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Abstract

Background: Many pathogens use a type III secretion system to translocate virulence proteins (called effectors) in
order to adapt to the host environment. To date, many prediction tools for effector identification have been
developed. However, these tools are insufficiently accurate for producing a list of putative effectors that can be
applied directly for labor-intensive experimental verification. This also suggests that important features of effectors
have yet to be fully characterized.

Results: In this study, we have constructed an accurate approach to predicting secreted virulence effectors from
Gram-negative bacteria. This consists of a support vector machine-based discriminant analysis followed by a simple
criteria-based filtering. The accuracy was assessed by estimating the average number of true positives in the top-20
ranking in the genome-wide screening. In the validation, 10 sets of 20 training and 20 testing examples were
randomly selected from 40 known effectors of Salmonella enterica serovar Typhimurium LT2. On average, the SVM
portion of our system predicted 9.7 true positives from 20 testing examples in the top-20 of the prediction.
Removal of the N-terminal instability, codon adaptation index and ProtParam indices decreased the score to 7.6,
8.9 and 7.9, respectively. These discrimination features suggested that the following characteristics of effectors had
been uncovered: unstable N-terminus, non-optimal codon usage, hydrophilic, and less aliphathic. The secondary
filtering process represented by coexpression analysis and domain distribution analysis further refined the average
true positive counts to 12.3. We further confirmed that our system can correctly predict known effectors of P.
syringae DC3000, strongly indicating its feasibility.

Conclusions: We have successfully developed an accurate prediction system for screening effectors on a genome-
wide scale. We confirmed the accuracy of our system by external validation using known effectors of Salmonella
and obtained the accurate list of putative effectors of the organism. The level of accuracy was sufficient to yield
candidates for gene-directed experimental verification. Furthermore, new features of effectors were revealed: non-
optimal codon usage and instability of the N-terminal region. From these findings, a new working hypothesis is
proposed regarding mechanisms controlling the translocation of virulence effectors and determining the substrate
specificity encoded in the secretion system.

Background
Protein secretion and translocation into eukaryotic host
cells are key processes in the virulence of pathogenic
bacteria [1]. So far, six different secretion systems have
been described for Gram-negative bacteria [2,3]. Among
these, the type III secretion system (TTSS) is a represen-
tative apparatus that secretes and translocates virulence

proteins out of bacterial cells. Representative models of
pathogens using TTSS as the main secretion system are
the animal pathogens Salmonella, Yersinia, and Shigella
and the plant pathogens Pseudomonas and Xanthomo-
nas. Since effector secretion is an important strategy for
the virulence of these bacteria, many research groups in
the bacterial infection field have made great efforts to
identify secretion substrates [4-8]. In these studies, ela-
borate proteomic and genetic screening methods have
been established and many effectors have been identified
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by genome-wide high-throughput screens such as the
translocation assay of CyaA-fused proteins from libraries
of transposon-mediated random insertions in the gen-
ome [9]. However, the effector repertories, even for dee-
ply investigated pathogens such as Salmonella, have had
to be revised continuously [10,11]. Moreover, consider-
ing the complexity and elaborated infectious strategy of
Salmonella, there may be more effectors yet to be
detected. This situation indicates that the utility of the
established genome-wide experimental screenings is lim-
ited and that new approaches will be necessary to
develop a complete catalogue of effectors. Bioinfor-
matics-assisted effector identification is a promising
alternative approach. Previous studies have successfully
identified novel effectors by using homology-search-
based screening [7] or feature-extraction-based
approaches such as promoter motif search and analysis
of N-terminal amino acid composition bias [12].
Furthermore, recent progress in sequencing technology
has enabled whole genomes to be sequenced quickly, at
reasonable cost [13]. In fact, the genomes of many
pathogenic bacteria have been sequenced and continue
to be sequenced at a growing speed, enabling bioinfor-
matics-based identification of virulence effectors for an
expanding number of such bacteria. This supports the
development of various prediction tools. However, accu-
rate prediction of TTSS substrates is a very challenging
problem because no clear consensus motif has been
defined for these substrates. In addition, the secretion
mechanism is still largely uncharacterized at the mole-
cular level, as exemplified by the absence of co-purified
crystal structures of the effector and its translocator.
Homology searching is a straightforward method of
sequence-based screening [7]. However, effector genes
generally evolve rapidly to adapt to different hosts [14]
or to escape from a severe immune response by the
host, which makes homology-based approaches difficult.
Moreover, the homology search approach alone cannot
identify novel effectors. As another bioinformatics
approach, machine-learning-based methods have been
recently developed. Most of these approaches implement
the position-specific amino acid composition profiling
[15] or naïve Bayes approach [16] to capture a weak sig-
nal and composition bias in the N-termini of effectors.
Enrichment of Thr/Ser and depletion of Glu/Asp resi-
dues in the N-terminal region is a feature of TTSS sub-
strates commonly observed for a wide range of
organisms that utilize TTSS [16]. Other machine-learn-
ing techniques, using support vector machine (SVM)
[17,18] or artificial neural network [19] approaches, have
also been developed. In these approaches, many more
feature parameters are included in addition to sequence
motif and composition bias, e.g., GC content, secondary
structure prediction, and phylogenetic profiling. Using

these tools, it has been reported that low GC content,
atypical phylogenetic relationships showing characteris-
tics of horizontal gene transfer, and enrichment of
coiled regions with high solvent accessibility are useful
for discriminating effector genes from non-effectors,
although findings regarding the N-terminal flexibility of
the secretion substrate are controversial [15,16,19].
These prediction tools have achieved a certain degree of
accuracy and, combined with experimental proteomic
analysis, have successfully identified novel effectors [10].
However, none of these tools has achieved sufficient
accuracy for genome-scale identification as a sole
screening device owing to the high rates of both false
positives and false negatives. The ultimate goal of a pre-
diction system is to produce an accurate effector candi-
date list that could help increase the efficacy of gene-
directed experimental verification. To satisfy this
demand, true positives must be enriched in the top-20
to -30 ranking of the whole genome prediction. How-
ever, as one example, if existing prediction tools such as
SVM-based Identification and Evaluation of Virulence
Effectors (SIEVE) [17], BPBAac [15] and Effective-T3
[16] were applied to all the genes of LT2, the list of the
top 20 in the prediction ranking would include only two
to five known effectors. Under this situation, experimen-
talists spend much labour to identify novel effectors by
gene-targeted verification based on the candidate list
predicted by the existing tools. This also suggests that
some characteristics encoded in the TTSS substrates are
still undiscovered. In this study, we propose a refined
pipeline to predict secreted virulence proteins that is
based on a combination of a machine learning approach
that extracts discrimination features from amino acid
sequences, nucleotide sequences and phylogenetic ana-
lyses, and data mining of gene expression databases. We
confirmed that the optimized prediction system outper-
formed pre-existing prediction tools and that the predic-
tion was accurate enough to conduct efficient gene-
directed experimental verification. We also discuss pre-
viously unidentified or uncharacterized features of the
virulence effectors, which were suggested through the
refinement process of the prediction system.

Results and discussion
Dataset construction and prediction pipeline
In this analysis, we constructed a new approach for pre-
dicting effectors from discrimination features derived
from the nucleotide and amino acid sequences and from
DNA microarray experimental data. In our prediction
system, a meta-analytic approach was adapted, begin-
ning with a machine-learning-based discriminant analy-
sis followed by coexpression analysis and other simple
criteria-based filtering. To assess the accuracy of our
system, a representative model organism was selected,
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Salmonella enterica serovar Typhimurium LT2 (here-
after denoted LT2). Another well-studied plant patho-
gen, Pseudomonas syringae DC3000 (hereafter DC3000),
was also selected to test the wider feasibility of our sys-
tem. As a gold-standard set of positive examples, i.e.,
known effectors, 40 and 28 effectors from LT2 and
DC3000, respectively, were collected from the literature
and from our recent experimental results (See Addi-
tional file 1: Supp_Table_knownEffector.xls). All other
non-effector genes were treated as negative examples
and test samples for novel effector screening. We
noticed that the translation initiation site of one known
effector in LT2 was incorrectly annotated in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.
Hence, we re-annotated the open reading frame (ORF)
positions in the set of LT2 as described in the Methods
section.

Statistics regarding representative discrimination features
(classifiers) in the support vector machine portion of the
analysis
In the first part of our new effector screening approach,
several new features were introduced into the SVM-
based discriminant analysis. Statistical information
regarding these features, together with “GC content”
values for the discriminative features, is shown in Table
1. We confirmed that the average GC content is signifi-
cantly lower in the known effector group than in the
proteome in general. This may be due to the alien origin
of effector genes (i.e., genes acquired by horizontal
transfer), as suggested by many previous studies
[16,17,20,21]. In addition to GC content analysis, we
also estimated the codon adaptation index (CAI) [22].
The CAI represents how codon usage of a given gene

is optimized for effective translation, which was intro-
duced by Sharp et al. [22]. It has been revealed that
there is a selection pressure on the synonymous site, in

which the nucleotide substitution does not cause the
amino acid change. The selection pressure produces the
codon usage bias in the synonymous site. In enteric bac-
teria, synonymous codon bias increases with gene
expression levels [23]. This has been thought to be due
to selection in favor of efficiently translated codons [24].
Each amino acid is encoded by one to six codons and
each codon is associated with anti-codon tRNA. Since
there is a variation for the copy numbers of tRNAs, the
codon corresponding to the highly expressed tRNA is
thought to have translational advantages in terms of rate
and accuracy. Hence, the codon usage tends to be opti-
mized in the highly expressed genes such as ribosomal
proteins and chaperones. The CAI value tells us impor-
tant biological implications related to translation.
Recently, it has been suggested that the codon usage of
the Sec dependent substrates tends to be non-optimal (i.
e., low CAI) [25,26]. In this study, we estimated the CAI
values for known effectors and those for proteome of
Salmonella.
The values were lower in the group of effectors, which

may be because the codon usage of horizontally-
acquired genes is generally not optimized at the time of
transfer. As expected, the CAI values in the effector
group were lower than those of the proteome in LT2.
Although the difference is likely to stem from the same
source as in low GC content, i.e., the alien nature of the
effectors, the degree of difference in CAI values (Student
T-test p-value = 0) is greater than the difference in GC
contents (Student T-test p-value = 6.66 × 10-6). There-
fore, the use of CAI in the SVM analysis is expected to
refine the overall accuracy of the discriminant analysis.
As for the N-terminal instability index, many research-
ers have reported that the predicted secondary structure
elements (coil, alpha helix, beta sheet) showed enriched
coil regions in the N-termini of effectors [16-19]. In the
present study, we estimated N-terminal instability

Table 1 Statistics for features used in the SVM part of discriminant analysis

Known effectors
(n = 40)

Proteome
(n = 4510)

Average Standard deviation Average Standard deviation

GC 0.43 ± 0.05 0.52 ± 0.05

CAI 0.57 ± 0.04 0.68 ± 0.06

N-terminal instability 13.35 ± 6.67 3.97 ± 5.52

Molecular Weight 40.79 ± 19.49 34.53 ± 24.50

Charge -8.83 ± 11.08 -2.62 ± 12.66

pI 6.08 ± 1.51 7.04 ± 1.88

Instability index 42.21 ± 8.57 37.77 ± 10.83

Aliphatic index 84.94 ± 10.53 95.32 ± 17.25

GRAVY score -0.31 ± 0.25 -0.06 ± 0.44

dN/dS 0.42 ± 0.30 0.20 ± 0.31

Parameters with statistically significant difference between known effectors and the proteome (Student’s t-test, p-value < = 0.05) are shown in bold.
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through POODLE-S, a program that considers the con-
text of a given region in calculating a score [27]. The
index also showed a significant difference between
members of the effector group and those of the pro-
teome in general. Furthermore, physicochemical para-
meters estimated from the amino acid sequence by the
ProtParam program also showed differences between
the two groups. To summarize the ProtParam features,
the effectors were likely to be unstable, less aliphatic
and hydrophilic. These tendencies were also observed
for known effectors of DC3000 (See Additional file 2
Supp_Table_StatDC3000.xls). As for the charge and pI
parameters, the values showed opposite relationships
between LT2 and DC3000 (Table 1 and Additional file
2 Supp_Table_StatDC3000.xls). The genes in the effec-
tor group have relatively negative and low pI values in
LT2, whereas effectors in DC3000 have relatively posi-
tive and high pI values, compared with those of the pro-
teome in general. This may reflect differences in
environmental conditions in which the effectors func-
tion. The rate of effector evolution was estimated to be
faster than that of housekeeping genes, as reported in
previous studies [28,29].

Predictive power of the SVM-based discriminant analysis
We assessed the results from the SVM analysis by area
under the curve (AUC) and average rank of known
effectors (RANKavg) in the testing set (Table 2), as
described in the Methods section. The values were aver-
aged over 10 randomly selected validation sets (Set1~-
Set10) to eliminate the effect of selection bias for
positive and negative examples in the training set. The
AUC for the SVM using all parameters (ALL in Table
2) was estimated to be 0.993, which was greater than
that of published tools, e.g., 0.97 for SIEVE and 0.89 for
Effective-T3. Due to differences in validation criteria,
the assessment of performance by simply comparing
AUC values is problematic; however, a clear enrichment
of known effectors in the top ranks was observed. Since
ten to twenty candidates were chosen for laboratory-
based experimental verification, the average number of

true positives in the top 20 was estimated to assess the
prediction accuracy. In our all-parameter model, 9.7
true positives out of 20 known effectors tested were suc-
cessfully ranked for the top 20. This can be compared
with 5.0 true positives on average by BPBAac prediction,
which showed the best performance among the BPBAac,
SIEVE, and Effective-T3 tools, in our validation. It is
noteworthy that the BPBAac requires no information
about known effectors, so it can be applied to any gen-
ome with no known effectors. We also examined the
pan-genomic feasibility of our system through cross-spe-
cies prediction, i.e. training using information on known
effectors from distantly related bacteria. As a result, the
AUCs for cross-species prediction were 0.989 and 0.981
for the LT2-to-DC3000 model and the DC3000-to-LT2
model, respectively (See Additional file 3 Supp_Table_-
CrossPred.xls). In the DC3000-to-LT2 prediction, the
average number of true positives for 20 known effectors
tested was estimated to be 4.4. This value is slightly
lower than the BPBAac value of 5.0, which showed the
best score among the existing tools. However, the train-
ing set for BPBAac includes almost all of the known
Salmonella effectors, so that prediction scheme is some-
what more advantageous compared with our external
validation method in the cross-species prediction.
Hence, we confirmed that our prediction system can
also be applied to the novel genome by comparable
accuracy to that of existing tools. Moreover, combina-
torial use of our system with a motif based prediction or
homology search approach should provide an effective
means for screening a de novo sequenced genome with
no known effectors.
To examine the impact of the individual feature

values, we extracted five sets of feature values and
assessed the AUC and RANKavg for each of them.
Removal of the POODLE-S index from the feature
matrix decreased the average AUC values from 0.993 to
0.989, and the RANKavg value increased from 40.5 to
57.9. The second parameter set showing a notable con-
tribution to discriminative power refinement was the set
of physicochemical parameters from ProtParam. In this
case, the AUC value was also decreased from 0.993 to
0.989, and the RANKavg value increased from 40.5 to
56.7. Although the CAI parameters showed only moder-
ate differences if they were removed from the discrimi-
nant matrix (e.g., a decrease in AUC value from 0.993 to
0.991), we confirmed the statistical significance of these
differences. Furthermore, the efficacy of the index was
also confirmed by two cross-species prediction models:
LT2-to-DC3000, and DC3000-to-LT2 prediction models
(See Additional file 3 Supp_Table_CrossPred.xls). The
importance of these three parameters: Poodle-S, CAI,
and ProtParam, was also confirmed by the decrease in
average true positive counts in the top-20 from 9.7 to

Table 2 Predictive powers for the various combinations
of feature values in the LT2 validation

AUC RANKavg # of TPs in top 20

ALL 0.993 40.5 9.7

ALL-Nterminal Stability 0.989 57.9 7.6

ALL-CAI 0.991 48.4 8.9

ALL-ProtParam 0.989 56.7 7.9

ALL-dN/dS 0.992 43.9 9.1

Average AUC values are shown for the four sets of validation models. The
RANKavg column shows the average rank of known effectors for 10 validation
sets. The average number of true positives from 20 known testing examples
in the top 20 is shown in the right column.
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7.6, 8.9 and 7.9 on removal of Poodle-S, CAI, and Prot-
Param, respectively (Table 2), which corresponded to
one or two losses of true positives.
On the other hand, the dN/dS parameter showed a

negligible difference if removed from the matrix, though
the dN/dS values were estimated to be significantly
higher for the effector group than for the proteome.
This may be because the feature represented by dN/dS
correlates highly with features indicating an alien origin
for genes, such as low GC content and low CAI. The
insufficiency of orthologous sequences due to the rapid
turnover of effector genes could make the dN/dS para-
meter ineffective. Hence, the inclusion of sequence data
from whole genome shotgun reads increases the effec-
tive orthologous sequences of some effectors and may
further refine the accuracy of our system. The charge
and pI value parameters showed different tendencies
between LT2 and DC3000. Inclusion of these para-
meters decreased the discriminant power in the cross-
species prediction (Additional file 3 Supp_Table_-
CrossPred.xls), as expected from the opposite tendencies
of the effectors between the two organisms (Table 1 and
Additional file 2 Supp_Table_StatDC3000.xls).

N-terminal flexibility prediction method and its impact on
effector discrimination
Methods for predicting secondary structure from the
primary sequence have been developed by many
research groups, and prediction power has attained
accuracy rates of over 80 percent [30]. This indicates
that discrimination among coil, beta-sheet, or alpha-
helix structures can be assigned by these methods with
a high degree of accuracy. However, the same coil struc-
ture regions can have different degrees of flexibility
depending on the structural context of the region. A
support vector machine (SVM)-based method proposed
by Yang and co-workers implemented solvent accessibil-
ity criteria for the secondary structure element being
investigated and in this way improved the accuracy of
effector prediction [18]. In the present study, we
assumed that the incorporation of an accurate method
for assessing N-terminal flexibility would improve pre-
diction accuracy. We selected POODLE-S for the analy-
sis because this method considers location when the
flexibility of amino acid sites is estimated on the basis of
primary sequence. The process used to optimize the
threshold for a judgment of flexibility at a given site is
described in the Additional file (Additional file 4 Supp_-
Doc_FlexParm.doc). For comparison, we also performed
the widely-used secondary prediction programs Prof
[31] and PSIPRED [32] for the analysis. Figure 1 shows
the recursive operational curve (ROC) of the top-200
ranked of 10 randomly selected validation sets for the
LT2 model. We noticed that the incorporation of Prof

did not significantly improved prediction accuracy,
which agreed with a report by Wang and Arnold
[15,16]. In their reports, they concluded that including
alphabets of secondary structure prediction results could
not refine the prediction accuracy. Using PSIPRED for
prediction resulted in a slight refinement of perfor-
mance, as seen in the upward shift of the ROC. In con-
trast, the incorporation of POODLE-S for flexibility
judgment clearly improved prediction accuracy. Thus,
we concluded that incorporating an accurate assessment
of N-terminal flexibility certainly improved prediction
performance. This result is consistent with a recent
report by Buchko and co-workers, which showed that
the intrinsically disordered nature of the N-terminal
region determines the ability to act as a TTSS substrate
[33]. The prediction accuracy of POODLE-S may be less
than perfect for estimating the flexibility of the N-term-
inal region. More accurate assessment of N-terminal
flexibility may further improve the overall prediction
accuracy. However, the ability to predict flexibility from
primary sequence information alone may be limited.
Flexibility assessment by methods based on analysis of
the dynamics of protein structure in three-dimensional
space, such as molecular dynamics simulation, is a pro-
mising way to improve accuracy. The integration of
molecular dynamics simulation for effector prediction is
currently under investigation in our laboratory.

N-terminal codon usage of effectors is de-optimized
The inclusion of CAI in the SVM-based prediction
strategy had a limited effect on the refinement of overall
prediction accuracy. One reason is that the feature of
low CAI is partially correlated with low GC content,
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Figure 1 ROC curves of the performance of different prediction
tools for N-terminal instability. The values for sensitivity and
specificity were averaged for ten validation sets. To remove the
effect of abundant negative examples, the top 200 ranked genes
were selected and the ROC curve was created from these.
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which is a symptom of alien origin. However, we have
considered that the low CAI feature may stem from
other aspects of effectors besides alien nature. To inves-
tigate codon bias in the N-terminal regions of the effec-
tors, we compared the N-terminal CAI with the entire
CAI. As a result, the CAI of the known effectors for the
25 N-terminal aa sites showed a significantly lower aver-
age value (0.53) in the LT2 model than that (0.57) for
the entire protein sequence (Student’s T-test, p-value
0.002). To investigate the positional difference of the
bias, the ratio of the entire CAI to the N-terminal CAI
was estimated for all effectors and for all other genes.
There were 32/40 (80.0%) cases of known LT2 effectors
in which the ratio exceeded 1. To compare values in
non-effector genes with alien origins, we selected genes
with similar GC content values to those of known effec-
tors. A total of 651 genes with GC contents between
0.38 and 0.48 were selected. Of these, the ratio exceeded
a value of 1 in 395 (60.7%) cases. The number of cases
in which the ratio exceeded 1 in the effector group was
significantly greater than that in the low GC genes
(Fisher’s exact test, p-value = 0.0094). We also per-
formed window analysis of non-optimal codon usage in
the N-terminal region and found that codon de-optimi-
sation was especially prominent in the region between 1
and 32 in the group of known effectors (See Additional
file 5 Supp_Doc_CAI.doc). De-optimisation was more
prevalent in the known effectors than in putative alien
genes. Interestingly, the distribution of non-optimal
codon usage in the N-terminal region showed a similar
tendency to that of the putative substrate of the Sec
translocon. Kampenusa et al. recently reported that the
CAI was useful for discriminating among substrates
from four different types (I, III, IV, and VI) of secretion
systems [34]. The present study revealed that codon bias
was especially prominent in the N-terminal region of
the secretion substrates. Therefore, codon de-optimisa-
tion may stem from a specific translocation mechanism.
This characteristic has also been described for the sub-
strate of the Sec-dependent translocon [25,26]. One pos-
sibility is that slow translation of the secretion substrate
may be needed for efficient co-translational transloca-
tion or for protection against the proteolytic degradation
of proteins with disordered N-termini.

Increase in enrichment of known effectors in the top
ranking by secondary filtering
Our SVM-based machine learning approach showed
robust prediction power upon incorporation of several
new features as mentioned above. However, the predic-
tion power was still insufficient, since the average rank
of known effectors deviated from the optimal value. For
example, among 10 randomly selected validation sets,
the average effector rank showed a top value of 27.9 for

Set1. This value is still higher than the optimal score of
10.5 for 20 known effectors, assuming no novel effectors
had been uncovered. Moreover, apparent false positives
such as virulence-related transcriptional regulators were
partially contained in the top ranking of the prediction.
The top ranking also contained virulence proteins
related to glycome metabolism. These proteins showed
low GC content and other alien gene-like features. We
considered the possibility that it is simply difficult to
eliminate these virulence proteins, which resemble true
secretion substrates, using the SVM approach. There-
fore, we conducted a further filtering process to elimi-
nate these false positive cases. The criteria for the final
filtering process consisted of coexpression analysis, com-
position of negatively charged residues (Asp, Glu) in the
first 15 aa, CAI, ORF length, domains commonly seen
in bacteria (domain distribution analysis), and a search
for similarity to apparatus proteins. Apparatus proteins
are thought to be conserved among different strains or
even distant organisms because the secretion systems of
many organisms have a common origin. Similar archi-
tecture among these organisms has been adapted, as
exemplified by the exchangeable ability to translocate
heterogeneous substrates from different organisms [35].
Therefore, apparatus proteins are expected to be
removed easily by homology search. In addition to this
simple filtering process, we incorporated a coexpression
index with known effectors for further filtering. The
expression of effectors is strictly controlled by multiple
regulatory systems to ensure that they function at the
appropriate times during infection [36,37]. For example,
the Salmonella Pathogenesity Island (SPI)-2 effectors are
regulated by the two-component system SsrA/B, which
senses the intracellular environment inside a macro-
phage [38]. The pattern of expression of effectors is
expected to be different from that of housekeeping
genes, which are generally constitutively expressed. We
confirmed that the expression patterns of known effec-
tors, estimated by the assembly of microarray experi-
mental data in the gene expression omnibus (GEO)
database, correlated with each other (See Additional file
6 Supp_Table_CoEXP.xls). The filtering threshold was
optimized as described in the Methods section. As
shown in Figure 2, the introduction of secondary filter-
ing in the LT2 model further increased the enrichment
of true positive cases for the same number of predic-
tions. The number of true positives from 20 known
effectors in the top 20 ranking reached 12.3 on average.
Hence, our system has good predictive power that is
sufficient for candidate selection, which should then be
followed by thorough, gene-targeted experimental verifi-
cation. Incorporation of these filtering indices into SVM
matrices also refined the prediction results at a similar
level to that seen with step-wise filtering. However, we
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also adopted heuristic filtering after the SVM analysis,
because independent coexpression analysis provided
very important information regarding to the regulatory
network of a given gene (e.g. co-regulated with SPI-1 or
SPI-2 genes). Refinement resulting from the additional
filtering was also seen for the dataset of DC3000 (See
Additional file 7 Supp_Doc_SecFilDC3000.doc).
Secondary filtering by coexpression analysis can be
applied only to organisms with at least one expression
dataset deposited in a public database. Hence, this filter
cannot be applied in the vast majority of de novo
assembled genomes. Although we assembled 11 and 4
expression datasets from LT2 and DC3000, respectively,
enrichment of true positives in the top-ranking of the
first part of the SVM analysis can be improved with as
little as one expression dataset with 10 or more sample
slides (See Additional file 8 Supp_Doc_ExpRequirement.
doc). Since it is expected that the deposition of expres-
sion data will increase at a rapid rate owing to the tre-
mendous progress in next-generation sequencing
technologies (e.g. RNASeq whole cell transcriptome ana-
lysis), heuristic filtering by coexpression analysis will be
more feasible in the future screening of virulence
effectors.

Putative model effectors predicted by this system and
further assessment by recently found effectors
Since the identification of Salmonella effectors may be
still under way, the putative list predicted by our system

is expected to contain many novel effectors. To predict
putative effectors, the prediction was performed again
using all of the known effectors as the training set and
optimized by negative set selection. As mentioned
above, the AUC value among the 10 randomly selected
validation sets showed the highest score for Set1, which
indicates that the selection of negative examples in Set1
is optimal for the discrimination analysis. Using this set
of negative samples, SVM prediction was performed, fol-
lowed by additional filtering. The putative novel effec-
tors predicted by this analysis are listed in Table 3. If
there are no additional effectors in the genome and the
prediction accuracy is optimal, the known effectors
should all be listed in the top 40. In this analysis, 36 out
of 40 known effectors were predicted in the top 40, cor-
responding to 90% sensitivity and 90% specificity. Two
putative effectors were predicted in top-10. One is
STM1055 (gtgE), which was recently reported to be an
effector by Niemann and co-workers, who examined
translocation into macrophages by the CyaA assay [10].
The other protein, encoded by pipA and judged by
SIEVE analysis to be a putative effector, was predicted
at the 3rd rank. McDermott and co-workers examined
the translocation of this protein and reported that it
showed no indication of translocation in their CyaA
assay [39]. Although this result indicates that pipA is
not an effector, it is possible that the protein is actually
translocated into host cells under specific conditions (e.
g. functional only inside specific cell type or activated by
some stimuli). Besides gtgE, Niemann et al. recently
revealed five additional effectors through a liquid chro-
matography-mass spectrometry (LC-MSMS)-based pro-
teome experiment. The two effectors STM1026 and
PSLT039 were treated as known effectors in our valida-
tion and successfully ranked at the 69th and 24th respec-
tively. In our prediction ranking, two other TTSS
dependent effectors identified by Niemann and co-work-
ers, STM2139 and STM2585, ranked 48th and 56th,
respectively, which correspond to 12th and 20th after
removal of known effectors from the ranking. Another
TTSS-dependent effector, STM3762 (CigR), was dis-
carded in our prediction owing to a lack of effector-like
features; it was predicted to have an unstable N-termi-
nus, but the CAI, phylogenetics, and other features
showed housekeeping-like characteristics. For example,
the gene has been predicted to have orthologs in Kleb-
siella, which are thought not to have TTSS apparatus
systems. In spite of this single false negative case, the
fact that three recently-identified effectors, along with
the two cases in the gold-standard set, fell within an
acceptable range in the gene-targeted experimental
assessment supported the feasibility and accuracy of our
system for effector prediction. Treatment of exceptional
cases, for example STM3762 from the first discriminant
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analysis, is a point requiring future improvement. Inter-
estingly, the other top ranking non-effectors are mostly
hypothetical genes and are annotated as virulence-
related (references for virulence annotation are listed in
the Additional file 9), which supports the probability
that they may in fact be virulence effectors. Experimen-
tal verification of these proteins is under way in our
laboratory.
Because the exact number of unidentified effectors in

the genome is unknown, it is possible that the highly
ranked not-known-effector genes are actually true effec-
tors. Hence, the enrichment of known effectors in the
top ranking only does not indicate the predictive perfor-
mance. This is the main difficulty in assessing the per-
formance of effector prediction. However, the high
rankings for recently identified effectors, taken together
with the enrichment of known effectors in our valida-
tion set, suggest that the results of our prediction
approach a complete catalogue of effectors; at least, we
could make an almost-complete candidate list for identi-
fying effectors that have common characteristics with
known TTSS substrates.

In the present study, we confirmed that our system
showed significant improvement over existing methods
and revealed several novel discriminant features. How-
ever, not all of the revealed features, including pre-
viously reported ones, were specific enough to precisely
determine the substrate, i.e. were clear recognition sig-
nals. Construction of prediction tools should support
the deciphering of the recognition mechanisms of the
secreted proteins through the implication of specific
recognition signals or precise recognition principles. It is
speculated that such signals, related to translocation
mechanisms, are encoded at the three-dimensional level,
especially considering the failure to detect a common
motif in the primary sequence of TTSS substrates, in
spite of recent advances in prediction tools. The use of
structural informatics to further refine the prediction
system is considered to be a promising approach for the
future development of prediction tools.

Conclusions
We developed a meta-analytic approach to predicting
virulence effectors accurately by integrating discrimination

Table 3 Putative novel effectors of serovar Typhimurium predicted by the system

Rank STM-ID Name Description PSOTb 3.0 Ref. # Poodle-S

3 STM1087 pipA pathogenicity island encoded protein: SPI3 Cytoplasmic [10] 13

4 STM1055 gtgE Gifsy-2 prophage Unknown [6] 17

32 STM3155 putative cytoplasmic protein Unknown [6] 18

40 STM1239 putative cytoplasmic protein Cytoplasmic - 11

41 STM2534 putative cytoplasmic protein Cytoplasmic - 12

42 STM2007 putative TPR repeat protein Extracellular [2] 7

43 STM1670 putative serine/threonine protein kinase Unknown [1,2,6] 16

44 STM3278 putative cytoplasmic protein Unknown [3] 9

45 STM2761 putative inner membrane protein Cytoplasmic [3] 10

46 STM4504 putative cytoplasmic protein Cytoplasmic [2] 3

47 STM0335 putative outer membrane protein Unknown - 4

48 STM2139 steD putative inner membrane protein Unknown [2,5] 24

49 STM2779 putative inner membrane protein Unknown - 21

50 STM1554 putative coiled-coil protein Unknown [1] 13

51 STM4302 putative cytoplasmic protein Unknown [3] 15

52 STM1939 putative glucose-6-phosphate dehydrogenase Unknown [1,2] 13

53 STM3052 putative outer membrane protein Unknown [1] 8

54 STM2879 sicP chaparone, related to virulence Cytoplasmic - 9

55 STM0497 putative periplasmic protein Unknown - 10

56 STM2585 steE Gifsy-1 prophage: similar to transpose Unknown [1] 12

57 STM2008 putative periplasmic protein Unknown [1,2] 8

58 STM2893 invI Surface presentation of antigens; secretory proteins Cytoplasmic [1-3,6] 10

59 STM1669 Homology to invasin C of Yersinia; intimin OuterMembrane [1,6] 9

60 STM1940 putative cell wall-associated hydrolase Unknown - 14

#—References for virulence annotation from the high throughput experiments. The list of references is described in Additional file 9 ‘Supp_Table_VirlenceAnnot.
xls’.
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features derived from the genome sequence information
and DNA microarray experimental data. Our analysis con-
sisted of two parts. The first, based on SVM learning, is an
approach developed through modification of existing
tools. In this SVM-based analysis, new parameters were
introduced as follows: (i) N-terminal flexibility estimation
by the POODLE-S program, (ii) structure-related para-
meters estimated by ProtParam, such as grand average of
hydropathicity(GRAVY score), and (iii) codon adaptation
index. The introduction of these new parameters refined
the discriminatory power of the tool. The use of N-term-
inal flexibility as a determinant of TTSS substrate status
has been controversial. In this study, we confirmed that
the incorporation of accurate assessment of N-terminal
flexibility genuinely refined the prediction power, which
supports the hypothesis that N-terminal flexibility is an
important feature of the TTSS substrate. The second part
of our analytical framework, additional filtering through
coexpression analysis using the DNA microarray data in
the GEO database and functional domain distribution ana-
lysis, further refined the predictive power of our system. In
our benchmark test, the number of true positives from 20
known effectors in the top 20 ranking reached 12.3 on
average. Hence, our system has good predictive power that
is sufficient for candidate selection, which should then be
followed by thorough, gene-targeted experimental verifica-
tion. Furthermore, the putative effectors predicted by our
system in the LT2 contained many hypothetical genes and
genes with virulence annotation, indicating additional
novel effectors in the Salmonella genome. In addition to
the successful construction of this system, we also revealed
intriguing features of effectors, namely that N-terminal
codon usage is significantly de-optimized and that the N-
terminal region is predicted to take on a highly flexible
structure in these proteins.

Methods
Construction of the gold-standard validation set
Known effectors of Salmonella enterica serovar Typhi-
murium LT2 and P. syringae DC3000 were assembled
on the basis of the literature (See Additional file 1
Supp_Table_knownEffector.xls). In total, 40 and 28
known effectors were annotated for LT2 and DC3000,
respectively. The annotation data for all 4550 protein-
coding genes for LT2 and 5619 protein-coding genes for
DC3000 were downloaded from the KEGG GENES
database [40]. All genes except for known effectors were
treated as negative examples in the validation process.
To assess the accuracy of prediction, all positive and
negative examples were separated into two sets, the
training set and the test set. The ratio of positives to
negatives in the training set was set at 1:20, according
to the study by Samudrala [17]. The training set was
used for the learning of discrimination features and the

trained discrimination device was then applied to the
rest of the known effectors in the test set. All of the
negative examples other than known effectors were
included in the test set. The prediction accuracy is
highly dependent on the selection of the negative train-
ing set. Therefore, 10 sets of training and testing exam-
ples were randomly selected (Set1 ~ Set10) and the
AUC values were averaged.

Accurate annotation of the translation initiation site
Because the signal in the N-terminal region is also one
of the important features in our prediction system, the
effect of translation initiation site accuracy for effector
prediction was first assessed. The translation initiation
sites (TISs) were re-annotated by integrating three dif-
ferent TIS annotations: those from the KEGG database,
ProTISA, and geneFinder. The TISs of two known effec-
tors, STM1026 and STM2088, were re-annotated.
Experimentally validated TISs for these two effectors
have not yet been revealed. Regarding STM1026, our
previous experiment assessing the translocation of
STM1026 suggests that the translocation of this effector
requires a re-annotated and elongated, i.e., upstream,
ORF (our recent result, Takaya et al., submitted). As for
the ORF annotation of DC3000, such incorrect annota-
tion was not observed for known effectors. Therefore,
annotation from the KEGG GENES database was used
for the SVM analysis for DC3000.

Coexpression analysis using microarray data of GEO
datasets
Transcriptome profiling datasets were assembled and
all-versus-all comparisons of gene expression similarity
were conducted. Eleven and four datasets were selected
for the analysis of LT2 and DC3000, respectively (See
Additional file 10 Supp_Table_GEODataSet.xls). Firstly,
expression data were downloaded from GEO and were
normalized to one dataset by Z-score. The similarity of
expression profiles between two genes was calculated by
Pearson correlation. The expression similarity scores
(correlation coefficients) against the selected known
effectors from the training set were averaged and
defined as a score of coexpression with the known effec-
tors. In serovar Typhimurium, the expression of effector
proteins is controlled by two different systems, SPI-1
and SPI-2. Therefore, the effector proteins were divided
into two groups according to the regulatory system, and
coexpression analysis was conducted separately. The
coexpression pattern was clearly observed among known
effectors of LT2 (Additional file 6 Supp_Table_CoEXP.
xls). Almost all of the known effectors ranked in the top
300 in the SPI-1 or SPI-2 assessment, suggesting that
coexpression analysis could successfully discern the ten-
dency of effector genes to be coexpressed.
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Estimation of each parameter used in the SVM analysis
Molecular weight, charge, predicted pI, instability index,
aliphatic index, and GRAVY score were calculated using
the ProtParam web server [41]. The instability index of the
25 N-terminal aa was estimated using the POODLE-S web
server. The “missing residues” parameter was used for the
analysis. For codon adaptation index (CAI), the reference
codon tables for serovar Typhimurium (Esty.cut) and P.
syringae DC3000 (Epsesm.cut) prepared in EMBOSS suite
version 2.5.0 [42] were used. The dN/dS ratio was esti-
mated against the multiple alignment of orthologous
genes annotated from all available Salmonella genomes in
the KEGG database. The codeml module of the PAML
package, version 4.2, was used for the analysis [43]. Amino
acid composition, position specific matrix, and phylogeny
matrices were estimated as described in SIEVE [17]. As for
the phylogeny matrices, several points were modified. A
total of 1172 organisms from the KEGG ORGANISMS
database were used for the analysis. The identity values for
assigned orthologous genes were treated as parameters for
1172 dimensions. If orthologous gene was not assigned for
the given organism, the value was set to zero. The recipro-
cal orthology annotation in KEGG Sequence Similarity
Database (SSDB), which is a database of orthologous gene
annotation, was used. The organisms used for the analysis
are listed in the Additional file 11 (Supp_Table_Organ-
isms.xls). The parameters used in the SVM analysis are
summarized in the Additional file 12 (Supp_Table_Feat-
Parms.xls).

Validation set construction, kernels and parameters used
in the SVM analysis
In this study, validation was performed on a genome-
wide scale. Therefore, the test set consisted of all of the
genes from the respective genomes. The training set
consisted of a randomly selected positive set with half of
the known effectors. The remaining half was used for
validating the prediction power. The negative examples
for the training set were selected randomly from the
proteome. The area under the curve (AUC), the average
true positive count in top 20 ranking and the mean rank
of the positive examples averaged for 10 validation sets
(we call the score RANKavg) were estimated and were
used to assess accuracy. The radial kernel function with
width factor of 1.0 was used according to the bench-
mark test for LT2 model (See Additional file 13 Supp_-
Doc_KernelOptimisation.doc). The seed for the random
value was set to 76543. Other parameters were set to
default values. SVM analysis and ROC estimation were
performed using the Gist package 2.3 [44].

Determination of thresholds for secondary filtering
In the second round of the filtering process, five para-
meters with continuous values were used: ORF length,

CAI, ratio of negative charge residues in the first 15 aa,
dN/dS value, and coexpression ranking. For optimal
thresholds, all combinations of two points for all five
parameters were considered. One is the threshold cover-
ing all of the positive examples in the respective training
set. The second is the value allowing one dropout. The
optimal set of thresholds showing the best performance
was determined from all combinations of these thresh-
olds. In the second round of filtering, we wanted to fil-
ter out non-effector genes in the top ranking, while
maintaining the lowest possible dropout rate of known
effectors. To accomplish this, the following performance
index, which weights recall over precision, was used:

Performance = (2 × Recall + Precision)/2

Precision = TP/TP + FP

Recall = TP/TP + FN

(TP: true positive, TN: true negative, FP: false posi-
tive, FN: false negative.) The threshold values deter-
mined by the above process were applied to the
respective testing examples. Genes satisfying all cri-
teria (AND criteria) were judged as effectors, and
others were discarded from the list. An example of
the optimal thresholds determined on the basis of
the first validation set (Set1) for LT2 is listed in the
Additional file 14 (Supp_Table_OptimThresh.xls).

Annotation of functional domains commonly observed in
bacteria
The functional domain annotation and links to the
InterPro database were obtained from the KEGG
GENES database. The domain distribution information
was extracted from the InterPro database. If the given
domain annotation appeared over 5000 times in the bac-
terial species, the domain was judged to be a commonly
conserved domain among bacteria. The threshold of
5000 was selected to cover all of the known effectors.

BLAST homology search for the removal of secretion
apparatus genes
First, a set of all secretion apparatus proteins from the
KEGG GENES database was collected by keyword search.
The keywords used were “apparatus AND secretion AND
type” to select genes of all types of secretion apparatuses.
In total, 599 genes were selected by the search. To avoid a
simple self-hit, all Salmonella and Pseudomonas genes
were removed from the list. In the BLASTP search, if the
protein had any hit with an e-value less than 10-5, the pro-
tein was judged to be an apparatus protein.

Avairability
The SVM portion of the prediction system is implemen-
ted by the wrapper program, which integrates various
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bioinformatics tools running on the Unix platform and
various web application programming interfaces (APIs).
The wrapper program is written in Perl and can be run
on a Unix-based machine. The source code is available
from our web site http://www.p.chiba-u.ac.jp/lab/bisei/
software/index.html. The user-friendly web-server ver-
sion of the prediction system is now under construction
and will be available at the above site in the near future.

Additional material

Additional file 1: Supp_Table_knownEffector.xls. The list of known
effectors for LT2 and DC3000. Known effectors used for assessing
prediction accuracy are listed.

Additional file 2: Supp_Table_StatDC3000.xls. Statistics for
discrimination features in the model of P. syringae DC3000. Means and
standard deviations were estimated for the group of known effectors
and the rest of the proteome.

Additional file 3: Supp_Table_CrossPred.xls. Predictive powers for the
various combinations of feature values in the DC3000 validation and the
LT2-DC3000 cross species validations. To examine the feasibility of our
system for another Gram-negative bacteria, the same validation as LT2
was applied to all genes of DC3000. Additionally, cross-species prediction
was assessed, e.g. the known effectors of LT2 were used for the training
and all the known effectors and non-effectors of DC3000 were used for
the test and for the accuracy assessment.

Additional file 4: Supp_Doc_FlexParm.doc. Conversion of POODLE-S
output to SVM index. To count the number of flexible sites in the N-
terminal region, we used the probability of missing site estimated for
each amino acid site by Poodle-S. The threshold value for the judgement
of flexibility was optimised by the benchmark test, which estimated the
discriminant power of the flexibility score.

Additional file 5: Supp_Doc_CAI.doc. Non-optimal codon usage in the
N-terminal region of effectors. Window analysis calculating optimal
codon ratio in the N-terminal region was performed to reveal the
characteristic codon usage of the effectors.

Additional file 6: Supp_Table_CoEXP.xls. Coexpression result for
known effectors of LT2. Efficacy of the coexpression analysis to reveal the
regulatory network of a given gene was assessed by the all known
effectors of LT2.

Additional file 7: Supp_Doc_SecFilDC3000.doc. Effect of secondary
filtering in the DC3000 model. Refinement of predictive power by
additional filtering was assessed in the DC3000 model.

Additional file 8: Supp_Doc_ExpRequirement.doc. Requirement of
expression data for effective secondary filtering. Refinement of predictive
power by coexpression analysis was assessed by the respective dataset in
the 11 and 4 datasets from LT2 and DC3000, respectively.

Additional file 9: Supp_Table_VirulenceAnnot.xls. References for
virulence annotation from high-throughput experiments

Additional file 10: Supp_Table_GEODataSet.xls. The list of GEO
datasets. GEO datasets used for the coexpression analysis of LT2 and
DC3000 are listed.

Additional file 11: Supp_Table_Organisms.xls. List of organisms from
KEGG ORGANISMS database used for phylogenetic profiling in SVM
analysis

Additional file 12: Supp_Table_FeatParms.xls. Feature parameters
used in the SVM analysis.

Additional file 13: Supp_Doc_KernelOptimisation.doc. Optimisation
of kernel type used for the first round of discriminant analysis. The kernel
type and the parameter used for the SVM analysis affects prediction
accuracy. SVM analysis with various kernel types were performed and the
best kernel was determined based on the AUC of LT2 validation model.

Additional file 14: Supp_Table_OptimThresh.xls. Example optimal
parameters used for secondary filtering of the first validation set (Set1).
Optimised thresholds used for the secondary simple-criteria-based
filtering in the first validation set (Set1) are listed.
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