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ABSTRACT Bacillus subtilis GQJK2 is a plant growth-promoting rhizobacterium with
antifungal activity which was isolated from Lycium barbarum L. rhizosphere. Here,
we report the complete genome sequence of B. subtilis GQJK2. Ten gene clusters in-
volved in the biosynthesis of antagonistic compounds were predicted.

Bacillus subtilis is a model species of the Bacillus genus and is widely used in scientific
research. It has also been applied extensively in agricultural production for its

important role in controlling some plant pathogens by producing surfactin (1), iturin A
(2), fengycin (3), macrolactin N (4), and difficidin (5). In addition, some other mecha-
nisms promoting plant growth exist in B. subtilis, such as indole-3-acetic acid (IAA)
production (6), siderophore production (7), and phosphate solubilization (8). B. subtilis
GQJK2 was isolated from the rhizosphere of Lycium barbarum L. in Ningxia, China, and
was identified to effectively inhibit the pathogen Fusarium solani, which can cause root
rot of Lycium barbarum L.

The complete genome of B. subtilis GQJK2 was sequenced by the Illumina HiSeq and
PacBio platforms. A total of 1,017 Mb of clean raw data were generated by the HiSeq
platform, and the genome coverage was 278.0�. Meanwhile, 124,214 subreads of
about 1,253,008,644 bp were obtained through PacBio. SMRT Analysis 2.3.0 (9) (https://
github.com/PacificBiosciences/SMRT-Analysis/wiki/SMRT-Pipe-Reference-Guide-v2
.3.0) was used to assemble the sequence. The genome annotation was carried out by
the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (https://www.ncbi.nlm.nih
.gov/genome/annotation_prok/). The carbohydrate-active enzymes were analyzed by
CAZy version 20161020 (10) (http://www.cazy.org/). The secondary metabolism clusters
were determined with antiSMASH version 3.0.5 (11).

B. subtilis GQJK2 contains a 4,072,961-bp circular chromosome with a G�C content
of 43.76%. A total of 4,190 genes were annotated, including 3,976 coding genes, 30
rRNA genes, 86 tRNA genes, 5 noncoding RNA (ncRNA) genes, and 93 pseudogenes.
The carbohydrate-active enzymes were encoded by 163 genes, among which 40 genes
were relevant to carbohydrate-binding modules (CBMs), 55 genes could encode gly-
coside hydrolases (GHs), 42 genes were germane to glycosyl transferases (GTs), and 26
genes were involved in carbohydrate esterases (CEs), polysaccharide lyases (PLs), or
auxiliary activities (AAs). Ten gene clusters relating to secondary metabolism biosyn-
thesis were predicted. Two of them showed high similarity with gene clusters that were
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previously reported. One gene cluster (BSK2_09705 to BSK2_09920) belonging to
nonribosomal peptide synthetase (Nrps) type showed 100% similarity to the fengycin
biosynthetic gene. The other gene cluster (BSK2_19145 to BSK2_19345) was compara-
ble to the bacilysin biosynthetic gene cluster. The other gene clusters might produce
surfactin, bacillaene, bacillibactin, subtilosin_A, terpene, and type 3 polyketide synthase
(T3pks). The genome sequence of B. subtilis GQJK2 and its annotation further present
the probable molecular genetic characteristics of B. subtilis and are aso beneficial for its
application in agricultural production.

Accession number(s). The whole-genome sequence of B. subtilis GQJK2 has been
deposited at GenBank under accession number CP020367.
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