ineffective against all clinically available β-lactamase inhibitors. Applying MD,
the retinoid adapalene was identified as having a stable DTI against the NDM-1 enzyme.
Since these results had shown that adapalene interacted with key amino acid residues in
the active site of NDM-1, molecular dynamics simulations were performed, demonstrating
stable conformational dynamics. Subsequent in vitro assays demonstrated that adapalene
was not only able to inhibit the NDM-1 enzyme but was also able to act as an antibiotic
adjuvant in combination with the carbapenemic meropenem in clinical isolates of E. coli
and K. pneumoniae. Therefore, computational models have proven to be able not only to
predict drugs with potential antimicrobial activity but also molecules that can function
as antimicrobial adjuvants. Examples of this are the results obtained by Narimisa et al.,
identifying the citrus flavonoid diosmin, commonly used to promote vascular health, as
an adjuvant in combination with ceftazidime or ciprofloxacin for infections by persistent
Salmonella Typhimurium strains, as well as synergies of these antibiotics combined with
the β-lactam nafcillin [47]. Another drug that, despite its β-lactam structure, is applied as
an antidiabetic is metformin, which has been shown in MD and/or molecular dynamics
studies to have adjuvant properties against different Gram-positive and Gram-negative
bacteria [46,48].

2.4. Genomic and Proteomic Sequencing Methods

The study of genes, proteins and metabolites has led to a greater understanding and
analysis of cellular functionality. This great development in recent years has made it pos-
sible not only to identify, characterise and quantify the molecular biology of organisms,
but also to make use of bioinformatics to transform all these data into valuable infor-
mation [49,50]. The application of in silico models capable of managing omics data has
allowed the identification of new drugs and the repositioning of some already known
drugs, thanks to the determination of molecular mechanisms involved in the pathogenesis
of infectious diseases, such as the survival and virulence of the pathogen or the mechanisms
of host parasitism.

There are different in silico approaches based on omics analysis applied in microbiology.
One of them is subtractive genomics, a technique that consists of identifying unique proteins
necessary for the survival of bacteria [51] (Figure 3). These proteins are not present in
the host, making them targets of interest to find drugs capable of interacting with them.
A clear example of subtractive genomics is the study by Hassan et al., which aimed to
search for therapeutic targets of Shigella flexneri serotype X and identify known drugs with
the potential to interact with these targets [52]. To make these computational predictions,
both the S. flexneri proteome and the human proteome were obtained from the Universal
Protein Resource database. Both proteomes were compared using CD-HIT (v.2005) and
BLAST (v.2.16.0) software to eliminate paralogous sequences and homologous proteins,
obtaining 1803 non-homologous sequences between both proteomes. From these sequences,
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1246 essential proteins were identified for S. flexeneri, which were compared with the
DrugBank database for drug targets of interest and those drugs that interact with them.
Following MD screening using Autodock software 4.2.6, the protein serine acetyltransferase
was identified as a promising target for five compounds with antibacterial potential. These
molecules corresponded to the antimigraine drug atogepant and the molecules olacaftor,
fulacimstat, phthalocyanine and HQP1351, which are in clinical trials for the treatment
of cystic fibrosis, cardiac pathologies and cancer, respectively. The results demonstrated
how genomic sequencing methods can successfully identify effective and safe compounds
against proteins related to virulence factors and antibiotic resistance in S. flexneri. This
model also had an advantage over the identified targets, as the proteins were unique to the
pathogen, avoiding possible adverse effects of the candidate molecules by not binding to
human proteins, as these proteins did not show functional similarities to those of S. flexneri.
The same approach was applied by Borges et al. in a chemogenomic model to reuse
drugs already known as potential antibiotics against Acinetobacter baumannii [53]. For
this purpose, a structural comparison between A. baumannii proteins and all drug targets
present in the Therapeutic Targets Database and DrugBank databases was performed using
the OrthoVenn2 and BLASTp servers. After extensive computational screening, including
MD, 31 drugs that interacted with 14 proteins essential for A. baumannii were identified.
These included the antifungal drug tavaborole, the antiparasitic drugs atovaquone and
thioabendazole, the antitumour drugs homoharringtonine and MKT-077, the antirheumatic
leflunomide, and the antiviral hepatitis C drug ribavirin. These seven drugs were tested
in vitro, not only demonstrating their effectiveness as antibacterials, but also confirming
the relevance of the bacterial targets predicted by the model as being of interest for the
discovery of new antimicrobials, as they turned out to be proteins present in different
metabolic pathways of interest for the survival, virulence and resistance of A. baumannii.
Due to the results obtained, the authors did not rule out the possibility of the antimicrobial
potential of the rest of the molecules predicted by the model, in addition to proposing
in vivo assays to confirm the antibiotic efficacy of the molecules tested. Using a similar
methodology, Santo et al. searched for new antifungals effective against sporotrichosis [54].
Similar to Hassan et al. and Borges et al., who studied A. baumannii, the model was able
to predict molecules with activity against Sporothrix brasiliensis, such as the antitumour
everolimus and the antifungal indicated for dermatomycosis bifonazole. Subsequent in vitro
assays confirmed the predictions of the model, with both drugs demonstrating satisfactory
minimum inhibitory concentration values. In addition, MD studies demonstrated the
affinity of everolimus and bifonazole for the sterol-14-α-demethylase and serine/threonine-
protein kinase TOR proteins, respectively.

A further step in in silico methodologies in this category is found in subtractive pro-
teomics models, which identify essential proteins as relevant drug targets by screening
the proteome of the organism of interest [55]. As these are essential proteins, screening is
limited to only those targets that are of great importance for the survival of the microor-
ganism under study. A study by Urra et al. applied this computational strategy to test
whether it was possible to reposition known drugs as antibiotics against P. aeruginosa [56].
In this study, subtractive proteomics was applied to select proteins from a dataset of the
P. aeruginosa proteome to be compared to the human genome. The screening consisted of
discarding the proteins similar to both the microorganism itself and the ones from humans,
as well as those similar to the human gut microbiota. As we have observed in previous
studies, this procedure allows the elimination of unwanted DTIs for the drugs predicted
by the model, thus avoiding adverse effects [51–53]. Finally, the proteins selected by the
model were those belonging to the resistance/nodulation/cell division (RND) family used
by P. aeruginosa as efflux pumps for antibiotics. A peculiarity of this study is that it was
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not possible to obtain in vitro data of the bacterial proteins present in the study, so a deep
learning (DL) algorithm was integrated to predict the three-dimensional structure of the
proteins from the databases. In addition, molecular dynamics simulations were performed
using the Schrodinger Master environment in order to refine and improve the stability of
the predicted three-dimensional structures. Finally, MD allowed us to consider different
conformational states of proteins and to improve the identification of promising drugs.
Among these were clinical-stage drugs such as the antimigraine drug MK-3207 and the
antitumour drugs bemcentinib and suramin, which are promising candidates to combat
P. aeruginosa infections [56].

Figure 3. Graphical scheme of the steps commonly followed in the subtractive genomics approach.
(A): Retrieval of interest and reference genomes from databases. (B): Removal of paralogous sequences
in the genome of interest (GI). (C): Removal of homologous sequences to the reference genome
(RG). (D): Compare non-homologous against database of essential genes to identify essential genes.
(E): Identify and test for high similarity of non-homologous essential proteins to those found in
databases of known targets. (F): Selection of targets of interest based on criteria of virulence, resistance,
antigenicity, localization and function in the pathogen.

The studies presented in this section demonstrate the importance of performing ge-
nomic and proteomic studies to gain a more realistic understanding of the DTIs that can
occur in reality (Table 4). Transcriptomic studies are also of interest, as different tissue
types, cellular conditions and environmental factors make the transcriptome dynamic
in nature [57]. There are studies, such as the one by Das et al., where, using an in silico
transcriptomic approach, it was possible to predict effective drugs against S. aureus in-
fections [58]. For this, a transcriptomic analysis was performed at the retinal level of a
mouse model infected with S. aureus to understand and determine the alterations and gene
expressions of the bacteria in this infection model. Based on a systems biology approach, a
connectivity map was made using the GeneMANIA package (v3.3.5) of Cytoscape software
(v3.9.0) to identify three drugs with potential antibiotic activity. These were the hypogly-
caemic drug glibenclamide, the experimental antiarrhythmic clofilium tosylate and the
antimicrobial dequalinium, which is indicated for the treatment of some bacterial vaginosis
and oral infections. Subsequent in vitro trials demonstrated the efficacy of all three drugs,
both individually and in combination with each other, improving infection and inflamma-
tion caused by the host immune system, along with retinal function. Therefore, the model
proved to be able to identify drugs with the potential to prevent and treat endophthalmitis
caused by S. aureus.
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Table 4. Drugs identified as potential antimicrobials from genomic and proteomic sequencing methods.

Molecules Class of Drug New Indication Predicted Reference

Decitabine Antitumoral, pyrimidine nucleoside analogue Inhibition of phospho-2-
dehydro-3-deoxyheptonate

aldolase of Gardnerella vaginalis
[51]

Nitroglycerin Nitrate vasodilator, preventive of different
cardiac and circulatory problems

Phthalocyanine

Tetrapyrrole fundamental parent, under
investigation in clinical trial for its antitumoral

and antifungal effects and treatment of different
skin diseases

Inhibition of serine
acetyltransferase of S. flexneri

serotype X
[52]

Fulacimstat
Chymase inhibitor, under investigation in

clinical trial for treatment of heart diseases and
diabetic kidney disease

Atogepant Antimigraine, receptor for different molecules
mediated by G proteins

Olverembatinib
Bcr-Abl inhibitor, under investigation in clinical

trial for treatment of different leukemias and
gastrointestinal stromal tumours

Olacaftor
Cystic fibrosis transmembrane conductance

regulator, under investigation in clinical trial for
treatment of cystic fibrosis

Tavaborole Antifungal, treatment of onychomycosis caused
by dermatophytes

Inhibition of LeuRS of
A. baumannii

[53]

Ribavirin Antiviral, treatment of infections caused by
hepatitis C virus

Inhibition of inosine
5′-phosphate dehydrogenase of

A. baumannii

Leflunomide Immunomodulator, treatment of
rheumatoid arthritis

Interaction with dihydroorotate
dehydrogenase of A. baumannii

Atovaquone Antiparasitic, treatment of malaria and
AIDS-associated diseases

Homoharringtonine Antitumoral, treatment of different leukemias Inhibition of the 50S ribosomal
subunit of A. baumannii

Thiabendazole Anthelmintic, tubulin inhibitor Inhibition of succinate
dehydrogenase of A. baumannii

MKT-077 Antitumoral, inhibitor of mitochondrial hsp
70 family member.

Inhibition of chaperone DnaK of
A. baumanni

Bifonazol Antifungal, treatment of fungal skin infections,
such as dermatomycosis

Interaction with
sterol-14-alfa-demethylase of

S. brasiliensis
[54]

Everolimus

Antitumoral, inhibition of mammalian target of
rapamycin (mTOR) kinase, prevention of organ

transplant rejection and treatment of various
malignancies

Interaction with
serine/threonine-protein kinase

TOR of S. brasiliensis

Quercetin Flavonoid, antioxidant with specific inhibition of
quinone reductase (QR2) Inhibition of MurG of S. aureus. [55]
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Table 4. Cont.

Molecules Class of Drug New Indication Predicted Reference

MK-3207
Antagonist of the calcitonin gene-related peptide
type 1 receptor in humans, under investigation

in clinical trial for migraine disorders

Inhibition of RND efflux pumps
of P. aeruginosa [56]

Bemcentinib
(R-428)

Tyrosine-protein kinase receptor inhibitor, under
investigation in clinical trial for myelodysplastic
syndrome, melanoma, acute myeloid leukaemia,

and mesothelioma

Suramin

MFP protein inhibitor, under investigation in
clinical trial for non-small cell lung carcinoma,

prostate adenocarcinoma, autism spectrum
disorder and acute kidney injury

Glibenclamide Hypoglycemic drugs in the treatment of
non-insulin-dependent diabetes mellitus

Reverse the expression of the
master regulators perturbed in

S. aureus endophthalmitis
[58]

Clofilium
tosylate

Benzene, under investigation in clinical trial for
heart rhythm disorders

Dequalinium
(fluomizin)

Antimicrobial, treatment of vaginosis and
oral infections

2.5. Quantitative Structure–Activity Relationship Models

Quantitative Structure–Activity Relationship (QSAR) models have gained attention in
the biomedical world for drug discovery, design and development [59–61]. This is because
this methodology has provided remarkable time and resource savings compared to other
drug development methods, such as de novo synthesis.

QSAR models use physicochemical, biological and toxicological descriptors to predict
the biological activity of molecules from their structure [62]. It is through this quantitative
and interdisciplinary analysis that the model is able to identify important determinants for
the potential antimicrobial activities that a molecule may have. This methodology not only
makes it possible to search for known drugs and reposition them as antimicrobials, but
also, based on the identified determinants, it is possible to design new drugs with superior
efficacy to those already known [63]. Therefore, QSAR models have laid the foundation for
the design and development of new molecules with in silico pharmacological activity.

In the most recent literature, we can find some studies focused on the search for new
antimicrobials that apply QSAR methods (Table 5). One example is the work by Kamble
et al., who evaluated the efficacy of a battery of 148 compounds against the schizont stage
of the parasite Theileria annulata [64]. These compounds were obtained from the Cayman
epigenetic library and have now been approved by the FDA for cancer therapy, although
they are still under investigation in clinical trials [65]. Following the in vitro assays required
to demonstrate growth inhibition and parasite susceptibility to the compounds, seven
drugs with potent activity against T. annulata-infected cells were identified. The compounds
in question were SAHA, ryuvidine, BVT-948, TCE-5003, trichostatin A, methylstat and
plumbagin. Once the drugs with the highest activity were identified, the binding of these
molecules to their respective targets in T. annulata was investigated in silico. Due to the
lack of three-dimensional structures of the targets, homology modelling from human
target orthologues in the parasite was performed to generate reliable protein structures
for the MD. Docking showed that all compounds exhibited high binding energies to their
respective targets, highlighting SAHA, Trichostatin A and BVT-948 as potential leads for
the development of new antiparasitics.
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Table 5. Drugs identified as potential antimicrobials from Quantitative Structure–Activity Relation-
ship models.

Molecules Class of Drug Score New Indication
Predicted References

C19H14N6S,
C19H14N6OS,
C19H13FN6S,

C18H14N6O2S,
C18H14N6O3S.

Pyridothienopyrimidine
derivatives, no

previous known phar-
macological activity

pMIC 1

−1.5
−1.2
−1.6
0.4
0.8

Inhibition of P.
aeruginosa growth,

unknown mechanism
of action

[59]

C23H21N4Cl3O2S Indazole compounds pKi
2

2.8

Inhibition of S-adenosyl
homocysteine/methylthio-
adenosine nucleosidase
(SAH/MTAN) of E. coli

mediated quorum
sensing to produce AMR

[61]

Sigmacidins
(C21H13N2Cl3O4S)

Benzoic acid
derivatives, no

previous known phar-
macological activity

Experimental pMIC 1: 5.7
2D QSAR pMIC 1: 4.9
3D QSAR pMIC 1: 5.2

Inhibition of bacterial
RNA polymerase-σ
factor interaction of

Streptococci/
S. pneumoniae

[62]

SAHA Anti-cancer histone
deacetylase inhibitor

ADME
properties 3

within the
margins

No Toxicity 3

Inhibition of epigenetic
pathways of

T. annulata-infected cells
[64]

Trichostatin A

BVT-948,
PRMT inhibitor

No Toxicity 3

TCE-5003 Hepatotoxicity 3

Methylstat Histone demethylase
inhibitor Hepatotoxicity 3

Plumbagin ROS/apoptosis
inducer inhibitor AMES toxicity 3

1 pMIC: negative algorithm of Minimum Inhibitory Concentrations; 2 pKi: negative algorithm of Ki, an evaluator
of the direct interaction between an inhibitor and its molecular target; 3 Parameters calculated from QikProp:
absorption, distribution, metabolism and excretion (ADME). Parameters calculated from pkCSM: toxicity.

However, we have recently observed a reduction in the number of articles applying
this in silico methodology for drug repositioning, which is more commonly used for de
novo development or for the development of derivatives from known leads [59,62]. This is
because there are more up-to-date models, some of them with a QSAR approach, that have
shown greater efficiency in their in silico results compared to conventional models.

3. Future Directions
We have observed throughout this review that the more classical models are still able

to provide new insights into molecules and targets of interest in the fight against AMR.
However, the rate at which AMR emerges continues to be much faster than the rate at
which we achieve results in the laboratory or from computational models [66]. Therefore,
the development of new in silico models and the updating of known models could provide
faster and more accurate results, resulting in a higher success rate in the identification of
effective molecules against resistant infections.

One of the strategies that works best, and which we have mentioned in the previous
sections, when it comes to discovering new models, is the combination of existing models.
A new combination of computational tools is presented in the study by Ngidi et al., who
combine virtual screening, MD and molecular dynamics with the SwissADME tool, which
allows predictions to be made from a drug’s absorption, distribution, metabolism and
excretion (ADME) data [51]. These data are essential for drug approval, as they reveal
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drug similarity to other drugs and bioavailability by estimating physicochemical properties.
Using this model combination, the authors identified the anti-asthmatic zafirlukast as a
potential antibiotic against M. tuberculosis infections. Another example of a novel model
combination is by Gohain et al., who combined a subtractive genomics model with MD,
molecular dynamics, ADMET (ADME + toxicity) predictions and Density Functional
Theory (DFT) to identify potential inhibitors against S. pneumoniae [67]. Density Functional
Theory analyses properties such as electronic affinities, ionisation potentials, orbital energies
and molecular structures. Using this combination of computational tools, the non-steroidal
anti-inflammatory drug bromfenac was identified as a potential antibiotic, which showed a
higher affinity for the SigA sigma factor of S. pneumoniae RNA polymerase compared to the
antibiotic ceftibuten.

Very recent models have proven to be effective predictors of effective antibiotics. In
the 2000s, topological data analysis (TDA), a model based on algebraic topology and com-
putational geometry capable of extracting qualitative information from available molecular
databases, emerged as an evolution of QSAR models [68,69]. This methodology was able
to reposition drugs against SARS-CoV-2, and recently was able to do the same against
E. coli, for which antipsychotics, antidepressants, antitumour drugs, retinoids and more
therapeutic groups with antibiotic potential against this bacterium were identified [46,70].

However, authors such as Suay-García et al. propose that TDA in combination with
other computational models, such as DL, could greatly improve the design and develop-
ment of new antimicrobials [71]. DL is a subset of ML where large datasets are fed together
with complex algorithms that help machines and models learn by training without being
explicitly programmed [72]. Although it is a relatively novel tool, it has been shown to be
able to identify drugs that can be repositioned for the treatment of bacterial infections. A
study by Joshi et al. applied DL regression algorithms to screen and identify FDA-approved
drugs that could inhibit dihydrofolate reductase (DHFR) of Salmonella Typhi [73]. After
applying DL, a total of 500 molecules were screened for the desired property. In order to
refine the results of the study, an MD screen and a subsequent molecular dynamics screen
were included. This combination of strategies resulted in four potential compounds to
inhibit the DHFR enzyme: the antitumour drugs duvelisib and nilotinib, the anti-herpetic
amenamevir, which is still in phase 3 clinical trials, and the dry eye syndrome drug lifite-
grast. The molecular dynamics results concluded the usefulness of these drugs as potential
treatments against typhoid fever by intervening in the function of the DHFR enzyme in
S. Typhi.

The combination of TDA and DL, called topological deep learning (TDL), could
significantly increase the type and amount of information to be obtained from biomedical
databanks and improve the efficiency and robustness of their processing. Recent studies,
such as those by Chen et al. and Hou et al., have demonstrated the accuracy of tools
applying TDL for vaccine, antibody and antibiotic prediction [74,75]. However, the design
of these tools still needs to be fine-tuned to improve the viability and affinity of the
molecules to be predicted.

4. Conclusions
The progressive emergence of AMR to the available therapeutic arsenal exposes an

immediate need for the search and development of new antimicrobials. Gaining new
insights into targets of interest, along with antimicrobial drug repurposing, remains a
priority task to gain an advantage over the speed at which microorganisms gain resistance to
known antimicrobials. Computational models have demonstrated their ability to accelerate
the processes involved in drug development and repositioning, providing new insights
into drug targets of interest and potentially effective antimicrobials. These models are
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continuously evolving, either by training existing models or by creating new ones. However,
the improvement and development of new models and approaches are still needed to
further accelerate this race against time against the global health threat posed by AMR.
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