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The enigmatic clock of 
dinoflagellates, is it unique?
Dinesh Balasaheb Jadhav , Yoshita Sriramkumar  and 
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Dinoflagellate clocks are unique as they show no resemblance to any known 

model eukaryotic or prokaryotic clock architecture. Dinoflagellates are 

unicellular, photosynthetic, primarily marine eukaryotes are known for their 

unique biology and rhythmic physiology. Their physiological rhythms are driven 

by an internal oscillator whose molecular underpinnings are yet unknown. 

One of the primary reasons that slowed the progression of their molecular 

studies is their extremely large and repetitive genomes. Dinoflagellates are 

primary contributors to the global carbon cycle and oxygen levels, therefore, 

comprehending their internal clock architecture and its interaction with their 

physiology becomes a subject of utmost importance. The advent of high 

throughput Omics technology provided the momentum to understand the 

molecular architecture and functioning of the dinoflagellate clocks. We use 

these extensive databases to perform meta-analysis to reveal the status of 

clock components in dinoflagellates. In this article, we will delve deep into the 

various “Omics” studies that catered to various breakthroughs in the field of 

circadian biology in these organisms that were not possible earlier. The overall 

inference from these omics studies points toward an uncommon eukaryotic 

clock model, which can provide promising leads to understand the evolution 

of molecular clocks.
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Introduction

The clock architecture

Circadian rhythms are present across kingdoms from cyanobacteria to humans that 
manifest as overt oscillation in behavior, physiology, biochemistry, and metabolism (Patke 
et al., 2019). These rhythms are generated by an inherent cell-autonomous clock that confer 
an adaptive advantage to organisms that evolved in the 24-h day/night cycle of the earth 
(Dunlap, 1999). Although the clock constituents vary, their core architecture remains intact. 
These clocks are run by underlying oscillators and to date, we are aware of 3 such different 
oscillators. First is the transcriptional-translational feedback loop (TTFL) oscillator 
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(Lande-Diner et al., 2013) found mostly in eukaryotes, second is 
the post-translationally operated Kai oscillators (PTO) in 
prokaryotes (Golden and Canales, 2003), and finally, the recently 
revealed metabolic/redox oscillator that serves as an ancient and 
conserved oscillator across all lineages (Edgar et  al., 2012). 
However, dinoflagellates are unicellular marine eukaryotes whose 
clock architecture fits neither the eukaryotic TTFL model nor the 
prokaryotic PTO model (Roy et al., 2014a). Although the presence 
of the conserved metabolic/redox oscillator is anticipated it has 
not been experimentally validated in these species.

The dinoflagellates

Dinoflagellates are unicellular eukaryotes that are 
predominantly photosynthetic and marine dwellers, however, 
heterotrophic, mixotrophic, and freshwater species are also found 
(Carty and Parrow, 2015). They are known for their extensive 
harmful blooms (Anderson et al., 2008; Borbor-Cordova et al., 
2019) and nightly bioluminescence in the ocean (Valiadi and 
Iglesias-Rodriguez, 2013). Some of them produce neurotoxins that 
are poisonous to marine mammals and humans, posing an 
economic threat to the fishery industry (Wang, 2008). Along with 
the diatoms, dinoflagellates are the primary producers that capture 
and fix the greenhouse gas carbon dioxide and release oxygen, 
which accounts for almost half of the global oxygen content (Field 
et al., 1998; Falkowski, 2012). The circadian clock in these marine 
dinoflagellates drives their rhythmic physiology such as 
photosynthesis and nitrogen metabolism, which regulates the 
marine carbon and nitrogen cycles, respectively. Therefore, 
understanding the inherent clock and its impact on dinoflagellate 
physiology becomes a topic of primary interest.

Among the eukaryotes, dinoflagellates are known for their 
unique molecular features, such as enormous genomes (Wisecaver 
and Hackett, 2010), which are packed in liquid crystalline 
chromosomes (Costas and Goyanes, 2005). This is unlike the 
nucleosome structure found in all other known model eukaryotes. 
Lingulodinium polyedra (previously Gonyaulax polyedra) emerged 
at the forefront as a model dinoflagellate species suitable to study 
circadian physiology. This is because L. polyedra has many easy 
and tractable overt physiological rhythms that were found to 
be under clock regulation (McMurry and Hastings, 1972). One 
such extremely interesting rhythm is that of bioluminescence 
(Fritz et al., 1990), an easily readable reporter mechanism that is 
in-built and runs under a circadian program. Vertical migration, 
aggregation (Roenneberg and Hastings, 1988), cell division 
(Vicker et al., 1988), photosynthesis (Sweeney, 1986), nitrogen 
assimilation (Dagenais-Bellefeuille and Morse, 2013) are the other 
well-known clock controlled processes. Apart from this, several 
proteins and enzymes also follow the circadian phase of expression 
(Johnson et al., 1984). However, the underlying physiological roles 
of these dynamics are not yet clear. Unlike the other model 
eukaryotes, dinoflagellates do not show extensive transcriptional 
regulation; rather translational control is rampant (Fagan et al., 

1999; Hastings, 2007). Also, dinoflagellates have a very low 
abundance of transcription factors that belong to unconventional 
families (Bayer et  al., 2012; Beauchemin et  al., 2012; Roy and 
Morse, 2013). Taken together, studies in L. polyedra showed 
prospects of a concealed and unconventional clock that led to – 
“Omics” studies including the large scale meta transcriptomics, 
transcriptomics (Beauchemin et al., 2012; Lauritano et al., 2017), 
proteomics (Roy et al., 2014b; Beauchemin and Morse, 2018; Tse 
et al., 2018) and phosphoproteomics (Liu et al., 2012; Roy and 
Morse, 2014). Although, L. polyedra is by far the most researched 
species in the context of chronobiology, there are some interesting 
studies with a few other species. One of them is Symbiodinium, a 
species of dinoflagellates that corals host to acquire essential 
photosynthates. This incited studying this as a model relevant to 
clock regulation of physiology in the host-symbiotic system (Sorek 
et al., 2013, 2014, 2018).

All research conducted thus far suggests the presence of an 
unusual clock organization and unique oscillator components in 
these organisms that is worth studying. In this review, our effort 
is to demonstrate these distinctive features of the dinoflagellate 
clock by discussing the – “Omics” studies that led to the 
understanding of the dinoflagellate clock, its organization, and the 
underlying mechanism.

Dinoflagellate genomics and the 
circadian clock

The genomes of dinoflagellates are remarkable in many ways. 
The large DNA content (about 10–200 pg) in unicellular 
dinoflagellates is the highest among all known eukaryotes (Lin, 
2011). The dinokaryon nucleus of dinoflagellates is one of its kind 
among eukaryotes (Gornik et  al., 2019). Unlike any other 
eukaryotes their DNA is not packaged into nucleosomes (Riaz 
et al., 2018), although histone and histone like proteins exist, their 
role is not yet clear. Multiple gene copies are organized as tandem 
repeats along the chromosomes (Bachvaroff and Place, 2008; 
Beauchemin et al., 2012),which are poses a considerable challenge 
to the genome sequencing ventures in these species (Treangen and 
Salzberg, 2012). However, the ground-breaking progress in third 
generation sequencing and de novo assembling techniques are 
proving beneficial for revealing the dinoflagellate genome 
architecture (Marinov et al., 2021; Nand et al., 2021). Utilizing 
these technological advancements, 15 dinoflagellate genomes have 
been sequenced (González-Pech et al., 2021) and new assemblies 
were generated providing deeper insights into the genome of 
already sequenced species (Lin et  al., 2021). By far, the genus 
Symbiodinium has been at the forefront of such analysis because 
of its relatively smaller genomes (Lin et al., 2015) and its symbiotic 
role in sustaining its coral host. Recently, a free-living dinoflagellate 
genome of size ~7 Gbp was sequenced from Polarella glacialis 
(Stephens et  al., 2020). One of the common features of these 
genomes is the presence of large sets of unannotated sequences 
suggesting either the emergence of novel gene families or excessive 
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divergence resulting in no significant similarity with the putative 
original sequences (Aranda et al., 2016). Current literature on 
dinoflagellate genomes did not reveal any central clock 
components related to either eukaryotic TTFL oscillator or 
prokaryotic Kai oscillator genes (Shoguchi et al., 2013; Lin et al., 
2015; Noordally and Millar, 2015). However, these studies in 
dinoflagellates are a major step in understanding its genome 
organization leading to the better realization of the underlying 
regulatory mechanism (Lin et al., 2015). With the availability of 
the genome sequences, it will be convenient to generate a robust 
database for downstream transcriptomics, proteomics and 
phosphoproteomics studies. Further, it will be  beneficial in 
identifying the regulatory non-coding regions that play significant 
roles in modulating the underlying clock. This might pan out to 
be an approach to capture the factors that are regulated by the 
clock that will eventually lead to isolating the yet unknown clock 
components in dinoflagellates.

Some of the facts realized from these genome studies are quite 
interesting, such as the presence of unconventional promoter and 
miRNAs-based gene regulatory machinery (Lin et  al., 2015), 
unique chromosome structure, and telomeric enrichment of genes 
(Lin et al., 2021). Genome annotation of S. kawagutii shed light on 
the array of redox regulatory genes (Okamoto and Hastings, 
2003).This will be a stepping stone to investigate the metabolic/
redox oscillator model (Edgar et al., 2012), which has not been 
substantiated in this class of organisms.

Using the comprehensive genome information, clock 
components in different species have been identified. A lineage 
wise description of clock components and their distribution across 
species is portrayed in Figure 1B. The Casein kinase (CK) family 
stands out to be the sole conserved link between dinoflagellate and 
mammalian clocks. Although CKs have a major role in clocks, 
they are also recognized for their pleiotropic functions as an 
essential kinase (Issinger, 1993; Franchin et al., 2018).

Transcriptomic studies revealed 
interesting features of the 
dinoflagellate circadian clock

The emergence of Next Generation Sequencing (NGS) opened 
the otherwise refractory dinoflagellates to functional genomics 
studies (Goodwin et  al., 2016). The advent of NGS and its 
widespread utilization in dinoflagellates is described elsewhere 
(Guo et  al., 2016). In this section, we  will focus on the 
transcriptomic studies that contributed significantly to 
understanding the unusual circadian systems of dinoflagellates.

RNA-seq is now a gold-standard technique to not only profile 
the entire RNA population within the cells (Wang et al., 2009) but 
also reveal the transcriptome-wide dynamics of RNA across the 
circadian cycle (Zhang et  al., 2014). The technological 
advancement of RNA-seq allows investigation of all the major 
RNA subtypes, however, studying mRNA dynamics has been 
prioritized due to obvious reasons. RNA-seq has been the most 

sought-after technology to quantify the changes in mRNA 
abundance across the day/night cycle (Li et al., 2015), a measure 
to demonstrate the extent of clock regulation on the global 
transcription in eukaryotes with a TTFL oscillator (Roenneberg 
and Merrow, 2005). The general consensus with TTFL oscillators 
is that they impart the daily regulation of physiology, biochemistry, 
and metabolism primarily through rhythmic RNAs (Pizarro et al., 
2013) that are then expected to generate an equivalent downstream 
rhythms in the respective proteins. With the incorporation of a 
high-throughput analysis component, it is now possible to analyse 
the circadian post-transcriptional events such as splicing from the 
transcriptome datasets (Romanowski and Yanovsky, 2015).

Several studies led to the fact that circadian regulatory 
mechanisms can modulate post-transcriptional mechanisms to 

A

B

FIGURE 1

(A) Generalized depiction of the internal clock organization. Apart 
from the core oscillator, that consist of the cogs and gear that 
oscillate independently without the requirement of any external 
cues, there are cellular factors that convey the external signal to 
the cell-based oscillator called Inputs and others that take the 
information from the oscillator and then generate the overt 
rhythms, called outputs. Inputs synchronize the endogenous 
clock to the environmental time, which makes the clock flexible 
to adjustments to different light regimes at different time zones. 
(B) Dot plot showing an overview of all known clock components 
across various taxa based using the R algorithm. X and Y-axes 
denotes core clock proteins and model organisms, respectively. 
The row corresponding to each organism constitute the clock 
proteins present in it. The shapes represent the respective 
e-values. We used three approaches, firstly, for clock model 
organisms we directly documented the evidence from the KEGG 
pathway database. Secondly, for organisms that are well 
annotated we got their clock genes from the literature. Thirdly, 
for dinoflagellates annotation is not yet comprehensive. 
Therefore, the clock proteins from respective species were 
downloaded from either the KEGG pathway “circadian rhythm” 
subsection or the NCBI database. Each clock protein was blasted 
(tblastn) against the dinoflagellate comprehensive datasets in 
NCBI with these parameters (Query coverage - ≥50%, Percent 
identity - ≥50% and E value <E-10). We accept only if all the 3 
criteria are satisfied. The clock proteins found in dinoflagellates 
are encircled, note the presence of Casein kinase in all known 
eukaryotes.
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impart daily changes in physiology and biochemistry (Mauvoisin, 
2019). Some of these interesting observations came from 
dinoflagellates. L. polyedra is the first model system where rhythms 
in protein synthesis and degradation were shown to propagate 
without any significant changes in their corresponding mRNA 
levels (Morse et al., 1989). L. polyedra demonstrate daily rhythms 
in bioluminescence (Valiadi and Iglesias-Rodriguez, 2013). The 
biochemistry underlying the circadian regulation of 
bioluminescence exhibited a clear role of temporal regulation in 
protein synthesis without any involvement of transcriptional 
regulation (Milos et  al., 1990). Luciferase (LCF) and luciferin 
binding protein (LBP) are the only two proteins involved in the 
regulation of bioluminescence. Both LCF and LBP showed nightly 
expression of proteins, however, their mRNA levels are constant 
across the day-night cycle. A transcriptome-wide RNA abundance 
analysis across the daily cycle would exhibit the extent of 
transcriptional control in these unconventional eukaryotes. With 
this aim, we carried out a transcriptome-wide RNA-seq study in 
the dinoflagellate L. polyedra and found no significant changes at 
the transcription level across the circadian cycle. Additionally, 
drug-mediated inhibition of transcription does not affect the 
bioluminescence and pH rhythms, which are well-known readouts 
of the underlying clock (Roy et al., 2014a). This study demonstrates 
that RNA rhythms are not required to generate circadian rhythms 
in L. polyedra, a hallmark of the non-TTFL mode of circadian 
regulation. The fact that these organisms lack nucleosomes and 
contain low and uncommon transcription factors further supports 
the notion of non-transcriptional regulation in these organisms 
(Beauchemin et al., 2012; Roy et al., 2018). However, we did find 
conserved RNA transcripts of all core histones and their 
modifying enzymes without any traces of their proteins thereby 
reflecting the unconventional function of histone proteins (Roy 
and Morse, 2012).

Similar indications in other dinoflagellates suggested a lack of 
transcriptional regulation in these species. Microarray analysis 
revealed only 3% of Pyrocystis lunula (Okamoto and Hastings, 
2003) and 0.7% of Karenia brevis (Lidie and Van Dolah, 2007) of the 
total transcriptome varied by 2 fold in light/dark and constant light 
regimes. Furthermore, comprehensive transcriptome -wide analysis 
of mRNA half-life in the dinoflagellate Karenia brevis showed a 
median of 33 h (Morey and Van Dolah, 2013). Similarly, long half-
life were also observed for the clock regulated LUC and LBP 
transcripts in L. polyedra (Rossini et al., 2003). Circadian regulation 
in RNA rhythms would mean shorter half-lives of RNA that would 
lead to generate daily oscillation at transcript levels. Therefore, long 
half-lives of RNAs in dinoflagellates would rather suggest a 
non-transcriptional mode of regulation (Rossini et al., 2003).

On the other hand, circadian regulation of transcription is 
widespread in eukaryotes and for more than a decade, has been 
considered the primary mode of regulation that resulted in daily 
overt rhythms in physiology. Circadian regulation of RNA 
abundance can range from 10% of the total genes in Arabidopsis 
(Harmer et al., 2000; Schaffer et al., 2001), a well-known TTFL 
model, to as much as 65% in Synechococcus elongatus, a 

post-translational clock model (Markson et al., 2013). Although 
cyanobacterial circadian systems run on a non-TTFL based 
oscillator, daily rhythms in RNA abundance seems common 
(Johnson et  al., 2011, 2017). It is now known that the post-
translational oscillator drives the circadian changes in genome 
compaction that leads to these transcriptional rhythms (Markson 
et al., 2013). Therefore, the absence of daily rhythms in mRNA 
levels seems to be a unique feature of the L. polyedra circadian 
system (Roy et al., 2014a).

Meta-analysis of consensus clock 
components in dinoflagellates

We took advantage of the extensive transcriptome shotgun 
assembly (TSA) datasets of the dinoflagellate taxa currently 
available in the public domain and compared their homology to 
the plant circadian clock proteins. There are 2 reasons for selecting 
only plant clock proteins. First, among the photosynthetic 
eukaryotes, plant clock is highly annotated. Secondly, during our 
preliminary search of dinoflagellate TSAs we  did not find any 
representation from other model clock species. We found 9 plant 
clock proteins out of the total of 26, showing some similarity to 
their dinoflagellate relatives (Table 1). This homology is noticed in 
all parts of the clock, such as input, central oscillator, and other 
accessory proteins. However, careful consideration is essential 
while inferring functions from homology driven identities. For 
example, a single protein (GISR01012712.1) from the dinoflagellate 
Karenia mikimotoi matches all PRR proteins from plant. All plant 
PRR proteins bear a high level of homology within themselves and 
K. mikimotoi having a single representation of PRR matches to all 
of them with different degrees of homology. On further 
investigation with blastn we found this sequence identical to a PRR 
from Oryza sativa with an E-value of e-164 (with 100% query 
coverage and percent identity). Therefore, to avoid such 
misinterpretations we further included another round of stringent 
conditions and selected only those candidates that have 
representation among at least two dinoflagellates genera (from the 
93 datasets available in the public domain) with equivalent E-value, 
% identity and query coverage. Using these criteria, from Table 1, 
finally we  could only select three prospective plant clock 
components that are represented in dinoflagellates, Cryptochrome 
(CRY), Chalcone synthase (CHS) and Casein kinase 2 (CK2). To 
get further insights, we  finally conducted a domain level 
comparison of the three selected dinoflagellate proteins that shows 
considerable identity to their plant clock counterparts (Figure 2).

From the public domains, we were able to retrieve full length 
sequences of CRY, CHS, and CK2 from dinoflagellates. Their 
domain looks identical to the plant counterparts; however, their 
respective protein length and domain positioning differ (Figure 2). 
CHS is a rate-limiting enzyme for the flavonoid biosynthesis 
pathway (Grotewold, 2006; Saito et  al., 2013). Transcriptional 
dynamics of central clock components (such as CCA1 and LHY), 
as well as diurnal physiological rhythms in Arabidopsis, is altered 
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in CHS null mutants (Hildreth et al., 2022). This is an indication 
of the involvement of downstream flavonoids in clock regulation, 
which is consistent with the recent realization of a conserved 
metabolic/redox oscillator across species. Among the three, CK2 
is the conserved central clock component present across all the 
known eukaryotic circadian model systems (Figure 1), therefore, 

its presence in dinoflagellates suggests its important role in 
regulating this unique clock. However, the experimental validation 
of its importance as a central clock element in the dinoflagellate 
clock is still awaited. We have provided some indirect evidence of 
CK2’s importance in this L. polyedra clock by studying the effect 
of cold shock in these cells. Cold stress induces cyst formation and 

TABLE 1 Plant clock proteins in dinoflagellates.

Best E-value Species name Accession number(s) Comments

PHYA Nil Nil Nil

PHYB Nil Nil Nil

CRY 7.00E-105 Symbiodinium sp. A4 strain GFPM01002949.1

PIF3 Nil Nil Nil

COP1 8.00E-71 Prorocentrum micans GHTZ01305094.1 The query conditions are satisfied only 

in one species among 93 databases 

queried

ELF3 Nil Nil Nil

SPA1 Nil Nil Nil

CDF1 Nil Nil Nil

FKF1 0.00E+00 Lingulodinium polyedra GABP01114163.1 Same sequence is identified for two 

different clock proteins from the plant. 

The query conditions are satisfied only 

in one species among 93 databases 

queries.

HY5 Nil Nil Nil

PAP1 Nil Nil Nil

CO Nil Nil Nil

CHS 7.00E-154 Lingulodinium polyedra GABP01095683.1 This enzyme is involved in first step of 

flavonoid biosynthesis

FT Nil Nil Nil

CK2α 0.00E+00 Prorocentrum donghaiense GHMW01323001.1

CK2β 7.00E-96 Prorocentrum donghaiense GHMW01201102.1

PRR3 Nil Nil Nil

PRR5 Nil Nil Nil

PRR7 Nil Nil Nil

PRR9 Nil Nil Nil

GI 2.00E-143 Karenia mikimotoi GISR01014704.1 100% identical to Oryza sativa 

XM_015794097.1

ZTL 2.00E-155 Lingulodinium polyedra GABP01114163.1 Same sequence is identified for two 

different clock proteins from plant. The 

query conditions are satisfied only in 

one species among 93 databases queries.

TOC1 Nil Nil Nil

CHE Nil Nil Nil

LHY 1.00E-27 Symbiodinium sp. CCMP2430 HBTH01070647.1 Query coverage of only10% and same 

sequence is identified for two different 

clock proteins

CCA1 6.00E-27 Symbiodinium sp. CCMP2430 HBTH01070647.1 Query coverage of only 10% and same 

sequence is identified for two different 

clock proteins

The Plant circadian clock proteins from KEGG pathway database have been used as a query to find equivalent clock genes in dinoflagellates using tblastn (NCBI). Only those 
dinoflagellates have been considered whose either query coverage is ≥50%, percent identity is ≥35% and have an E-value of ≤1e–05. The dinoflagellate sequences that are not considered 
as putative match to their plant counterparts either have multiple hits and/or are present only in one dinoflagellate species (among the 93 datasets) as mentioned under the comments 
column.
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stalls the clock in L. polyedra, however, transcriptome-wide 
comparison reveals no global changes in the nuclear-encoded 
transcript levels of cysts compared to motile cells (Roy et  al., 
2014b). However, we  found a considerable variation when 
comparing the phosphoproteome profile in the cyst to normal 
cells. It seems the phosphorylation/dephosphorylation dynamics 
play a significant part in regulating the dinoflagellate clock. 
Further, in silico analysis showed downregulation of 
phosphorylation in CK2 targets (Roy et al., 2014b), an interesting 
feature that needs further investigation.

Advancement in proteomics and 
circadian clock research in 
dinoflagellates

Proteins mediate almost all the physiological processes in the 
cells. Temporal changes in physiology are governed by the 
underlying protein levels and their activity, which is regulated by 
the clock (Dunlap, 1999). Although regulation of RNA synthesis is 
considered as the predominant clock-controlled mechanism, 
recent studies showed a considerable contribution from daily 
regulation of post-transcriptional mechanisms (Zhao et al., 2004; 

Hastings, 2007; Kojima et al., 2011; Romanowski and Yanovsky, 
2015; Green, 2018). Almost half of the mammalian circadian liver 
proteome showed daily changes in the proteome level without any 
changes in the daily mRNA levels (Wang et  al., 2018). The 
importance of circadian regulation at the level of protein synthesis 
was first discovered in the L. polyedra bioluminescence system 
(Morse et al., 1989). L. polyedra emerged as a unique model where 
clock regulation of protein synthesis was found to be rampant. 
Some evident examples are circadian rhythms in protein 
abundance and activity of an enzyme of the tricarboxylic acid 
(TCA) cycle, NADP-dependent isocitrate dehydrogenase (NADP-
ICDH) (Akimoto et al., 2005), in a glycolytic pathway enzyme 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Fagan 
et al., 1999), in an antioxidant superoxide dismutase (Okamoto 
et al., 2001) known to mitigate cellular redox stress. Although the 
synthesis of peridinin-chlorophyll a-binding protein (PCP), the 
protein binding to the unusual peridinin pigment, is rhythmic (Ten 
Lohuis and Miller, 1998), the total protein abundance across the 
24 cycle remains constant. Temporal regulation of protein 
abundance is an output of the interplay between protein synthesis 
and degradation (Wang et al., 2005). In the case of PCP, although 
the synthesis is under temporal regulation, its degradation might 
not be under any temporal schedule. Therefore, it is quite difficult 

A

B

C

FIGURE 2

Domain level comparison of known plant clock proteins in dinoflagellates. The reference proteins were obtained from the Plant circadian rhythm 
sub-section of the KEGG pathway database. “-d” denotes respective proteins from dinoflagellates (A) Cryptochrome 2, the clock input protein, 
which is the blue light receptor and denoted as CRY, (B) Chalcone synthase, CHS, the first enzyme in flavonoid biosynthesis, and (C) the CK2 alpha 
and beta subunits known to phosphorylate the core clock proteins that fine tunes the 24-h timing of the clock.
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to ascertain the physiological importance of temporal regulation of 
PCP synthesis. These studies suggested the possibility of a 
widespread role of post-transcriptional regulation in dinoflagellates 
that required further systematic studies. The clock regulation of 
protein synthesis in L. polyedra encouraged extensive studies in this 
species. 35-S methionine labeling of newly synthesized proteins in 
a pulsed chase experiment followed by two-dimensional gel 
electrophoresis revealed that synthesis of 13 proteins is regulated 
by the clock while their respective mRNA levels remained constant 
throughout the daily cycle (Milos et al., 1990). The technological 
advancement led to the high-throughput and highly sensitive 
liquid chromatography coupled to tandem mass spectrometry 
(LC–MS/MS) approaches that opened avenues to quantify 
temporal changes in protein abundance (Angel et al., 2012). A 
major constraint in such proteome-wide studies is the requirement 
of extensive databases to map the sequenced proteins. Due to the 
lack of comprehensive sequence databases, high-throughput 
proteomics studies were not possible in dinoflagellates. However, 
the current ground-breaking technological progress allowed the 
sequencing of genomes and transcriptomes of few dinoflagellate 
species resulting in several high quality databases. This created the 
opportunity of in-depth mapping of sequenced proteins (Tse et al., 
2018). Further, LC–MS/MS has also been used to identify proteins 
from 2D-gel electrophoresis. In one such experiment, a total of 28 
proteins were identified and categorized into three phases, early 
evening, night, and midnight (Akimoto et al., 2004). This allowed 
grouping of these proteins as per their temporal abundance.

The protein kinases play a significant part in modulating the 
internal clocks. CK2 is a well-known kinase that phosphorylates 
core clock elements thereby regulating their function. The finding 
of CK2 in dinoflagellates opened new avenues to investigate the 
prospective role of CK2 as a clock component in this unique clock 
model. However, CK2 is also a well-known and essential kinase for 
organisms that has vital roles outside the clock (Issinger, 1993). CK2 
protein consists of a dimer of alpha and beta – subunits (Chantalat 
et al., 1999) where alpha confers the catalytic and beta imparts the 
regulatory functions (Tsuchiya et al., 2009). Phylogenetically, CK2 
are widely distributed across the dinoflagellate species and represent 
distinct clades when compared with the other lineages 
(Figures 3A,B). Close comparison of the dinoflagellate CK2 α and 
β domains to that of the humans show key conserved regions in 
both proteins. Overall CK2 α seems to share a significantly higher 
level of sequence conservation (67% identity) to humans suggesting 
functional conservation in their catalytic activity (Figure 3C). In 
comparison, the regulatory β domain of L. polyedra is 45% identical 
to its human counterpart, suggesting the possibility of species-
specific mode of regulation in dinoflagellates. However, we found 
few key regions that are identical, one such peptide sequence is 
‘LYGLIHARYI’ that remains conserved between β domain of 
human and dinoflagellate counterparts (Figure  3D), whose 
implication remains to be addressed. The increasing number of high 
quality genomic and transcriptomic datasets coupled to incessant 
development in mass spectrometry technology will further drive 
the proteomics research in dinoflagellates.

Phosphoproteomics in 
dinoflagellates clock research

Rhythmic changes in the protein abundance provide insights into 
the circadian clock regulation at the translational level. Having said 
that, daily dynamics at the protein levels are not enough to interpret 
the protein activity. Reports in a phylogenetically distant algae 
Chlamydomonas reinhardtii showed that although the amount of 
protein remains constant throughout the daily cycle, its activity varies 
during the day and night (Zhao et  al., 2004). One possible 
interpretation is the post-translational modifications of proteins that 
can alter their activity. Various post-translational modifications like 
phosphorylation (Choudhary et al., 2015), glycosylation (Shental-
Bechor and Levy, 2008), methylation (Lee et al., 2005), acetylation 
(Christensen et al., 2019), ubiquitylation (Wang and Wang, 2021), etc. 

A

B

C

D

FIGURE 3

Phylogenetic tree of Dinoflagellate CK_2 constructed using the 
ML method embedded in RaXML software plugin in the Geneious 
Prime 2022.2.2 version software. Accession numbers of the 
sequences used to construct the tree are mentioned at the 
beginning of the organism’s name. (A) CK-2 alpha domain. 
(B) CK-2 beta domain. (C) Multiple sequence alignment of 
Lingulodinium polyedra CK2 alpha with human CK2 alpha using 
the clustalW extension in geneious prime software. (D) Multiple 
sequence alignment of Lingulodinium polyedra CK2 beta with 
human CK2 beta using the clustalW extension in geneious prime 
software.
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play key roles in multiple biological processes. Phosphorylation plays 
a vital role in regulating the circadian clock. Enzyme CK2 is known 
to phosphorylate the clock protein period 2 (Lee et  al., 2004). 
Inhibition of CK2 by DMAT increases the period length and reduces 
the amplitude of the daily gene expression rhythms (Tsuchiya et al., 
2009). Like other organisms, the dinoflagellate L. polyedra clock stops 
when treated with a phosphorylation inhibitor 
6-dimethylaminopurine (6-DMAP) (Comolli et  al., 1994). By 
monitoring the clock driven bioluminescence rhythm, it was shown 
that 6-DMAP induces dose-dependent delays in the clock (Comolli 
et  al., 1994). A follow-up study showed type 1 phosphoprotein-
phosphatase as a possible regulator of circadian rhythms in L. polyedra 
(Comolli et al., 2003). This suggested that phosphatase could be a key 
constituent of the circadian oscillator not only in dinoflagellates but 
also in other organisms where clock exists (Robles et al., 2014). The 
dose dependent inhibition of kinases affects the clock functioning 
(Comolli et  al., 1994), suggesting that dynamic changes in 
phosphoproteins are important to optimize the clock. Across different 
systems phosphorylation-dephosphorylation rhythms has been 
recognized to be one of the key mechanisms fine-tuning the inherent 
circadian clock (Robles et  al., 2017). Even after knowing the 
importance of phosphorylation, the studies in dinoflagellates was 
limited to a few proteins due to technical limitations. The imperative 
need to study the global phosphoproteome dynamics led to the 
development of improved mass spectrometry and analysis tools.

These improved approaches were used to study the daily 
changes of the phosphoproteome in the dinoflagellate L. polyedra. In 
this study by Liu et al., 2012, L. polyedra was grown in 12 h light and 
12-h dark, cells were collected every 4 h across the 24-h cycle. The 
cells collected from each of these timepoints were homogenized and 
the crude extracts were resolved on SDS-PAGE after every 4 h and 
stained with ProQ Diamond, a phosphoprotein specific stain. 
Phosphoproteome profiles differs between LD 6 and LD 18, the time 
when rhythmic photosynthesis and bioluminescence peaks, 
respectively. Protein extracts from LD6 and LD18 cells were resolved 
using 2-dimensional gel electrophoresis. During the day (LD6) 47 
protein spots were differentially stained from the night (LD18). 
Consequently, 34 proteins from the night phase cells were 
differentially stained when compared to the day phase gels. Spots of 
these differentially stained proteins were picked and were identified 
using the TOF mass fingerprinting. Although this study provides 
some information, the quality and quantity of the data was below 
expectation (Liu et  al., 2012). However, a second modified 
phosphoproteome study from two out-of-phase time points yielded 
10-fold more phosphoproteins. The analysis of the data also revealed 
that many RNA binding proteins were enriched as phosphoproteins 
and vast majority of them have a predicted CK2 binding site (Roy 
and Morse, 2014). We got a similar indication from studying the 
cold induced temporary cysts of L. polyedra cells (Roy et al., 2014b). 
The clock stalls in the cold induced cysts, which was verified by 
monitoring the bioluminescence rhythms and the rhythmic LBP 
levels by immunoblotting studies. Transcriptome and proteome-
wide comparison of cysts and motile cells showed no significant 
changes, whereas there was significant downregulation of 
phosphorylation in proteins with predicted signature of CK2 

binding sites (Roy et al., 2014b). Although, concluding that CK2 has 
a crucial role as a core clock component in L. polyedra is a bit of 
oversimplification at this stage, these studies surely present an ideal 
platform to further investigate this scenario in dinoflagellates.

Conclusion

Although there seems to be  a huge diversity among clock 
components across eukaryotic lineages, the core TTFL or the 
transcriptional oscillators remains conserved. On the other hand, 
prokaryotes that are driven by a post translational oscillator still show 
substantial transcriptional regulation. Therefore, clock regulation of 
transcription has always captured the centre stage for understanding 
circadian dynamics. The dinoflagellate is emerging as a model that 
demonstrates the properties of a unique clock, not only in the context 
of the clock components but also at the level of core TTFL mechanism. 
This clock can function without the requirement of transcriptional 
dynamics, a unique feature that can lead to the discovery of a novel 
clock oscillator mechanism. Dinoflagellates have CK2, a kinase and a 
known clock protein. Although, molecular phylogeny assigns 
dinoflagellate CK2s to a separate clade, its catalytic domain shows 66% 
identity to the CK2 from human. The rampant regulation of protein 
synthesis, presence of low and uncommon transcription factors and 
presence of CK2 indicate toward a novel clock where RNA-binding 
proteins and posttranslational mechanisms could have a crucial role.
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