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Abstract

When endogenous retroviruses (ERVs) or other transposable elements (TEs) insert into an intron, the consequence on gene
transcription can range from negligible to a complete ablation of normal transcripts. With the advance of sequencing
technology, more and more insertionally polymorphic or private TE insertions are being identified in humans and mice, of
which some could have a significant impact on host gene expression. Nevertheless, an efficient and low cost approach to
prioritize their potential effect on gene transcription has been lacking. By building a computational model based on artificial
neural networks (ANN), we demonstrate the feasibility of using machine-learning approaches to predict the likelihood that
intronic ERV insertions will have major effects on gene transcription, focusing on the two ERV families, namely Intracisternal
A-type Particle (IAP) and Early Transposon (ETn)/MusD elements, which are responsible for the majority of ERV-induced
mutations in mice. We trained the ANN model using properties associated with these ERVs known to cause germ-line
mutations (positive cases) and properties associated with likely neutral ERVs of the same families (negative cases), and
derived a set of prediction plots that can visualize the likelihood of affecting gene transcription by ERV insertions. Our
results show a highly reliable prediction power of our model, and offer a potential approach to computationally screen for
other types of TE insertions that may affect gene transcription or even cause disease.
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Introduction

ERV-related sequences and other sequences derived from TEs

comprise large fractions of the human and mouse genomes [1,2].

While new TE insertions can obviously physically disrupt coding

exons and destroy gene function, their effects within introns are

extremely variable. For example, over 40 published cases of mouse

germ line mutations are due to effects of new ERV insertions

within introns, resulting in abnormal transcript processing and a

measurable phenotype [3]. On the other hand, the high

prevalence of very similar ERVs fixed within introns suggests

that, frequently, a gene can tolerate such intronic insertions

without significant detrimental effects. Although aberrant gene

transcription caused by de novo TE insertions has been reported for

various TE types/families, most examples documented in the

literature are from ERVs in mice, probably due to their high

activity in the host genome [3] and the wide use of mouse inbred

strains as disease models. Considering the availability of data

based on known mutagenic TE insertions, we focused on ERVs in

mice in our study, but the same strategy may be extended to other

TEs in more species including humans.

Several recent efforts have catalogued thousands of ERVs that

are variably present (i.e. insertionally polymorphic) in different

mouse strains [4–6]. Since some of these polymorphic ERVs have

been shown to contribute to strain-specific traits [7,8], it would be

useful to develop computational methods to predict which are the

most likely to impact host genes. To this end, we have designed a

computational model based on artificial neural networks (ANN)

and generated a set of highly reliable prediction plots that can

directly evaluate the likelihood of affecting gene transcription by

intronic ERV insertions.

Results and Discussion

Rationale
The potential of intronic TEs to affect gene transcription is

likely determined by multiple factors. For example, the orientation

of ERVs relative to host genes is related to the probability of

disrupting normal transcription [9–12]. Generally, most ERVs

fixed in both human and mouse genomes show an antisense bias in

gene introns, likely due to their less harmful effects on gene

transcription and, therefore, a greater probability to escape

removal by negative selection. In agreement with this observation,

a majority of ERVs causing mutations or disease are indeed in the

sense orientation with respect to the enclosing gene [11,13],

supporting the view that orientation of ERVs is an important

factor influencing their potential effects on gene transcription.

Another factor is the location of the element within an intron. Our

previous study of TE distributions in gene introns found an

underrepresentation of TEs near intron-exon boundaries, suggest-

ing greater negative selection against insertions in such regions

[13]. Other potential factors that could affect the probability of a

TE disrupting gene transcription include TE size, type of the

nearby splice site (i.e. splice donor or acceptor), number and
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strength of cryptic splice sites within the TEs [13]. While it has

been shown that the function and expression pattern of target

genes may also contribute to the effects of TE insertions [14–17],

in this study we focus only on factors related to the properties of

TE insertions.

Given the complexity of influential factors, we constructed a

computational model to predict which ERV insertions have the

highest potential to affect gene transcription. As one of the most

powerful machine-learning methods for solving complex classifi-

cation problems, an artificial neural network (ANN) has many

advantages including its ability to model high-dimensional non-

linear data space, take both numeric and categorical inputs, work

in highly flexible model structures, and produce reliable outputs

with a reasonable cost of training [18]. In this report, we show the

feasibility of training an ANN model that can evaluate the

possibility of a given ERV affecting gene transcription in mouse, as

well as the biological interpretation of the output space and some

of its future potential applications.

Selection of positive and negative datasets for training
As for any mathematical classifiers based on supervised-training

techniques, generating clean, well-defined training datasets is the

first, and arguably the most critical, step in building a successful

model. Here, we have carefully collected mouse mutagenic ERV

insertions in gene introns that have been reported in the literature

to cause a phenotype, and selected 33 of them as the positive

dataset after removing cases with incomplete or inaccurate

information (Table S1). In addition, all positive ERV insertions

chosen here are from either the IAP or the ETn/MusD family,

both of which belong to Class II ERVs [19] and in total account

for more than 80% of the germ line mutagenic ERV insertions

reported in the literature (estimation based on Table S3 of [13]).

To further simplify our study, we only included in our positive

dataset intronic ERV insertions causing transcriptional disruption

(e.g. alternative splicing or premature polyadenylation) of the

enclosing gene. All of these mutagenic ERVs are recent de novo

insertions identified only in individual mice, and are full-length

copies carrying the intact ERV sequence (5–8 kb).

As our negative training set, we chose intronic ERV loci present

in at least four mouse strains [4], assuming that such ERVs are less

likely to cause significant transcriptional effects. Since one cannot

rule out the potential influence some common ERVs could have

on nearby genes, we have depleted our dataset of any ERVs

showing EST evidence of chimeric transcripts between the ERV

and the host gene, which further ensures their neutral effect on

genes. To be comparable to the positive training data, only near

full-length (.5 kb) elements were selected. In total, we collected

117 such ERV insertions in the mouse reference genome as

negative cases for ANN training (Table S2).

Selection of input factors for ANN training
In order to build a neural network model that can be trained

effectively and make reliable predictions selection of relevant input

factors is also important. To achieve this, we first compared a

panel of potential factors between the positive and negative

datasets, and found statistically significant differences for the

orientation of ERV, distance from ERV to exon, and intron size

(Figure 1A, B & C). However, we did not detect a significant

difference for the type of the nearest splice site (i.e. splice donor or

acceptor) to ERVs between the two data classes (Figure 1D),

possibly because this factor is only relevant when TEs are in very

close proximity (,20 bp) to intron/exon boundaries [13]. Since

we hypothesized that introns with stronger splice site signals may

show a higher tolerance for intronic ERV insertions, we also tested

the strength of splice signals at intron/exon boundaries using

MaxEntScan [20], but found no difference between positive and

negative cases (Figure 1E & F). Due to a lack of information for the

ERV DNA sequence itself for most of the positive training data,

we could not consider any sequence-based features associated with

the ERVs except the type/family of ERVs in general (i.e. ETn/

MusD or IAP). In fact, when we compared the training results

between using only the three factors showing significant difference

between positive and negative datasets versus using all the above

factors, there was a slight decrease in both ANN performance and

training efficiency for the latter (data not shown). Based on the

above analysis, we decided to use a total of four factors, namely the

orientation, distance to exon, intron size, as well as the ERV

family, as the input factors for ANN training.

Construction and Training of the ANN model
To reliably predict which intronic ERV insertions may affect

gene transcription, a computational classifier that can correctly

differentiate positive and negative datasets based on supervised

learning is required. Here we used an ANN architecture known as

multiple layer perceptron (MLP; see Figure S1), which is widely

used for solving classification problems [21]. As described in the

Materials and Methods, our MLP model can take the four selected

factors of a given ERV insertion as its four inputs, and produce a

predicted likelihood of causing transcriptional disruption by that

ERV insertion.

However, as with many other machine-learning techniques, two

major innate technical problems exist for MLP training. The first

problem is the possible ‘over-fitting’ of training results based on

limited data. In this scenario, the trained neural network may

perform extremely well based on training data, but show relative

poor performance for data unseen before. Here we applied a 3-

fold cross-validation (see Methods), which provides three sets of

partially overlapped training data, as well as three datasets

reserved for testing. In this way, the performance of each MLP

model can be evaluated objectively with unseen data. Another

potential problem is the local maximum effect. Since the process of

assigning initial parameters (i.e. connection weights between

neurons) for the neural network is random, the performance of

the prediction model after training may vary significantly. To

handle this problem, we applied randomization at two different

levels during ANN training. First, we randomly permutated both

the positive and negative data before creating subgroups for the 3-

fold cross-validation. Such process was repeated for 10 times,

resulting a total of 30 datasets for ANN training and testing. In

addition, we also applied randomization of initial parameters of

the MLP model 100 times, increasing the total number of ANNs

for training up to 3000 (see Figure S2 for the conceptual

workflow). After training, the model can be used for performance

evaluation or making predictions based on unseen data by taking

an average output of these randomized ANNs. Using receiver

operating characteristic (ROC) curve analysis based on the testing

datasets, we showed an overall ‘area under the curve’ (AUC) larger

than 0.99 (Materials and Methods), indicating that our well-

trained MLP model has a high capability of correctly discrim-

inating the unseen positive ERV data from negative cases.

Performance evaluation and threshold optimization
To further examine the relationship between the accuracy of

prediction and selection of output threshold, we calculated the

averaged outputs of our trained MLP model using all the 150

training cases (33 known positive and 117 negative), and plotted

the distribution of the predicted values (Figure 2A). Since the

output target of our training data is either ‘1’ for positive or ‘0’ for
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negative, ‘0.5’ is likely a reasonable cutoff threshold to discriminate

between positives and negatives. Indeed, by taking ‘0.5’ as the

classification boundary, our MLP model gives a false positive rate

(FPR) as low as 1.7% and, at the same time, maintains a true

positive rate (TPR) as high as 96%. To examine the overall

prediction power of our MLP model at a more general level, we

plotted the ROC curve based on the same dataset and obtained an

AUC value larger than 0.997 (Figure 2B). According to the ROC

curve, when the output threshold is set to ‘0.4’, the maximum

sensitivity can be reached (TPR = 100%) while the model still

maintains a specificity (i.e. 1-FPR) of 98.3%; on the other hand,

when the cutoff threshold is set to ‘0.8’, the model shows its

maximum specificity (FPR = 0%) along with a sensitivity of 81.8%.

Although the data used for performance evaluation here are the

same as used for ANN training, a major ‘over-fitting’ effect is

unlikely since the model has already been cross-validated.

Nonetheless, the above result not only shows the high performance

of our MLP model, but also demonstrates the tradeoff between

sensitivity and specificity when choosing the ‘‘optimized’’ cutoff

threshold.

Predicting the transcriptional effects of polymorphic ERV
insertions

Having our MLP model well trained, it would be interesting

to computationally predict the possibility of affecting gene

transcription by unknown ERV insertions. Since insertionally

polymorphic ERVs are not present in all mouse strains, they are

generally younger than fixed elements and are more likely to

impart functional effects that are still under selection [4]. For

the polymorphic dataset, we included all full-length intronic

ERV insertions that are present in the C57BL/6J but absent

from at least one of three other mouse strains; A/J, DBA/2J,

and 129X1/SvJ [4]. In total, we obtained 134 cases (Table S3),

with eight ETn/MusD elements and the rest belonging to the

IAP family.

Figure 1. Comparisons of potential factors linked to the likelihood of affecting gene transcription by ERVs. The name of factors is
given above each panel, and the average value of each factor is compared between the positive and negative datasets. Panel A and D are
comparisons of proportions using bar plots, and p-values are calculated using the ‘equality of proportions test’; Panel B, C, E and F are comparisons of
means using box plots, and p-values are calculated using the ‘Student’s t-test’.
doi:10.1371/journal.pone.0071971.g001
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Running our trained MLP model on the 134 polymorphic ERV

insertions, we predicted if each insertion will affect gene

transcription (Table S3). Using the ‘0.5’ cutoff threshold, 11 out

of 134 (8.2%) polymorphic ERV insertions were predicted to be

‘positive’, indicating a higher likelihood of influencing transcrip-

tion of the enclosing gene. Remarkably, when we manually

reviewed each of the 134 polymorphic ERV insertions in the

literature (see Materials and Methods), we found that 4 of the 11

cases (36%) predicted as ‘positive’ have been confirmed as

significantly affecting the transcription of gene (see references

attached to Table S3). In comparison, among the remaining 123

polymorphic ERV insertions, only 5 (4%) have been reported as

disrupting gene transcription (p = 0.0005, proportion equality test).

This result clearly indicates the significance of our approach in

predicting positive ERV insertions from unknown data.

Noticeably, the distribution of the predicted outputs of the 134

polymorphic ERV insertions (blue bars in Figure 3) is highly

skewed toward very small values (e.g. more than half of these cases

have a predicted output value less than 0.001). This observation is

in agreement with other data showing that, in general,

insertionally polymorphic ERVs show the signatures of purifying

selection [5], albeit a small number of slightly deleterious elements

may be tolerated in the experimental mouse populations. On the

contrary, seven of the nine positive polymorphic ERV insertions

confirmed in the literature (green bars in Figure 3) have a

predicted output larger than 0.1, and none is smaller than 0.001.

While this apparent difference between the two distributions

clearly shows the prediction power of our MLP model on unseen

datasets, it also indicates that the optimized cutoff threshold may

be adjusted to a value much lower than 0.5 to gain the most of

sensitivity without losing much specificity.

In silico ERV insertion simulations reveal biological
interpretation of the ANN model

Although our ANN performance analysis and computational

predictions based on polymorphic ERV data showed a reliable

classification capability of the MLP model, the effects and

interactions of input factors are only implied by a set of numeric

connection weights between artificial neurons (i.e. the ‘black box’

phenomenon of ANN), making it very difficult to derive biological

interpretations of the results (Figure S1) [18]. To cope with this

problem, we designed a computational experiment using artificial

ERV insertions covering the entire 4-dimensional searching space

of input factors (see Materials and Methods) which revealed

interesting output patterns. As shown in Figure 4, in silico insertions

of different ERV families and orientations were examined

Figure 2. Selection of the cutoff threshold for discriminating positives and negatives. A) the distribution of predicted outcomes of the
positive and negative datasets. Each bar corresponds to a given range of predicted likelihood of affecting transcription by ERVs, and the height of the
bar represents the percentage of ERV insertions with a predicted value within that range. Green and blue bars represent positive and negative data,
respectively. Panel B shows the performance of the trained MLP model using ROC curve analysis based on the positive and negative datasets. AUC
stands for ‘the area under the curve’. As shown by the two arrows in the figure, when the cutoff threshold is set at 0.4, the model’s true positive rate
reaches 1; when the cutoff threshold is set at 0.8, the model’s false positive rate is 0.
doi:10.1371/journal.pone.0071971.g002

Figure 3. Distribution of the predicted likelihood of affecting
gene transcription by polymorphic ERV insertions. Each bar
corresponds to a given range of predicted likelihood of affecting
transcription by ERVs, and the height of the bar represents the
percentage of ERV insertions with a predicted value within that range.
Blue bars represent the distribution of all 134 polymorphic ERV
insertions chosen for this study. Green bars represent the distribution of
only polymorphic ERV insertions known in the literature as disrupting
gene transcription. The ranges of predicted values (horizontal axis) are
based on the logarithm scale to increase resolution at the low-end of
predicted values.
doi:10.1371/journal.pone.0071971.g003
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separately, with each subgroup only considering the input factors

of intron size and distance of the ERV insertion to the nearest

exon. For example, Figure 4A & B shows the output space of

sense- and antisense-oriented IAP insertions, respectively, with

different ranges of output represented by different colors. When

the two plots (4A vs. 4B) are compared side-by-side, the most

striking difference is the ratio between the red/orange (likely

positive) and green/blue (likely negative) areas, indicating a much

higher likelihood of imposing transcriptional effects for sense-

oriented IAPs. Since most of the ready-to-use transcriptional

signals within an ERV element are in the sense orientation, its

confirmation with our ANN model indicates the feasibility of using

these simulations of in-silico ERV insertions to infer biological

consequences.

Furthermore, when the factors of intron size and distance to the

nearest exon are examined independently for both sense and

antisense IAP insertions, a clear trend of smaller intron size and

shorter ERV-exon distance can be observed for positive ERV

insertions regardless of the orientation (Figure 4A & B). For

example, when an IAP is inserted in an intron smaller than 50 bp,

it is highly likely to have an effect on gene transcription no matter

if it is inserted in sense or antisense. However, when the intron is

large (e.g. .100 kb), an antisense IAP is very likely to be a

negative/neutral insertion unless it is extremely close to the intron-

exon boundary. One potential explanation for such anobservation

is the apparent higher possibility of TE insertions in large introns

being far away from intron/exon boundaries, but other hypothet-

ical factors such as a higher tolerance of large introns to cryptic

splice sites may also be involved. Moreover, while the same pattern

exists for sense IAPs, the intron size effect is much smaller

compared to the antisense insertions. Similarly, if one looks at the

factor of ERV-exon distance, a clear trend of a higher opportunity

to interrupt gene transcription can be observed for an intronic IAP

insertion near exons, albeit such distance can be extended much

further for sense-oriented insertions (Figure 4A). The same analysis

for the ETn/MusD family basically showed similar observations,

except an overall higher chance of disrupting gene transcription

compared to IAPs with similar input factors (Figure 4C & D).

Strikingly, our computational simulation of sense-oriented ETn/

MusD insertions revealed an ‘all-positive’ output space, which

suggests that sense insertion of an ETn/MusD element is very

likely to disrupt the normal transcription of it’s enclosing gene

(Figure 4C).

Using prediction plots to visually evaluate the
transcriptional effects of ERVs

As shown in Figure 4, the ANN prediction plots derived from

our in silico ERV insertion simulations cover the entire ANN input-

output space. To evaluate the feasibility of using these prediction

plots to visually estimate the likelihood of affecting gene

transcription by given ERV insertions, we plotted all the known

ERV insertions used for ANN training on top of the output space

of our computational simulations. As expected, for both IAP and

ETn/MusD insertions in either sense- or anti-sense orientation,

the predicted output zone of these elements largely agrees with

their real data class (Figure 4). Notably, all sense-oriented ETns in

our training data are indeed positive insertions, which were all

within the strong positive output region (red area in Figure 4D) as

predicted. On the other hand, all antisense-oriented ETns are

negative insertions, with all located within the strong negative

regions (blue area in Figure 4C). In fact, among all the known

positive ERV insertions collected here, three are located more

than 10 kb away from the nearest exon/intron boundary but can

still disrupt gene transcription, and they are all sense-oriented

elements from the ETn/MusD family, showing a strong, dominate

orientation effect for this ERV type. Indeed, when we calculated

the proportion of full-length ERVs in genes in the C57BL/6

reference genome, we found only 7.7% (3 of 39) of intronic ETn/

MusD elements are in sense orientation compared to 21.5% (53 of

247) of IAPs in sense, indicating a much higher antisense-

orientation bias for the genomic distribution of ETns/MusDs in

genes.

Since our model predicts that full-length ETn/MusD elements

in the sense orientation are highly likely to disrupt transcription,

we more closely examined the 3 such cases detected in the

reference genome to look for unusual features. One of these cases

is within an ‘‘inferred’’ Refseq gene, Vmn2r100, that has no

corresponding mRNAs or ESTs, calling the validity of the gene

into question. The second case, within the Sgk1 gene, was called as

a ‘‘full length’’ ETn by our computational screen but is actually

two solitary LTRs separated by several kb. Moreover, approxi-

mately half of the ESTs for this gene actually terminate at the

polyA signal within one of these LTRs, suggesting significant

transcriptional effects of this LTR. The third ETn case, in the

Sult2a2 gene, is within a large 40 kb intron that is ,85%

repetitive, suggesting that this intron is relatively resistant to TE-

mediated transcriptional disruptions.

Concluding remarks
The transcriptional effects imparted by ERVs and other types of

transposable elements are widely appreciated, and the mechanisms

of TE-induced transcriptional interference are becoming better

understood [3,22]. As more insertionally polymorphic/private TE

insertions are identified, it would be useful to computationally

generate a priority list of TEs affecting gene transcription for

further biological examinations. In addition, with the accumula-

tion of evidence that TEs may also play beneficial roles in gene

transcription within normal cells (i.e. TE exaptation) [23], it would

also be interesting to computationally identify new examples of co-

opted TEs on a genome-wide scale. In this study, we developed a

computational model based on artificial neural networks that can

predict the likelihood of affecting gene transcription by ERV

insertions in mice, and provided a set of prediction plots that can

be easily used for visually evaluating the potential effects of

intronic ERVs.

Importantly, the same strategy could be adopted for other TEs

and species when data become available. For example, recent

efforts to catalog polymorphic/private TE insertions in the human

genome by different research groups have generated lists of

thousands of polymorphic LINEs (long interspersed nucleotide

elements) and SINEs (short interspersed nucleotide elements) in

humans [24–27], and it would be of value to predict the

probability that a given element is associated with disease

susceptibility or phenotypic variability. Moreover, somatic TE

insertions in cancer [28] or tissues such as brain [29,30] are also

being documented. To apply our method to human TEs, sufficient

numbers of well-studied mutations/diseases caused by intronic TE

insertions are required to use as positive training data. A recent

review [22] lists 13 cases of new intronic insertions of Alu SINEs

that cause disease but only six L1 LINE intronic cases, which is not

yet sufficient for training a model. Bearing in mind that any

transcriptional effects of polymorphic intronic TEs may be subtle,

complimentary methods to identify such ‘‘transcription-altering’’

or ‘‘disease-associated’’ TEs might include individual-specific

whole transcriptome analysis to screen for TE-gene chimeric

transcripts or disease association studies. By applying a combina-

tion of approaches, it should be possible to identify polymorphic or

somatic TEs most likely to have a functional impact.

Predicting Effects of Endogenous Retroviruses
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Materials and Methods

Neural network construction
We applied a 3-layer MLP neural network to discriminate the

positive ERV insertions from negative ones. As illustrated in

Figure S1, the first layer is an input layer with four nodes

(neurons), which can take values of the four different input factors

respectively; the middle layer is a hidden layer of three neurons

mutually connected to all the other neurons in both the input and

output layers; the last layer is the output layer, which consists of

only a single neuron as the output node. As in most MLPs, it uses

the back-propagation algorithm to adjust connection weights

between neurons so that the output error is minimized. Here we

used the R package ‘neuralnet’ [31] to build the model.

Data preprocessing
To improve the training quality, all training and testing data

were standardized before taken by the ANN. For orientation, we

used ‘1’ for sense-oriented ERVs and ‘0’ for antisense ones.

Similarly, ERVs belonging to the ETn/MusD family are defined

as ‘1’, and ‘0’ for those from the IAP family. Since we reasoned

that the biological relevance of intron size would be unlikely to

show a significant difference between introns $100 kb, any

introns larger than this size were considered as 100 kb. Then, we

Figure 4. Output space analysis of MLP predictions. The theoretical output space of the MLP prediction model is plotted separately using in
silico ERV insertions for A) IAP in sense, B) IAP in antisense, C) ETn in sense, and D) ETn in antisense. Different ranges of predicted output values are
illustrated by a rainbow of colors as shown at the bottom of the figure. For each of the above figure panels, the main triangle plot can be viewed as a
stack of ERV-containing introns aligned by their centers, with the horizontal axis showing the distance from a given ERV insertion to its nearest exon.
The Vertical axis represents the size of intron, with large introns at the bottom and small ones on top. All known positive (filled circles in cyan) and
negative (filled squares in white) cases used for ANN training are also superimposed on top of each plot according to the type and orientation of
ERVs.
doi:10.1371/journal.pone.0071971.g004
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used log10 for the length of each intron to correct the non-normal

genomic distribution of intron size, and divided it by log10(100 kb)

so that introns $100 kb are all normalized to ‘1’. In this way, any

intron between 0–100 kb was normalized to a value between [0,

1]. The same data transformation was applied to the ‘ERV-exon

distance’ with the maximum distance set as 50 kb, which is half of

the maximum intron size. Finally, the target output of ANN was

also defined as a Boolean value of ‘1’ or ‘0’, which represents the

data class of ‘positive’ and ‘negative’, respectively.

Neural network training with cross validation
In order to properly train and evaluate the MLP neural

network, we applied a 3-fold cross validation during the ANN

training. First, all the 33 positive and 117 negative cases were

divided into three subgroups with an equal group size, respectively

(i.e. 11 cases/subgroup for positive cases, and 39 cases/subgroup

for negative cases). Then, one subgroup of positive and one

subgroup of negative cases were selected and mixed to build the

test dataset, which in total consists of 50 cases and was denoted as

Testing Dataset A. The remaining two subgroups of positive cases

and two subgroups of negative cases were mixed and denoted as

the Training Dataset A, which consists of 100 cases in total.

During ANN training, only the 100 cases of training dataset (i.e.

Training Dataset A) were presented to the MLP model, while the

50 cases of testing dataset (Testing Dataset A) were reserved for

post-training performance evaluation. Finally, the same process

was repeated two more times, with each time selecting a different

subgroup as the testing dataset (Training dataset B & C; Testing

Dataset B & C).

Data consolidation and model performance evaluation
After randomization, as many as 30 MLP models were trained

based on different combinations of positive and negative data. In

addition, each of the 30 MLP models was reinitialized and

retrained 100 times using the same training dataset to avoid

potential initialization bias. Since the output of each MLP is a

continuous number between [0, 1] (which reflects the likelihood of

the input ERV affecting gene transcription), a consolidated result

can be calculated by taking the average of multiple MLP outputs.

To evaluate the performance of our MLP model, we used the

receiver operating characteristic (ROC) package in R (ROCR)

and calculated the average value of the area under the curve

(AUC) using the reserved test datasets from the 3-fold cross-

validation. To simplify the calculation, we first consolidated

outputs from the 100 reinitialized MLPs as mentioned above, and

then performed ROC analysis for each of the 30 MLP models

trained with unique datasets from cross-validation. As a result, we

observed an averaged AUC value of 0.990 with a standard

deviation of 0.011.

In Silico ERV insertion simulation
To evaluate the biological relationships between input factors

and the ANN prediction, we generated artificial ERV insertion

data by covering the entire 4-dimentional input space of our

MLP model. Specifically, for each combination of a given ERV

type and orientation, we equally divided the after-normalization

input range of [0, 1] into 100 units for each of the two

continuous input factors (i.e. intron size and ERV-exon

distance), generating a 1006100 grid of input data points.

Then, each data point was presented to the trained MLP model,

and an averaged output prediction was calculated. Taking into

account the four combinations of the other two Boolean input

factors (i.e. ERV type and orientation), a total of 40,000

artificial ERV insertions and their corresponding predictions

were generated.

Literature searches on polymorphic ERVs
To look for published evidence that any of our set of 134

polymorphic ERVs in introns affect gene transcription, PubMed

searches were conducted for each gene using keywords including

the gene name, ‘‘insertion’’, ‘‘IAP’’, ‘‘ETn’’, ‘‘ERV’’ and

‘‘transposon’’. In order to conduct a more thorough search of

other resources such as preprint archives, conference proceedings,

books, databases and supplementary material the same keywords

were used to search Google and Google Scholar. We did not count

cases as ‘‘positive’’ if the only evidence was appearance on a list of

ERV-gene chimeric transcripts (for example) without experiments

to quantify the transcriptional effect.

Source code of software
Instead of trying to develop a mature software package for

biologists to use, the original intention of this study was to

investigate the methodological possibility of making predictions of

the potential transcriptional effects of TEs using computational

approaches. However, in order to help other researchers to

validate or extend our work, all software source codes for ANN

training and prediction can be provided upon request.
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Figure S1 The architecture of the Multi-Layer Percep-
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(TIF)

Figure S2 The conceptual workflow of ANN training and
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