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in Arabidopsis thaliana cell cultures: Quantitative
analysis amid data variability

Abraham Osinuga,1 Ariadna González Solı́s,2,3 Rebecca E. Cahoon,2 Adil Alsiyabi,1,4 Edgar B. Cahoon,2

and Rajib Saha1,5,*

SUMMARY

Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed
toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de
novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental
metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach,
we obtained data with notable variations and developed a regularized and constraint-based dynamic
metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our
analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase
(LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found
to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges
posed by data variability, this work enhances our understanding of sphingolipid metabolism and demon-
strates the utility of dynamic modeling in analyzing complex metabolic pathways.

INTRODUCTION

Sphingolipids represent a diverse class of lipids that mesh within the cellular structure of eukaryotic cells. Their significance is underscored by

their dual role: serving as abundant component of cell membranes and bioactive molecules like ceramide (Cer) and sphingoid bases.1,2 With

plants, typically, the significance of sphingolipids is undeniable. Constituting up to 40% of the plasma membrane, these lipids prominently

feature in cellular endomembranes, such as the endoplasmic reticulum (ER), golgi, and tonoplast.3,4 Owing to their structural uniqueness, they

have essential cellular functions. For instance, glycosylated variants such as glucosylceramides (GlcCers) and glycosylinositol phosphocera-

mides (GIPCs) not only bolster membrane function but also facilitate protein trafficking in the cell.2 Moreover, under environmental stress,

such as microbial pathogenesis, an accumulation of specific sphingolipids triggers the onset of programmed cell death (PCD).5,6

With these molecules crucially situated in cell membranes and influencing cell signaling pathways,7 the sphingolipid biosynthesis

(de novo), initiated in the endoplasmic reticulum (ER), is central to cellular function and homeostasis.7,8 The pathway specific to Arabidopsis

thaliana (hereafter Arabidopsis), commences with serine palmitoyltransferase (SPT), catalyzing a foundational reaction involving palmitoyl-

CoA and serine to produce 3-ketosphinganine, a rate-limiting phase in sphingolipids backbone, sphingoid, or long-chain base (LCB) synthe-

sis.9 The ensuing enzymatic processes yield a variety of ceramides, further differentiated by ceramide synthases in Arabidopsis tailored to

distinct acyl-CoA lengths.10–12 These ceramides, through glycosylation, form GlcCers, and further steps contribute to the synthesis of

GIPCs, which are dominant glycosphingolipids in plant cells.4,13 The limiting and tight regulation, led by SPT,9 ensures balanced sphingolipid

production while avoiding undue aggregation of PCD-inducing components.

In plant biology, the significance of sphingolipid biosynthesis is underscored by its regulatory responses to diverse stimuli, encompassing

both biotic interactions and abiotic environmental factors. The interplay of genes, enzymes, and signaling molecules is fundamental to main-

taining cellular homeostasis and facilitating adaptability to internal or external perturbations.14,15 Depending on the nature of perturbations—

whether pathogenic or otherwise—cellular responses can manifest as transient dynamics or prolonged steady-state adjustments, reflecting

the metabolic pathway’s adaptability across diverse physiological conditions. Notably, in plants, yeast, and human cells, the phosphorylation

of sphingolipids and associated enzymes emerges as a pivotal, albeit not entirely deciphered, regulatory process.5,16–18

Studies suggest a connection between these phosphorylation events and signaling molecules, potentially triggering the production of

reactive oxidative species, which are in turn implicated in PCD pathways.16,19,20 Because of this, enzymes such as long-chain-base kinase
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(LCBK) and sphingolipid-base hydroxylase (SBH) are noteworthy, as well as a putative sphingoid-phosphate phosphatase (LCBPP1) which is

believed to dephosphorylate sphingoid molecules, restoring them to their long-chain-base precursor forms. Thus, these enzymes emerge as

potential regulators in response to an external stimulus/stress by modulating the balance of phosphorylated/dephosphorylated species of

the sphingolipid biosynthesis pathway.21 These enzymes are particularly intriguing due to their evident association with the aforementioned

processes. The specific dynamics or interactions of de novo synthesis path that might involve these kinases, or how the enzymes’ functions

might impact broader cellular or physiological responses, has not been looked into. However, both free LCBs and phosphorylated forms typi-

cally occur in low abundance in plants, making it difficult to measure them.22

Considering the regulations and broad impacts of sphingolipid metabolism in diverse biological contexts, our study conducts a quanti-

tative dynamic metabolic flux analysis on the de novo sphingolipid biosynthesis in Arabidopsis. While numerous investigations have delved

into the regulation of the de novo sphingolipid biosynthesis, employing tools like isotope dynamic labeling in yeast andmammalian cells, the

detailed dynamic metabolic flux analysis of de novo synthesis of sphingolipids in Arabidopsis remains relatively unexplored.1,23–26 As an

example, Chen et al.27 developed a model rooted in pulse labeling, but it did not focus on de novo synthesis. This line of inquiry is essential,

given the potential hazards of alterations in de novo sphingolipid biosynthesis. Well-documented cases, such as the effects of fumonisins—a

mycotoxin found in maize—highlight these hazards, with outcomes ranging from diseases in plants to cancer in mammals.

To elucidate the sphingolipid pathway, stable isotope labeling has become an invaluable technique,24,28 leveraging tools such as mass

spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR).29 Although 13C remains the popular choice for labeling, 15N and
18O isotopes are gaining momentum.29 In autotrophs, isotopically labeled nutrients, often introduced as nitrate salts, provide invaluable

tracers for monitoring metabolic flows under real-life conditions.30–32 This method’s efficacy is highlighted in its application to organisms

like Saccharomyces cerevisiae (baker’s yeast) and Arabidopsis, unearthing insights into lipid and photosynthetic processes. However, with

sphingolipids, given their essential role in various cellular processes, accurate detection and quantification is necessary. Owing to their

unparalleled sensitivities and specificities, MS tandem MS (MS/MS)-based approach has become a gold standard for detection and quan-

tification tasks, ensuring precise measurements of these vital molecules in a variety of contexts. This analytical method’s precision not only

allows for the clear identification of sphingolipids but also enables detailed insights into their intricate structures and molecular

dynamics.28,30,31,33

In the multifaceted realm of sphingolipid metabolism and the dynamic nature of plant metabolism, tools for accurate exploration of these

pathways are vital. Computational systems biology addresses this, either affirming established hypotheses or generating new ones from

observed patterns. In recent times, constraint-based genome-scale metabolic models (cGMMs) have been crafted to probe the fundamental

metabolism of several plant models, with Arabidopsis being a notable subject.34 Isotopic-labeling-based metabolic flux analysis (MFA) offers

a quantitative, mechanistic portrayal of cellular phenotypes, producing a flux map grounded on the stoichiometric balance of isotopic label-

ing patterns.35 Typical steady state MFA offers an initial glimpse into labeled product distributions, but it does not directly discern interme-

diate turnover rates. This limitation is addressed by employing a detailed non-stationary isotope dynamic metabolic profiling, which mech-

anistically yields turnover rates and transient metabolic fluxes.29,36–38 A pioneering technique in this area is dynamic metabolic flux analysis

(DMFA), which can be viewed as an enhancement of MFA,39 specifically, isotope tracer experiments incorporating time-dependent features

for an exhaustive biological analysis. Within the realm of sphingolipid metabolism, utilizing DMFA to track temporal changes offers insights

into metabolic stability, which is crucial for therapeutic explorations. A nuanced analysis of metabolic flux shifts can pinpoint specific molec-

ular subspecies or enzymes, enabling targeted modifications to regulate downstream processes.

DMFA consists of two primary strategies: the static optimization-based approach (SOA) and the dynamic optimization-based approach

(DOA) as outlined by Antoniewicz.39 SOAs simply average data, segmenting culture time into metabolic phases, or use data smoothing tech-

niques for a stepwise solution approach. DOAs, on the other hand, use piecewise linear flux functions across continuous time segments.While

comprehensive dynamic optimizationwould be ideal for accuracy, it is often impractical for extensivemodels. Conversely, SOAsmay compro-

mise on accuracy and solution stability. However, SOA has been employed in various biological organisms modeling, from Escherichia coli

(E. coli) to Arabidopsis. DOA, with its distinct benefits, has also been used for E. colimetabolism and signaling pathways in S. cerevisiae.35,40

As exploration in this domain widens, both SOA and DOA have set the stage for groundbreaking studies on plant metabolism, such as

resource allocation in Arabidopsis. Nonetheless, DMFA’s effectiveness is tethered to technological advancements. With the emergence

of high-throughput metabolomics and computational modeling, dynamic models of metabolism (dMMs) have been established.41 Similar

to DMFA, dMMs are also generally crucial for grasping the metabolic regulation of cellular perturbations over time durations. However, pre-

dicting the repercussions of such disruptions via dMMs remains crucial but challenging, considering the extensive regulatory and feedback

mechanisms involved.

Moreover, with experimental metabolomics, particularly within the context of time-dependent tracer experiments, the inherent variability

of data poses a significant challenge to accurately detecting molecules such as sphingolipids, bioactive lipids crucial for understanding

cellular fate regulation. This variability stems from a range of sources, including biological variation, sample handling, and analytical pro-

cesses.42 The task is further complicated in plants including Arabidopsis, which exhibit a higher degree of heterogeneity in sphingolipid

LCBs compared to yeast and animals, making the identification of individual lipid species challenging due to identical mass spectrometry

profiles and isotope interference.22,43 Although current sphingolipidomic studies primarily utilize liquid chromatography-tandemmass spec-

trometry (LC-MS/MS) alongside nuclearmagnetic resonance (NMR) for compound identification and the creation of amultiple reactionmoni-

toring (MRM) library, this approach faces limitations, especially in accurately measuring low-abundance sphingolipids due to significant back-

ground effects and variability.44 Despite these challenges, ongoing research efforts aim to develop an integrated approach that combines
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high-throughput analysis, precise identification, and extensive coverage, as evidenced by some studies reporting sphingolipid measure-

ments across various cell types and organisms with coefficient of variation (CV) ranges from approximately 10%–40%.45–47

Addressing these challenges requires comprehensive analytical strategies and robust tools to ensure accurate and reliable data interpre-

tation. The standard DMFA protocol is also prone to complications with significant variation in the data. To counteract this, methodologies

incorporating regularization, ensemble modeling, and bootstrapping are being established to fortify the confidence in predictions derived

from the DMFA approach. Such techniques are instrumental in handling the variations and uncertainties inherent in dynamic systems, paving

the way for more reliablemetabolic flux estimations. This advancement is exemplified by the work of Hebing et al.,48 which demonstrated the

efficacy of DMFA algorithms that capitalized on regularization and constraint-based methods to address data variability, thereby obtaining

more robust elementary mode (EM) flux predictions as indicated by wider 95% confidence intervals in their parameter fits. Our study further

extends these advancements by focusing on the dynamics of intracellular metabolic pathways, employing targeted metabolomics and dy-

namic labeling techniques to provide a more nuanced understanding of metabolic fluxes at the intracellular level. This approach, focusing

beyond the conventional analysis of uptake or secretion rates, offers a complementary perspective. Specifically, ourmethodology emphasizes

the critical role of detailed intracellular analysis within the metabolic flux analysis toolkit. By directly tackling the challenges posed by tempo-

ral-intracellular noisy concentrationmeasurements and the complexities of metabolic networks, it significantly advances our capacity to quan-

titatively analyze and understand metabolic systems.

In this work, we used a time-course 15N isotopic labeling technique coupled with targeted metabolomics to gain a dynamic and quanti-

tative understanding of the de novo sphingolipid biosynthesis in T87 cell cultures. We delved deeper using a DMFA framework, which incor-

porated both regularization and dynamic flux sampling, termed r-DMFA. This approach allowed us to observe how enzyme activities change

over time. Despite the challenge of dealing with varying data, our findings offer valuable insights into the behavior of sphingolipids within

cells, an effort demonstrating the effectiveness of dynamic modeling in revealing the complexities of biological systems. Figure 1 provides

a comprehensive view of our study workflow and methodology.

Our computational analysis emphasized the pivotal role of SBH in preserving cellular equilibrium. A shortage of SBH led to distinct meta-

bolic shifts and an increased predisposition to PCD, a consequence of sphinganine accumulation. Notably, active LCBK channel, which com-

prises its analogous and putative reversible enzyme, was identified to regulate shortage SBH activity and by potentially acting as a rate-deter-

mining factor in the degradation of phosphorylated phytosphinganine/phytosphingosine. Additionally, our in-depth flux analysis also

showcased a cooperative relationship among FA2H, CSII, and GCS enzymes—key pillars of cellular stability. Disturbances in their functions

jeopardized cell viability and raised PCD risks, as evident from potential LCB/Cer build-up and deviations from standard wild-type (WT) dy-

namics. From these insights, we suggest particular control nodes in the sphingolipid synthesis pathway. Our findings aim to create a predic-

tivemodel of the sphingolipid network’s response to genetic and environmental changes, setting the stage for bioengineering stress-resilient

crops.

RESULTS

Comprehensive 15N profiling and isotopologue analysis of sphingolipid species

In the pursuit of a comprehensive method to quantify diverse sphingolipids in raw samples, mass spectrometry (MS) was chosen for its adapt-

ability to individual analytes. Due to the complexity of plant sphingolipid structures, we combined MS with high-performance liquid chroma-

tography (HPLC). This combination facilitated efficient transient sphingolipid measurements and conformed to the principles of the HPLC/

electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) method as detailed in refs.22,43

In an in vitro experiment, unlabeled A. thaliana T87 cell suspension cultures established from the ecotype Columbia were grown in NT-1

liquid medium with the naturally occurring 14N isotope. 15N-labeled cultures were fed with NT-1 liquid medium containing K15NO3 and
15NH4

15NO3 (Cambridge Isotope Labs) to introduce a stable 15N isotope under the same conditions. HPLC/ESI-MS/MS was used to quantify

168 sphingolipid species over a time course. The incorporation of 15N into sphingolipids was monitored as a +1 m/z mass increase for both

precursor and product ions for multiple reaction monitoring (MRM) transitions.

Following HPLC/ESI-MS/MS analysis, sphingolipid molecular species were measured until the mid-exponential growth phase, which

occurs on day 6 (see also Figure S1). Figure 2B displays the total detected sphingolipids and highlights the abundance of the 14N and 15N

isotopes for each species on day 5. This day is representative of the mid-exponential growth phase. The fingerprint patterns observed for

each sphingolipid class in Figure 2B are consistent with the findings of Markham and Jaworski22 for crude samples of Arabidopsis thaliana

Col-0, specifically of leaf tissue.

To dynamically trace 15N incorporation into sphingolipid species, isotopologues, we analyzed the basem/z (m+ 0) and+1m/z shift (m+ 1),

of labeled and unlabeled sphingolipid species (hereafter termed ‘‘analyte’’). The (m + 0) isotopologue, exemplified by 302.3 m/z for ‘‘d18:0’’,

represents the molecule’s mass where all atoms exist in their predominant isotopic form, notably 14N. In contrast, the (m + 1) isotopologue,

such as 303.3 m/z for ‘‘d18:0’’, denotes the mass shift resulting from 15N integration or from the natural presence of 13C, 18O, and 2H isotopes.

Figure 1. Overview of the workflow and methodology used in this work

(A) Experiment design and labeling workflow depicting cell culture, growth, isotope labeling, quantification, and initial metabolomics analysis.

(B) Schematic illustration of the step-by-step procedure employed to obtain transient metabolic fluxes and analyze the inherent dynamic modulations of the

Arabidopsis sphingolipid biosynthesis pathway.

(C) In silico knockout (KO)/essentiality hypothesis testing using the customized MATLAB implementation of the r-DMFA modeling framework.
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The relatively similar trends observed in the entire active pool measurements (m + 1 + m + 0) of most species across biological replicates

under both labeled and unlabeled conditions (as depicted in Figure S2 and supported by Figure 2D) attest to effectiveness of this approach.

Through dynamic 15N labeling, isotopologue fractions [(m + 1)/(m + 1 + m + 0)] were computed, which signify the proportion of 15N enrich-

ment in the analyte relative to its entire pool. As such, isotopologue fractions during 15N labeling are internally adjusted to account for the

quantity of pre-existing analytes prior to 15N integration, as depicted in Figure 2C. In more specific terms, the (m + 0) and (m + 1) isotopo-

logues are equivalent measures for the abundance of 14N and 15N isotopes, respectively. Moreover, Figures 2C and 2D demonstrate the

changing proportions of isotopologues for 36 different sphingolipid types, utilizing a 14N-labeled control to ensure the accuracy of our

measurements across each sphingolipid species. Specifically, we established four biological replicates, A, B, C, and D. Cultures C and D

are 15N-labeled replicates, whereas A and B are 14N-unlabeled replicates. We expected these controls to show consistent results, confirming

the specificity of our measurements. The varying amounts of 15N observed over time, detailed in Figure 2D and Data S1, are indicative of de

novo synthesis, which suggests active sphingolipid production from scratch. The LCB sphingolipids, critical for their limiting role in controlling

the biosynthesis pathway’s pace upstream, were found in significant quantities.

The amounts (abundances, see Figure 2D) of phosphorylated LCBs (LCBPs) showed fluctuations, which could be due to their rare pres-

ence, inactive states, or the sensitivity of our measuring instruments. For sphingolipids marked by trihydroxy LCB structural backbone

(‘‘t18:0’’/‘‘t18:1’’), we noted an increase in ions marked by 15N (again, reflected as m + 1) and a corresponding decrease in 14N (m + 0)

ions, particularly noticeable from days 2–5 of the 15N labeling period. This pattern, similar to that seen in sphingolipids with dihydroxy

LCB structures (‘‘d18:0’’/‘‘d18:1’’), confirms consistent labeling trends across different sphingolipid families.

Notably, there is also very high variability in measured levels of sphinganine (d18:0 LCB) and phytosphingosine (t18:0 LCB) for the majority

of the time points (Figures 2D and S2). We further examined the temporal abundance profile for d18:0 LCB (Figure 2D, top left panel), which

showed neither systematic nor instrumental noise but rather slight culture variation, particularly in culture C and D. This contrasted with the

t18:0 LCB profile, for which we infer a random rather than systematic noise trend, especially for the labeled cultures C and D. This trend was

supported by similar behavior in the total abundance of nitrogen (14N + 15N) in control cultures (A and B), suggesting transient fluctuations in

the measurement instruments or environmental conditions that are not perfectly controlled. Examining themaximum coefficients of variation

(CVs) in the intercultural assays (C and D) for the t18:0 LCB profile from day 2, excluding the lag phase, reveals significant biological variation

between samples, with maximumCVs of 70% and 30%, respectively. However, the trends in variation, as presented in Figure S6, show that for

the majority of species, CVs are relatively stable and stay below 20% across different time points. This suggests consistent measurements or

the presence of systematic, rather than random, noise for these species. There are exceptions, such as LCBPs, t18:0 LCB, d180-hC24, d181-

C16, GIP-d181-hC24, and GIP-d180-hC24, which display more variability and are present in lower abundance compared to other species.

Apparent turnover frequency distribution across sphingolipid species

In exploring the dynamics of de novo sphingolipid biosynthesis and turnover, we leveraged the metabolic pathway established in one of our

prior studies49 (see Figure 2A; Table S1). Utilizing the in vitro 15N-labeled quantification derived from HPLC/ESI-MS/MS analysis, we assessed

the metabolic turnover during the experiment by comparing the abundance of 15N-labeled sphingolipids to the total sphingolipid pool. The

resulting dynamic isotopologue fraction (or isotopic incorporation/enrichment) curves (e.g., species in Figure 2C) demonstrate that labeled

sphinganine (‘‘d18:0’’), associated with the restrictive uptake of serine, is integrated into sphingolipid before the exponential phase (specif-

ically in the initial 24 h). The sphingolipid then displays relatively consistent turnover rates. The employedArabidopsis T87 cell culture, which is

undifferentiated and photoautotrophic, possesses a short doubling time of about 2.7 days. Notably, barring a few exceptions, sphingolipids

with dihydroxy LCB backbones exhibit isotopic incorporation curves that gradually stabilize, reaching a plateau around day 5 of the exponen-

tial phase.

We propose an indirect method suggesting that the in vivo turnover number of a metabolic reaction can be apparently determined by

observing the rate and extent of labeled nitrogen synthesis or integration. This approach provides a practical avenue for assessing catalytic

speed and efficiency in living systems, particularly when direct measurements pose challenges. By applying first-order kinetic growth/decay

Figure 2. Comprehensive 15N profiling and isotopologue analysis of sphingolipid species

(A) Overview of the sphingolipid biosynthesis pathway. The illustrated pathway model,49 tailored for r-DMFA analysis, captures the full spectrum of active

metabolic transformations in Arabidopsis sphingolipid biosynthesis and acknowledges the dominance of either C16 or C24 fatty acids (FAs) in sphingolipids.

Blue elements relate to C16 fatty acids, whereas red pertains to C24, with accompanying enzyme annotations (letters a–h) for specificity. SPT, serine

palmitoyltransferase; KSR, 3-ketosphinganine reductase; SBH, LCB C-4 hydroxylase; CSI, class I ceramide synthase; CSII, class II ceramide synthase; SLD, LCB

D8 desaturase; FA2H, fatty acid hydroxylase; GCS, glucosylceramide synthase; GlcCer, glucosylceramide; GIPCS, glycosylinositol phosphoceramide

synthase; LCB, long-chain base; LCBK, long-chain-base kinase; DPL1, dihydrosphinganine phosphate lyase. Letters a–h indicate the enzyme reaction

specificity to the leading reactive species. See also Tables S1 and S2.

(B) A quantitative snapshot of 15N-labeled sphingolipids in Arabidopsis T87 cell cultures. Saturated forms of dihydroxy and trihydroxy LCB groups are

represented by ‘‘d18:0’’ and ‘‘t18:0’’, whereas the unsaturated forms are represented as ‘‘d18:1’’ and ‘‘t18:1’’, respectively. FA groups in saturated and

unsaturated forms, for example with 16 carbon chain, C16, are represented as ‘‘c16:0’’ and ‘‘c16:1’’, whereas the hydroxylated forms are ‘‘h16:0’’ and ‘‘h16:1’’.

(C) Transient isotopologue fractions [(m + 1)/(m + 1 +m + 0)] of 36 sphingolipid species during 15N labeling (n = 4, two replicates per biological duplicates). Each

depicted fraction represents the proportion of 15N enrichment in the measured analyte relative to its entire pool.

(D) Temporal abundance of 15N in sphingolipid species. Each profile showcases the corresponding temporal 15N abundances for the 36 sphingolipid species, to

emphasize the de novo synthesis rate across biological replicates, A, B, C, andD. Cultures C and D are 15N-labeled replicates, whereas A and B are 14N unlabeled

replicates. Data are represented as mean G SEM.
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models and regression analysis, as detailed in our STAR Methods section, we aim to ascertain the relative turnover numbers of de novo syn-

thesized species. Hence, we calculated turnover frequency (TOF) distributions, also denoted as k+cat (or simply k), by applying linear regression

to the nonlinear model curve described in the STAR Methods section, ½fractionðtÞ = 1 -- e� k+cat t � yielding the distributions in Figure 3.

From the resulting distribution of catalytic efficiency rates k+cat , FA2Ha, responsible for converting d18:0-C16 to its corresponding hydroxy-

ceramide (hCer) variant, demonstrated increased activity, as shown in Figures 2B and 3. A preference for converting the C16 fatty acyl to the

C24 fatty acyl group was noted in LCB-D8-desaturase (see SLDb in Figure 3) activity. Class I ceramide synthases (CSIa&b) showed similar ac-

tivities, suggesting a competitive dynamic among pathways, with CSII displaying a preference for C24 fatty acyl groups, particularly CSIIa.

Moderate consistency in TOF distributions was observed across biological replicates, with a Bhattacharyya coefficient50,51 overlap average

of 51.89% G 30.10% across reactions. In the context of de novo synthesis, distinct clusters of turnover frequency (TOF or k+cat ) values were

identified among specific sphingolipid pairs, particularly between GCSf/h and GIPCSf/h. These pairs convert hCer t18:1-hC16/C24 into

GlcCer t18:1-hC16/C24 and GIPC t18:1-hC16/C24, respectively, highlighting the metabolic demands on t18:1-hC16/C24 for maintaining

cellular homeostasis. However, increased accumulation of hCer d18:1-hC24 substrate was observed, attributed to GCSg activity, acting as

a potential regulatory shunt (Figure 2D). It is important to note that the cell line used lacks essential hormones for cellular differentiation, align-

ing with research on GCS’s role in cell-type differentiation in A. thaliana,13 thus underscoring the need for further research on the GCSg

reaction.

Certain sphingolipid species, such as GlcCer and GIPC, undergo rapid turnover, indicating their involvement in dynamic cellular

processes, whereas other species showed relative stability. Specifically, high turnover rates for GIPC species, especially those containing trihy-

droxy LCBs (t18:0 and t18:1), as shown by the elevated k+cat values for GIPCSf andGIPCSh, highlight GIPC’s critical role in lipidmetabolism and

membrane stability in Arabidopsis.52 This observation is consistent with the known significance of tri-hydroxylated sphingolipids in plants,

particularly the monounsaturated and saturated LCB derivatives (t18:1 and t18:0).3,52 Notably, the ratios of de novo pools between t18:1-

hC24 and t18:0-hC24 for both hCer and GIPC maintained a consistent �1.5-fold difference, emphasizing the importance of these molecules

in cellular balance. This finding also underscores the indispensable function of sphingolipid long-chain-base desaturases (SLD).

Transient de novo fluxes within the sphingolipid pathway network

Analysis of reaction fluxes over time revealed key processes crucial for growth, proliferation, and cellular homeostasis. Our study employed an

enhanced r-DMFAmodeling, incorporating cubic spline interpolation and Hessian matrix regularization, to effectively dissect dynamic shifts

in metabolic fluxes and bolster the robustness and flexibility of r-DMFA fitting (see Figure 1 for workflow and see STAR Methods). Transient

fluxes were determined using 15N-labeled quantification from HPLC/ESI-MS/MS analysis as a relative measure of de novo sphingolipid

biosynthesis. The metabolic pathway model adopted for this DMFA analysis aligns with the one described in our previous work (Alsiyabi

et al.49) (see Figure 2A; Tables S1 and S2). Similar to the referenced work, our model encompasses a thorough knowledgebase of all active

metabolic transformations in Arabidopsis sphingolipid biosynthesis, accounting for enzyme promiscuity, parsimonious principle of minimal

enzyme activity in most tissues, and the dominance of either C16 or C24 fatty acids in sphingolipids.11,53 We also adopted three specific as-

sumptions from the referenced study, including the following: (1) LCBC4 hydroxylase (sbh gene) primarily hydroxylates free long-chain bases,

(2) fatty acid a-hydroxylase (fa2h gene) targets only ceramide-bound fatty acids, and (3) LCB D8 desaturase (sld gene) produces unsaturated

LCBs bound to ceramides. By adopting these assumptions based on previous research, we minimize the degrees of freedom. Additionally,

Figure 3. Apparent turnover frequency (TOF) distribution across sphingolipid species

This figure illustrates the derived apparent turnover frequencies (TOFs or k+cat values) for various sphingolipid species. Rapid turnover, relative to other species, is

evident in GlcCer and GIPC species, indicating their pivotal role in dynamic cellular processes. Distributions are determined for species in biological duplicates

(representative cultures C and D).
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akin to the referenced study, our model consolidates certain metabolic pathway steps due to a lack of relative kinetics information and ex-

cludes reactions converting non-hydroxylated ceramides into complex forms, consistent with the composition of most glycosylated

sphingolipids.

Utilizing the r-DMFA framework, transient de novo fluxes of internal reactions in the network were predicted and are illustrated in Figure 4.

These values were normalized to serine palmitoyl transferase (SPT) reaction’s flux to demonstrate how the flux through this reaction branches

into different sphingolipid products. Metabolite pool sizes were also determined as an output of the DMFA fitting procedure (see STAR

Methods). Interestingly, the majority of the produced long-chain bases (LCBs), approximately 93%, are directed through class II ceramide

synthase to generate FA containing ceramides, particularly those with more of C24 (very long-chain fatty acid [VLCFA]) and t18:0-LCB.

The predictions indicate that the majority of the de novo species undergo recycling only after reaching the mid-exponential phase, as evi-

denced by the negative fluxes observed subsequently. The decision not to recycle these de novo species until the mid-exponential phase

suggests a strategic metabolic shift that may be essential for cellular functions, potentially signaling a switch from biosynthesis to recycling

that aligns with cellular demands for homeostasis and regulatory compliance. This could have profound implications for our understanding of

sphingolipid dynamics in health and disease, where such regulatory mechanisms may be pivotal.

We note that our models induce a dynamic loop involving the LCB kinases, characterized by positive fluxes for LCBKa and negative

fluxes (degradation) for LCBKb (refer to Figure 4B). Despite the presence of this loop, the models highlight the crucial function of SBH,

Figure 4. Transient de novo fluxes within the sphingolipid pathway network

(A) Metabolic network map used for r-DMFA analysis, highlighting internal reactions of the sphingolipid pathway upstream of the hydroxyceramide (hCer)

metabolite junction.

(B) Corresponding transient fluxes from the pathway shown in (A).

(C) Transient fluxes for processes occurring after the hCer junction. Flux values were normalized to serine palmitoyltransferase (SPT) activity. A predominant

channeling of long-chain bases (LCBs) (�93%) through class II ceramide synthase for the production of very long-chain fatty acid (VLCFA)-containing

ceramides, particularly with C24 and t18:0-LCB, is observed. Fluxes shown in (B) and (C) are the mean distributions for cultures C and D (n = 2). Data are

represented as mean G SEM.
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which diverts approximately 80% of the metabolic flux away from the loop and largely unaffected by the minimal fluctuations observed

in LCBP metabolomics data. Although we could have simplified the models by assuming LCB kinases (LCBKa/b) function in a unidirec-

tional manner, we intentionally preserved their reversible activity. This choice was aimed at broadening the scope of our predictions,

facilitating a more extensive investigation of metabolic pathways without being constrained to specific, expected outcomes. By adopt-

ing this flexible approach, we seek to enhance our comprehension of metabolic processes, steering clear of the restrictions posed by

the presumption of irreversible enzyme actions. However, the variations noted earlier in the levels of LCB phosphates (LCBPs) are

deemed relatively minor, especially when considered against a backdrop of changes less than one unit in magnitude compared to other

metabolic profiles.

Analysis of enzyme demand and relative cost distribution in the sphingolipid biosynthesis pathway

To delve deeper into the enzyme requirements needed by the cell to match the experimental observation andmaintain the observedWT flux

distribution, the enzyme demandwas calculated as a function of metabolite levels and transient de novo synthesis fluxes (v).54 This calculation

provided a valuable measure of understanding resource allocation. The relative enzyme cost distribution computed is depicted in Figure 5A.

This analysis clearly revealed a significantly low level of CS1 (LOH2), and GCS enzyme level, suggesting a close regulation of the enzyme’s

function in response to substrate availability and metabolic demands, which could result in reduced specific activity. However, it is plausible

that other enzymes in the pathway may compensate for this deficiency, ensuring the overall efficiency of the biochemical process.55 Further-

more, this relatively low enzyme activity warrants additional investigation to determine if environmental stressors or nutrient limitations could

instigate higher demands, thereby linking these enzyme activities to an adaptive response aimed at conserving energy and resources.

Figure 5. Analysis of enzyme demand and relative cost distribution in the sphingolipid biosynthesis pathway

(A) Distribution of relative enzyme costs, showcasing the energy and resource allocation within the metabolic network.

(B) Enzyme specificity investigation, representing the demand of each enzyme concerning each reactive sphingolipid species, highlighting the interplay of

enzymes with various lipid species.
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As depicted in Figure 5A, the enzyme cost for most of the biochemical transformations associated with biosynthesis (de novo) is relatively

at par with the first and rate-limiting step of the pathway, the reaction catalyzed by SPT.4 This observation underscores the essential roles of

SPT, SBH, and CSII (LOH1/3) in the thermodynamic feasibility of de novo synthesis. It also suggests that LCB branching at SBH may play a

pivotal role in maintaining homeostasis within the sphingolipid pathway.55 Moreover, this bottleneck in enzyme demands, which can directly

infer thermodynamic bottlenecks, indicates these enzymes are key players required to maintain the measured reaction rates and/or cellular

homeostasis.

Nonetheless, an almost 2-fold relative cost was observed for FA2H, which is connected to the low turnover numbers observed in Figure 3.

This wide range of distribution for FA2H also suggests that reactions involving this enzyme have a broad range of positive substrate/product

concentration ratios, which can result in an overall forward flux of the reaction.55 This implies that a closely regulated mid-stream enzyme like

FA2Hmay be a key player inde novo synthesis. Subsequently, a two-sample Kolmogorov-Smirnov test (KS test)56 was performed to determine

if there were any statistically significant differences in the distributions of the calculated enzyme costs computed for experimental biological

replicates. Interestingly, a significant difference (p < 0.001) was found for four enzyme classes, namely CS1 (LOH2), GCS, GIPCS, and SLD

(t18:1). Visual inspection of these distributions (can be inferred from Figure 5) revealed that one replicate is a subset of the other, with calcu-

lated average Bhattacharyya coefficient overlap of 95.90% G 3.91%.

Further examination of enzyme specificity was conducted by computing each enzymedemand concerning each reactive sphingolipid spe-

cies, as shown in Figure 5B. This analysis revealed enzyme cost specificity with the highest visible variability in the FA2H class of enzymes.

Notably high demands were observed with FA2Hd and FA2Hh, which convert t18:0-C24 and t18:1-C24 to their respective analogous hCers.

This observation underscores the intrinsic role of FA2H in meeting the heightenedmetabolic demands of the t18:0/t18:1-hC24 species. Addi-

tionally, in general, enzyme specificities towardC24 VLCFAwere observed to be higher than those toward FAC16. The averageBhattacharyya

coefficient overlap for the biological replicates across the reactive species was 90.21%G 7.80%. Interestingly, the lowdemandofGCS enzyme

agrees with previous studies’ postulates linking GCS to cellular differentiation, which our cell-line lacks.13

Insights into metabolic pathway regulation through flux modulation ratio analysis

Building on these observations, a uniform convex polytope sampling strategy was employed to thoroughly analyze the high-dimensional dy-

namic flux solution spaces, considering different alternate optimal dynamic flux distributions. This involved uniformly drawing representative

random transient concentration profiles within the given experimental constraints to truncate the bounded flux polytope, a method

commonly used for characterizing the solution spaces of metabolism48,57–59 (see STAR Methods). The robustness of this approach is under-

scored by the strong Spearman’s rho (r) correlation coefficients exceeding 0.6, as detailed in Figure S4, which validates the predictivemodels

against the sampled data across various species in C and D cultures. In addition, the residuals analysis showed a tendency to cluster around

zero, indicating a good fit for the species within both C and D cultures (see Figure S3 for details).

Further, we examined a hypothesis, involving the partitioning of the sampled dynamic flux distribution set within the metabolic network.

This hypothesis suggests that the relative flux modulation ratios, defined as the fold changes of each flux measurement relative to the mean

flux of the distribution, directly influence the biological partitioning of reactions. Specifically, it was hypothesized that reactions with high var-

iations in the distribution of flux modulation ratios would display a distinct partitioning pattern compared to those with low variations in the

distribution of modulation ratios, thereby indicating a potential regulatory mechanism in the distribution of metabolic flux.

Moreso, cellular homeostasis, which is essential for the proper functioning of cells, is linked to the tight regulation of metabolic pathways.

Figures 6A and 6B provide insights into how variations in flux modulation ratios across different biological replicates could be linked to the

maintenance of cellular homeostasis. Specifically, the red cluster/partition, characterized by low variations in flux modulation ratios, encom-

passes reactions that are tightly regulated and likely constitute the limiting set of the biosynthesis (de novo). The identified candidate reac-

tions (CSIIb, SLDd, FA2Hh, and GIPCSh) are in line with the activities of known essential enzymes such as SPT, KSR, and SBH. This tight regu-

lation is crucial for maintaining cellular homeostasis, as it ensures that the synthesis of key cellular components is carried out efficiently and

consistently, supposedly under varying environmental conditions. On the other hand, the green and blue clusters/partitions, characterized by

moderate to high variations in flux modulation ratios, consist of metabolic invariant sets that have little to no tight regulations on de novo

synthesis (see Figures 6C and 6D boxplot distributions). These reactions, while not as tightly regulated, still play a vital role in cellular homeo-

stasis by providing flexibility and adaptability to the metabolic network, allowing cells to respond to changes in the environment while main-

taining their internal equilibrium. Together, these findings highlight the critical balance between tight regulation and flexibility in the meta-

bolic network, which is essential for maintaining cellular homeostasis and ensuring the proper functioning of cells.

It is important to note that the robustness of our predictive insights is not compromised by the fluctuations in the metabolomics data, as

evidenced by the consistent clustering observed in the DBSCAN analysis across a broad range of sample sizes, detailed in Figure S5. This

steadfastness amid varying sample volumes—from 1E+4 to 4E+6—reinforces the resilience and precision of our models in reflecting the

true dynamics of metabolic pathways, further validating the predictive power and reliability of this approach.

Additionally, a customized MATLAB implementation of the r-DMFA modeling framework was developed to precisely predict transient

metabolic reaction fluxes following enzymatic perturbations as knockout (KO) (see STAR Methods). This in silico KO/essentiality hypothesis

testing approach could potentially minimize extensive experimental iterations in subsequent investigations and validations. This process was

repeated for each enzyme class and reaction specificity and can be extended to probable enzymatic perturbations. As briefly depicted in

Figure 1B, the experimentally fitted and transient metabolomics result in the predicted transient reaction fluxes for the reference (wild
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type). The obtainedWT profiles are then used to generate dynamicmodels whosemetabolic responses/profiles are screenedwith respect to

different perturbations.

In silico metabolic analysis of single enzyme deletions and reaction knockout perturbations

To evaluate the metabolic network’s functionality without any additional regulatory interactions, we induced perturbations via single enzyme

and reaction knockouts. We then leveraged the constraint-based r-DMFA framework, in similitude of established global minimization of

metabolic adjustment (MOMA) principle,60 to predict each dynamic model’s response to the induced perturbation. As an objective here,

we compared the predicted responses from single knockouts with experimental WT predictions, such that the r-DMFA framework, utilizing

Figure 6. Insights into metabolic pathway regulation through flux modulation ratio analysis

(A) Scatterplot of flux modulation ratios for the first—culture C—biological replicate, depicting variations and highlighting tightly regulated (red cluster) and

flexible metabolic reactions (green and blue clusters). Number of samples, n = 4E6.

(B) Scatterplot of flux modulation ratios for the second—culture D—biological replicate.

(C) Boxplot distribution of flux modulation ratios for the first—culture C—biological replicate.

(D) Boxplot distribution of flux modulation ratios for the second—culture D—biological replicate, providing a view of metabolic congruence or divergence.
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quadratic programming and relaxing optimal WT flux assumptions, more accurately predicts metabolic phenotypes of mutants and assists in

comprehending cellular adaptation to enzymatic dysfunction. Our methodology, which utilizes the convex transformation methods inherent

in the global optimization algorithm of the BARON solver,61 generates predictions that serve as a preliminary guide before conducting lab-

oratory experiments.62

The metabolic network model was first examined through the lens of single enzyme deletions or knockout (KO) perturbations. By incor-

porating specific constraints into themodel and applying an evaluationmetric, zd , normalized to themaximumdistance on a logarithmic scale

(as depicted in Figure 7A and detailed in the STAR Methods section), the metabolic distance between each in silico mutant dynamic flux

phenotype and the WT dynamic flux phenotype was assessed using Spearman’s rank correlation, as shown in Figure 7B. This approach

was essential to understand the role of each enzyme within the metabolic network and to pinpoint those critical for the WT phenotype.

The analysis in Figure 7A highlighted the significant roles of enzymes such as SPT, KSR, LOH1/3 (or CS II), FA2H, SLD, and GIPCS, which dis-

played pronounced metabolic distances from the WT, with zd values greater than 0.5-fold of the limiting SPT enzyme activity. LOH2 (or CS I)

and GCS had moderate zd values around 0.5-fold.

Interestingly, the SBHmutant exhibited a minimal (<0.5-fold) metabolic distance to theWT, contradicting its traditionally understood role

in cellular stability. Its deficiency is projected to lead tometabolic distant phenotypes and an increased potential for PCD due to sphinganine

(d18:0) accumulation.63 This observation necessitated further examination of flux activities within these mutants. Previous research has shown

Figure 7. In silico metabolic analysis of single enzyme deletions and reaction knockouts

(A) Evaluation of the metabolic network model through the metric zd , normalized on a logarithmic scale, to understand the role of single enzyme deletions or

knockout (KO) perturbations.

(B) Spearman’s rank correlation analysis assessing the metabolic distance between each in silico mutant and WT dynamic flux phenotypes, visualizing ratios of

positive and negative correlations between mutant and WT profiles.

(C) Analysis of single reaction knockouts, showing metabolic distance analysis.

(D) Correlation analysis at the reaction level for single reaction knockouts.
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that SBH mutants, which lack trihydroxy LCBs, exhibit stunted growth, an inability to switch from vegetative to reproductive growth, height-

ened expression of PCD genes, increased sphingolipid levels, and altered fatty acid composition.63

Further analysis revealed two potential pathways for compensating for the lack of trihydroxy LCBs: (1) a bypass involving LCBK, with pos-

itive LCBKa activity and a hypothetical reversible LCBKb activity to produce trihydroxy LCBs, and (2) a more complex pathway potentially

involvingDPL1 in a reversible reaction to synthesize trihydroxy LCB-1P. This pathwaymight include steps such as reductive amination, hydrox-

ylation, and phosphorylation. The synthesis of the initial LCB fromC16-fatty aldehyde and phosphoethanolamine is presumed to be relatively

straightforward. However, the subsequent introduction of hydroxy groups and the final phosphorylation step are expected to be more com-

plex, requiring precise control over the hydroxylation’s regioselectivity and stereoselectivity to successfully produce trihydroxy LCB-1P. These

identified flux modes suggest a shift toward adaptive regulation rather than inherent regulation that does not depend on phosphorylated

trihydroxy species. Assuming the prior synthesis of trihydroxy species, the putative sphingoid-phosphate phosphatase (LCBPP1) is hypoth-

esized to dephosphorylate these molecules, converting them back to their LCB precursors.

Additionally, ratios of reactions showcasing both positive and negative correlations between the in silico mutant and WT profiles were

calculated, as illustrated in Figure 7B. These data provided insights into metabolic congruence or divergence. The observations confirmed

the prominent roles of the aforementioned limiting mutants, with significantly low ratios (<0.5). However, a stimulated metabolic divergence

was observed for CS II or LOH1/3, GIPCS, and SLDmutants, evident in the relative increase of negatively correlated reactions when compared

to the WT profiles. Moreso, the low ratios observed in Figure 7B for FA2H, GCS, CS I, and CS II as well as SLD mutants suggest significant

metabolic reprogramming indicative of synergistic role these enzymes may play along this pathway.

Figure 7B also suggests the buffering activities of LCBK, DPL1, and SBH mutants having high ratio of significantly positive correlated re-

actions at par with the observations from their zd values in Figure 7A. Given the observed low ratio of negatively correlated reactions in the

DPL1 mutant, it suggests that DPL1 might be involved in some metabolic reprogramming. This further points to a reversible action of

the LCBK, potentially a putative sphingoid-phosphate phosphatase (LCBPP1), highlighting it feasible as a key modulator of SBH function.

The LCBK catalyzes the phosphorylation of LCBs to form bioactive LCB phosphates. These phosphorylated species are also known to modu-

late cellular growth and differentiation.

The analysis of enzyme specificity regulations was extended to single reaction knockouts, as depicted in Figures 7C and 7D, which high-

light both the metabolic distance and correlation analysis at the reaction level. This layer of analysis aimed to pinpoint critical reactions within

the metabolic network that, when perturbed, induce significant deviations from the WT dynamic flux phenotype, akin to the analysis at the

enzyme level. Trends analogous to those observed in the enzyme level knockout were uncovered. A notable observation was the reconfirma-

tion of enzyme specificities; the specificities toward C24 VLCFA were found to be higher than those toward FA carbon length of 16, C16.

Moreover, the activity of SLDc bolstered the experimental observation that the concentration of VLCFA-containing ceramide d18:1-hC24

increases, thereby suggesting a reduction in the overall amount of LCBs produced due to the diminished rate through SPT. This reiteration

underscores the interconnectedness of the enzyme abundance and specificity with respect to reactive species in a metabolic network. Un-

derstanding the regulations behind this balance will be key to engineer crops with improved yield while enabling robust response to biotic

and abiotic stress. Reinforcing our observations on enzyme abundance and specificity, we rehypothesize that enzyme specificity plays a

pivotal role in the rapid evolution and regulation of de novo synthesis, as evidenced by dynamic flux distribution in the metabolic network,

guiding crucial metabolic regulatory shifts.

DISCUSSION

Sphingolipids occupy a central position in both the biosynthesis and catabolism of cells and are highly dynamic during rapid growth.64,65 This

dynamic nature projects large variations on the profiles of the species, especially the intermediates, including ceramides and LCBs, which are

also bioactive molecules. Such variability is commonly observed in lipidomic studies, particularly those usingMS-basedmeasurement of low-

abundant lipids. We have consistently observed this variation in our Arabidopsis cell line across several unpublished experiments.66 In this

study, we develop and implement a regularized dynamic metabolic flux analysis (r-DMFA) framework in a bid to understand the dynamic na-

ture of sphingolipid synthesis despite the challenges posed by experimental variability.

Isotopic labeling for sphingolipid profiling

We demonstrate the efficacy of 15N stable isotope labeling combined with HPLC/ESI-MS/MS for dynamic profiling of sphingolipid species in

Arabidopsis thaliana. The use of 15N labeling allowed precise tracing of nitrogen incorporation into sphingolipids, revealing significant in-

sights into sphingolipid metabolism during the mid-exponential growth phase. This method facilitated precise attribution of m+1 shifts to
15N incorporation, excluding contributions from natural isotopes. This approach offers a valuable tool for studying sphingolipid biosynthesis

and turnover in plant cells. Each molecule of LCB, Cer, hCer, and GlcCer contains one nitrogen-15 atom. While Arabidopsis GIPCs may oc-

casionally feature a second nitrogen atom on one of their sugar residues, this modification is uncommon in Arabidopsis leaves, and its fre-

quency in cultured cells is unknown. The presence of a second 15N in certain GIPC varieties does not impact these results, but it should be

noted.

A primary challenge in quantifying sphingolipids using 13C-labeling via MS involves issues in transitions, modifications, and fragmenta-

tion.1 To address this, 15N stable isotope labeling was utilized, targeting the nitrogen atom in the LCB, to provide a direct quantification

approach for various sphingolipid species. The contribution of naturally occurring 13C isotopes is about 1%—meaning only 1 out of 100 natu-

rally occurring carbon atoms is 13C—approximately 30% of molecules containing around 30 carbon atoms will include at least one 13C atom.
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For molecules with 18–48 carbon atoms, the probability of having one or more 13C atoms ranges from approximately 16.9% to 38.8%. This

range suggests that for larger sphingolipids, the likelihood of 13C impact is significant. This is particularly relevant for larger sphingolipids

such as GlcCers and GIPCs. This is evident in the relatively higher 15N (m+1) measurements for GIPCs in the control cultures (Figure 2D).

However, having a 14N controlmeasurement allows us to distinguish between the effects of naturally occurring isotopes and the specific incor-

poration of 15N. By comparing the isotopologue distributions in the 14N-labeled controls with those in the 15N-labeled samples, we can accu-

rately attribute observedm+1 shifts to 15N incorporation rather than 13C or other natural isotopes. These control data are critical for interpret-

ing the dynamics of 15N incorporation into sphingolipids accurately.

To address notable fluctuations within technical replicates for each biological sample, we implemented a tailored analytical strategy to

accurately capture the significant intrasample variability present in our data, treating each biological replicate independently. This approach

was particularly crucial due to the substantial variation highlighted by the incorporation ratio bands in Figure 2C, prompting us to utilize

bootstrapping for our analyses. This statistical method allowed us to quantify the variability within the standard deviation of replicate mea-

surements, effectively illuminating the inherent variability in our dataset. However, the reliability of the incorporation data for this substrate

remains limited, advising caution in drawing broad conclusions about its regulatory impact.

Dynamic sphingolipid metabolism during rapid growth

Our findings highlight the critical role of sphingolipids in plant cellular processes such as growth, differentiation, and stress response.4,10 The

mid-exponential growth phase, characterized by peak cell division and growth, showed notable changes in sphingolipid metabolism, reflect-

ing increased demand for membrane components. Focusing on this phase provides a foundational dataset for further research on sphingo-

lipid dynamics and their physiological implications. Despite observed variability, the approach’s robustness is evident in the consistent trends

across biological replicates. The steady-state integration of 15N into sphingolipids by day 5, reaching approximately 80%–100% (Figures 2C

and 3), underscores themethod’s sensitivity and accuracy. In addition, the isotopic abundance of sphingolipids at mid-exponential growth on

day 5 (Figure 2B) aligns with previous studies,22 validating the methodology and offering new insights into sphingolipid biosynthesis in

A. thaliana.

Moreover, despite the inherent complexities of metabolic networks, our observations suggest a minimal influence from factors such as

enzyme compartmentalization and substrate availability. This inference is supported by our analysis of 15N abundance relative to the entire

nitrogen pool, which indicated negligible issues regarding substrate availability, with the notable exception of d18:1-hC24. The pattern of 15N

accumulation and its incorporation across nearly all sphingolipid species suggests a widespread occurrence of de novo synthesis. Our

modeling, based on the assumption of a first-order exponential relationship between the labeled nitrogen incorporation ratio and turnover

rates, aligns with observed trends. The isotopic incorporation data (Figures 2C and 3) show an exponential increase in (m + 1) isotopologue

fractions for most sphingolipids up to themid-exponential phase (Figure 2C). Interestingly, not all sphingolipid active pools, specifically t18:1-

hC24, follow an expected exponential growth pattern (Figure 2D). Instead, analysis shows a direct replacement of 14N with 15N, keeping the

overall pool size trend relatively stable with unique variation (Figure S2). This suggests a dynamic balance of this essential species in Arabi-

dopsis. Further research is needed to elucidate the dynamics and implications of this substitution effect within sphingolipid pools, particularly

in understanding the metabolic turnover and stability of sphingolipids like t18:1-hC24.

Enzyme roles in the metabolic network regulation

The activity of FA2H in converting d18:0-C16 to hCer variants suggests a critical role in metabolic regulation, potentially involved inmediating

PCD.6,67 This pattern, observed in a separate experiment with the same cell line, validates the observation and rules out contamination (un-

published data). In addition, a study by Ukawa et al.68 has emphasized the critical role of the hydroxylation step of sphingolipid fatty acids,

which introduces essential hydroxyl groups for forming nanodomains within the plasmamembrane. These nanodomains, primarily composed

of sphingolipids and sterols, are fundamental to the plasma membrane’s structure, underscoring the significance of FA2H’s role in cellular

organization.

Despite notable variability captured by the Bhattacharyya coefficient, the turnover frequency (k+cat ), for LCBC4-hydrolase (SBH) and LCBD8

desaturase (SLDb)—presumed to synthesize the unsaturated LCBs backbone in the trihydroxy phytoceramides ceramides (t18:1-C16/C24)

and not the free LCBs69—exhibited substantial overlaps of over 94%between replicates. This emphasizes SBH’s critical function in diversifying

di- and trihydroxy LCBs. Our findings align with the known significance of tri-hydroxylated sphingolipids in plants and underscore the impor-

tance of sphingolipid LCB desaturases (SLD) in maintaining cellular equilibrium. In addition, the k+cat value distribution for the CSII and GCS

enzymes revealed significant differences between replicates, suggesting their differential and regulatory roles in the sphingolipid meta-

bolism. However, the rapid turnover of specific sphingolipid species, such as GlcCer and GIPC, underscores their pivotal role in dynamic

cellular processes, including signaling and membrane dynamics. These findings suggest that these sphingolipids are integral to the cell’s

ability to adapt swiftly to environmental changes.

Furthermore, our in silico knockout simulations identified the differential activity of LCBK, which could mediate loss of SBH function by

either serving as a recycle shunt or playing a limiting role in degrading phosphorylated phytosphinganine (LCB-1-phosphates [LCB-1Ps]). Pre-

vious studies5,18 have inconclusively explored the interaction between LCBK and its reversible counterpart. We hypothesize that the putative

sphingoid-phosphate phosphatase (LCBPP1/SPP1), which dephosphorylates thesemolecules back to their LCBprecursors, acts as a potential

rate-limiting enzyme in the degradation of LCB-1Ps via the competing path of dihydrosphinganine-1-phosphate lyase (DPL1),70–72 suggesting

coordinated regulation. More comprehensive research is needed to understand the interactions between these enzymes and their role in
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maintaining cellular homeostasis. LCB-1Ps are recognized as lipid messengermolecules implicated in plant stress signaling.16 A recent inves-

tigation by Nakagawa et al.73 explored the role of LCBP phosphatase in regulating LCBP levels and its participation in the stomatal response

to abscisic acid (ABA) signaling pathways in Arabidopsis, with potential implications for enhancing water use efficiency and drought resis-

tance. LCBKs also promote immunity against bacterial pathogens,74 further highlighting the dynamic balance of LCBs/LCB-1Ps.

Moreover, our model predicts enzymes like GCS, LOH (2, 1/3), SLD, and FA2H have varying impacts on the metabolic network, from low

through moderate to significant. Notably, the in silicomutant for the GCS enzyme, despite its relatively low enzymatic cost in the WT pheno-

type, exerts a considerable reprogramming effect on the metabolic network. This indicates that even less costly enzymes in the WT can pro-

foundly influence the metabolic network, highlighting the system’s complexity. The relationship between enzyme abundance and metabolic

fluxes is intricate, influenced by factors beyond expression levels. Integrating data on enzymatic activities, regulatory mechanisms, and

metabolite levels is essential to accurately model and understand metabolic fluxes. Hence, the dynamic metabolic trajectory of enzymes

and reactions within the sphingolipid biosynthetic pathway in Arabidopsis offers a captivating look into cellular metabolism. Through metic-

ulous in silico analyses, we can elucidate the regulatory mechanisms underpinning this pathway.

Overall, the metabolic turnover rates established the pivotal roles of several enzymes, including SPT, KSR, LOH1/3, and FA2H. Dynamic

metabolic flux analysis (r-DMFA) showcased the branching nature of metabolic flux, emphasizing the significant roles of particular enzymes in

the WT phenotype. The GCS enzyme, identified as tightly regulated with low enzyme costs, exerts a considerable reprogramming effect on

the metabolic network, highlighting system complexity and intricate connections. Dynamic flux estimates suggested that LCBK-mediated

SBH activity shortage might be a potential regulatory scheme. Additionally, SBH, LCBK, FA2H, CSII, and GCS play crucial roles in ensuring

cellular viability and managing programmed cell death. Enzyme specificity toward phytosphingosine-based (tri-hydroxylated) groups and

VLCFA emerged as critical, influencing the overall metabolic trajectory. High-throughputmetabolomics and advanced in silicomodeling pre-

sent a promising avenue for generating experimentally testable hypotheses, illuminating sphingolipid biosynthesis and setting the stage for

metabolic engineering to improve crop yield and stress response mechanisms.

Advancements, applications, and future directions

With advancements in high-throughput metabolomics and in silicomodeling, dynamic models of metabolism can enhance our understand-

ing of metabolic regulation beyond the sphingolipid biosynthesis pathway. The r-DMFA framework can be applied to other systems to study

the combined regulatory impacts of biosynthesis and catabolism of metabolic reactive species over time. This dynamic modeling framework

will produce more experimentally testable hypotheses regarding regulation in the sphingolipid biosynthesis pathway, thereby minimizing

exhaustive experimental efforts.

In conclusion, we underscore the robustness of our methodology, specifically its adept handling of inter-sample variability—a formidable

obstacle in metabolic studies that can mask the delicate dynamics of metabolic fluxes. By employing regularization, normalization, and

ensemble techniques, our approach transcends the challenge of temporal variation within samples, enabling the extraction of significant pat-

terns from complex datasets. Adjusting for variability both within and across samples has sharpened our ability to unveil the underlying bio-

logical mechanisms with greater precision and assurance. Our approach is substantiated by the marked improvement in the calculated

average Bhattacharyya coefficient overlap of the distributions, which surged from 51.89%G 30.10% to an impressive 95.90%G 3.91% across

the reactions, further illuminating the inner workings of sphingolipid biosynthesis and paving the way for future metabolic engineering

endeavors.

Additionally, future research could explore the application of this approach to other plant species and developmental stages, as well as the

potential impact of environmental factors on sphingolipid metabolism. Understanding the dynamic nature of sphingolipid synthesis will

enhance our knowledge of plant physiology and stress responses, contributing to advances in agricultural biotechnology and crop

improvement.

Limitations of the study

This study faces a few limitations that warrant attention. Firstly, it was conducted using cell suspension cultures, which may not fully replicate

the conditions or behaviors of intact plants. Despite the inherent variability in experimental data, we have developed a protocol aimed at

identifying common metabolic constraints amid noisy data, facilitating the study of their effects on metabolism. The challenge of obtaining

noise-free, time-resolved measurements is particularly pronounced in the context of sphingolipid metabolism, as demonstrated by our initial

turnover frequencies (TOF)/catalytic efficiency (k+cat ) analysis, which is independent of the r-DMFA fitting technique used to explore metabolic

solution spaces. We anticipate that sphingolipid synthesis exhibits significant sensitivity and variability in response to growth and cell

signaling, a core focus of our investigation. By being able to first capture these early dynamics (prior to mid-exponential growth phase),

we aim to deepen our understanding of how sphingolipid metabolism adapts across different growth phases and signaling contexts.

Furthermore, our computational (in silico) predictions of enzyme perturbations await experimental validation, which is unfortunately not

within the scope of this study. We acknowledge that further experiments are essential to validate our predictions. Ideally, the least of these

experiments would involve in vitro labeling studies using 2D-NMR for gene knockouts and generating temporal experimental metabolomics

and proteomics data. However, these experiments are resource-intensive, time-consuming, and currently beyond the scope of this work. In

future, such validation might also rely on cell suspension cultures, with subsequent studies potentially extending to intact plants through

direct laboratory experiments. The extrapolation of data from cell suspension cultures to real plants poses a significant question for future
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research. Exploring the applicability of these findings to intact plants could illuminate pathways to engineering crops with enhanced stress

resilience. Further investigation into this area is crucial for translating in vitro insights into tangible agricultural advancements.
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Huang, S., and Millar, A.H. (2017). Protein
degradation rate in Arabidopsis thaliana leaf
growth and development. Plant Cell 29,
207–228. https://doi.org/10.1105/TPC.16.
00768.

39. Antoniewicz, M.R. (2013). Dynamic metabolic
flux analysis — tools for probing transient
states of metabolic networks. Curr. Opin.
Biotechnol. 24, 973–978. https://doi.org/10.
1016/J.COPBIO.2013.03.018.

40. Hackett, S.R., Zanotelli, V.R.T., Xu, W., Goya,
J., Park, J.O., Perlman, D.H., Gibney, P.A.,
Botstein, D., Storey, J.D., and Rabinowitz,
J.D. (2016). Systems-level analysis of
mechanisms regulating yeast metabolic flux.
Science (1979) 354, aaf2786. https://doi.org/
10.1126/SCIENCE.AAF2786.

41. Di Filippo, M., Pescini, D., Galuzzi, B.G.,
Bonanomi, M., Gaglio, D., Mangano, E.,
Consolandi, C., Alberghina, L., Vanoni, M.,
and Damiani, C. (2022). INTEGRATE: Model-
based multi-omics data integration to
characterize multi-level metabolic regulation.
PLoS Comput. Biol. 18, e1009337. https://doi.
org/10.1371/JOURNAL.PCBI.1009337.

42. Johnson, C.H., Ivanisevic, J., and Siuzdak, G.
(2016). Metabolomics: beyond biomarkers
and towards mechanisms. Nat. Rev. Mol. Cell
Biol. 17, 451–459. https://doi.org/10.1038/
nrm.2016.25.

43. Cahoon, R.E., Solis, A.G., Markham, J.E., and
Cahoon, E.B. (2021). Mass spectrometry-
based profiling of plant sphingolipids from
typical and aberrant metabolism. Methods
Mol. Biol. 2295, 157–177. https://doi.org/10.
1007/978-1-0716-1362-7_10.

44. Kasumov, T., Huang, H., Chung, Y.M., Zhang,
R., McCullough, A.J., and Kirwan, J.P. (2010).
Quantification of ceramide species in
biological samples by liquid chromatography
electrospray ionization tandem mass
spectrometry. Anal. Biochem. 401, 154–161.
https://doi.org/10.1016/J.AB.2010.02.023.

45. Yamaguchi, M., Miyashita, Y., Kumagai, Y.,
and Kojo, S. (2004). Change in liver and
plasma ceramides during D
D-galactosamine-induced acute hepatic
injury by LC-MS/MS. Bioorg. Med. Chem.
Lett. 14, 4061–4064. https://doi.org/10.1016/
j.bmcl.2004.05.046.

46. Baranowski, M., Blachnio, A., Zabielski, P.,
and Gorski, J. (2007). Pioglitazone induces de
novo ceramide synthesis in the rat heart.
Prostaglandins Other Lipid Mediat. 83,
99–111. https://doi.org/10.1016/j.
prostaglandins.2006.10.004.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

For additional information or to request resources, please contact Dr. Rajib Saha at rsaha2@unl.edu.

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The data used for the r-DMFA study is publicly available on Zenodo at https://doi.org/10.5281/zenodo.12811205 and can also be found

in the GitHub repository at https://github.com/ssbio/r-DMFA/tree/main/data.
� All original code, including those for statistical analyses, is available in the GitHub repository at https://github.com/ssbio/r-DMFA and

can also be accessed via Zenodo at https://doi.org/10.5281/zenodo.12811205.
� The lead contact will provide any additional information needed to reanalyze the data reported in the paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and culture conditions

This study utilized undifferentiated and photoautotrophic Arabidopsis thaliana T87 cells originated from the Columbia ecotype, Col-0. Cells

were cultured in NT-1 liquid medium (Murashige and Skoogmedium enriched with vitamins, 30 g/L sucrose, 1 mM KH2PO4, 1 mg/L thiamine,

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

K15NO3 Cambridge Isotope Laboratories Cat#NLM-765-1

15NH4
15NO3 Cambridge Isotope Laboratories Cat#NLM-390-1

Murashige and Skoog Phyto Tech Labs M519

Myo-inositol Sigma-Aldrich Cat#I7508

2,4-Dichlorophenoxyacetic acid (2,4-D) Research Products International Cat#D43050

Sphingolipid standards Avanti Lipids - Markham and Jaworski22

Deposited data

Data used for modeling Zenodo repository75 Zenodo: https://doi.org/10.5281/zenodo.12811205

Experimental models: Cell lines

Arabidopsis thaliana T87 cells (Col-0) Arabidopsis Biological Resource Center Cat#CCL84839

Software and algorithms

Shimadzu Prominence UPLC system Shimadzu Corporation Model: LC-30AD

4000 QTRAP mass spectrometer AB SCIEX Model: 4000 QTRAP

Analyst 1.5 software AB SCIEX –

MultiQuant 2.1 software AB SCIEX –

MATLAB (r2021b) MathWorks https://www.mathworks.com/products/

new_products/release2021b.html

Custom kinetic model script Developed in-house Available at: https://github.com/ssbio/r-DMFA

GitHub repository for r-DMFA implementation GitHub Available at: https://github.com/ssbio/r-DMFA

Python version 3 Python Software Foundation https://www.python.org

CPLEX solver IBM https://ampl.com/products/solvers/

solvers-we-sell/cplex/

BARON Matlab-Interface MINLP https://minlp.com/matlab-baron-interface
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100 mg/L myo-inositol, and 2 mM 2,4-dichlorophenoxyacetic acid; pH 5.8 adjusted with KOH) in 100 mL flasks. Cultures were maintained at

22�C, 55% humidity, agitated at 120 rpm, and continuously illuminated at a photosynthetic photon flux density (PPFD) of 100 mmol m�2 s�1.

For internal standard and dynamic labeling, T87 cells were cultured in 15N-enriched NT-1 liquid medium containing K15NO3 and
15NH4

15NO3 (Cambridge Isotope Labs), under identical culture conditions. Standard sub-culturing was performed every 7 days, with 1 mL

of the existing cell suspension transferred to 50 mL of fresh NT-1 medium. The 15N medium was introduced dynamically with daily sample

collections initiating immediately and continuing for 6 days, up to the experimentally determined mid-exponential growth phase. A control

culture was concurrently maintained in NT-1 liquid medium with the natural 14N isotope, under identical conditions. Each culture setup en-

tailed two technical replicates with two biological replicates per setup.

To ascertain growth phases, growth rates were ascertained by freeze-drying and dry-weighing equal volumes of suspension cultures (bi-

replicates) over a 15-day period. Data were then plotted on a semi-loggraph, with linear regression applied to determine the growth rate from

the slope of the best-fit line (see Figure S1 for growth curve).

Sphingolipids extraction and quantification

The method employed for sphingolipid extraction and quantification was adapted from Markham and Jaworski (2007).22 The profiling

methods which have been modified was published in Cahoon et al. (2021).43 Specifically, 10–30 mg of lyophilized cells were homogenized

and extracted employing a solvent mixture of isopropanol:heptane:water (55:20:25, v/v/v). Following extraction, the supernatants were dried

and de-esterified using methylamine in a ethanol:water solution (70:30, v/v). The lipid extracts were then re-suspended in a solvent compo-

sition of tetrahydrofuran:methanol:water (5:2:5, v/v/v) with 0.1% (v/v) formic acid. Sphingolipid species analysis was conducted using a Shi-

madzu Prominence ultra-performance liquid chromatography system and a 4000 QTRAP mass spectrometer (AB SCIEX). Internal standards

were incorporated for precise sphingolipid class identification.

For precise quantification of 14N/15N labeled sphingolipids, standard curves were generated through sphingolipid (analyte) isolation

and analysis utilizing the 4000 QTRAP LC-MS/MS system across multiple dilutions. Specifically, the HPLC/electrospray ionization tandem

mass spectrometry (HPLC/ESI-MS/MS) method, as described by Markham and Jaworski,22 was employed, predicated on the principles

of ion transitioning, separation, and fragmentation. In this method, chromatographic separation was achieved using a reversed-phase

C18 column, facilitated by a specified gradient elution of aqueous and organic mobile phases. Following separation, the eluent was

subjected to electrospray ionization (ESI) to generate charged molecular ions, which were subsequently directed into the tandem

mass spectrometer (MS/MS). Within the MS/MS, ions were initially filtered by the first quadrupole (Q1) based on their mass-to-charge

ratios (m/z), then fragmented in the collision cell (Q2) to yield a spectrum of product ions, which were filtered and detected by the sec-

ond quadrupole (Q3). The methodology hinged on the selection of optimal precursor-product ion transitions, accompanied by the

meticulous optimization of mass spectrometer parameters including de-clustering potential (DP), collision energy (CE), and reten-

tion time.

Utilizing the HPLC/ESI-MS/MS technique, 168 distinct sphingolipid species/analytes (LCBs, ceramides, GlcCers, and GIPCs) were quan-

tified over a designated time course. To dynamically trace 15N incorporation into sphingolipid species, analytes were scrutinized for base

m/z (m + 0) and +1 m/z shift (m + 1) isotopologues. The (m + 0) isotopologue, e.g., 302.3 m/z for ‘‘d18:0’’, denotes the mass wherein all atoms

exist in their predominant isotopic form, predominantly 14N. In contrast, the (m + 1) isotopologue, e.g., 303.3 m/z for ‘‘d18:0’’, represents the

mass shift due to a single 15N integration. While the contribution of naturally occurring 13C isotopes is about 1%—meaning only 1 out of 100

naturally occurring carbonmolecules is 13C – approximately 30% of molecules containing around 30 carbon atomswill include at least one 13C

atom. For molecules with 18–48 carbon atoms, the probability of having one or more 13C ranges from approximately 16-39%. This range sug-

gests that the likelihood of 13C impact is significant, particularly for larger sphingolipids such as GIPCs, where the 13C isotope effect creates a

notable proportion of (m+1) shifts. Despite this, the incorporation of 15N is pronounced and easily distinguished from possible 13C isotope

effects using 14N-labeling control measurement, especially in the smaller sphingolipid classes that contain only 18 to 48 carbons. Additionally,

technical duplicates were executed for each biological replicate inclusive of cultures grown on 15N and control cultures on 14N. Data analysis

and quantification were performed using Analyst 1.5 and MultiQuant 2.1 software, with considerations for exact mass and retention time as

described by Markham and Jaworski.22

METHOD DETAILS

Dynamic modeling

Dynamic metabolic modeling captures both the metabolic and regulatory state of a pathway through temporal reaction flux changes. Unlike

many genome-scale metabolic models (GSMMs) which are static, dynamic metabolic models (DMMs) capture the dynamic nature of meta-

bolic networks which is crucial for understanding and engineering biological systems. In this section, we highlight the in silico dynamic

modeling approaches used to analyze the metabolic data and generate insights.

Estimating apparent turnover frequency (TOF) distributions

To estimate the Apparent TOF distributions, we employed a kinetic modeling approach that leverages the time-dependent incorporation of
15N-labeled nitrogen into sphingolipid species. The core of this approach is the application of a first-order kinetic model, which makes the

following assumptions.

ll
OPEN ACCESS

20 iScience 27, 110675, September 20, 2024

iScience
Article



(1) The rate of isotopic 15N incorporation into the species (rate of appearance and hence, turnover) equals the depletion rate of 14N from

the pools of nitrogen (N) per species. Given the depletion rate of 14N is directly proportional to the 14N concentration at any given time.

This follows the first-order irreversible kinetic relationship as: 14N/
k 15N

r
d
�
15N
�

dt
= � d

�
14N
�

dt
= k � �14N� = k � �½N�total �

�
15N
��

Where, ½N�total is the total concentration, 14N+ 15N

(2) The first-order rate constant k serves as a direct measure of catalytic efficiency, as it quantifies the rate at which a substrate is converted

to product per enzymemolecule under saturating substrate conditions. Thus, the catalytic efficiency of the reaction enzymes is equiv-

alent to the kinetic rate of isotopic labeling, reflected by the turnover number (k+cathk) in the reaction’s first-order rate law.

(3) At the start of labeling ðt = 0Þ; the depleting species ratio, i.e., the ratio of unlabeled to total sphingolipids
�

14N
14N+15N

�
is approximately

one, assuming no 15N presence, while the ratio of labeled to total sphingolipids is zero. i.e.,
14N

14N+15N
ðt = 0Þ = 1 and conversely,

15N
14N+15N

ðt = 0Þ = 0

(4) the depletion ratios vanish in finite time, i.e.,
14N

14N+15N
ðt/NÞ = 0 and conversely,

15N
14N+15N

ðt/NÞ = 1

(5) the (m + 0) and (m + 1) isotopologues are assumed to be measures for the abundance of 14N and 15N isotopes respectively.

The model is thus represented as follows:

Given,

d
�
15N
�

dt
= k+cat �

�½N�total �
�
15N
��

Upon integration,

ln

 
½N�total

½N�total �
�
15N
�! = k+

cat 3 t

15NðtÞ = ½N�total �
�
1 � e� k+cat t

�
=
�
14N + 15N

�
3
�
1 � e� k+cat t

�
Hence,

fractionðtÞ =
15N

14N+15N
ðtÞ = 1 � e� k+cat t

This approach assumes a direct correlation between the rate of 15N incorporation and themetabolic turnover rates, allowing us to infer the

in vivo catalytic speed and efficiency of sphingolipid biosynthesis reactions. The linear regression of the transformed nonlinear model curve

facilitates the quantification of k+cat or TOF values, providing insights into themetabolic demands and efficiency of sphingolipid biosynthesis in

the cultures. However, we used a widely known technique called bootstrapping to handle data variability, which allows us to estimate the

uncertainties.76 We do this by assuming that the variations we see in our experiments follow a normal (Gaussian) distribution pattern. This

means we’re deliberately adding a layer of uncertainty to better reflect the natural fluctuations seen in our measurements (per culture C

and D), especially regarding the ratios’ bounds we’ve calculated. As to the ratios’ bounds, as shown in Figure 2C, we used four technical rep-

licates for each labeling condition: 4 replicates from cultures C and D for 15N labeling, and 4 replicates from cultures A and B for 14N labeling.

This includes two technical replicates per biological duplicate (2 for cultures C, 2 for culture D, 2 for culture A, 2 for culture B) to obtain the

mean and bounds for the enrichment profiles.

Estimating dynamic flux using regularized DMFA

A regularized form of the dynamic metabolic flux analysis (L-DMFA) framework by Leighty and Antoniewicz (2011)77 was used to predict the

dynamic metabolic fluxes, vðtÞ. DMFA methodology uses a DOA approach to fit concentration measurements directly and relies on non-

steady state mass balances for metabolite pools. The model non-steady state mass balances for metabolite pools are represented by:

dc

dt
= S$K$uðtÞ with;K = nullðSbalÞ (Equation 1)

In this context and for a givenmetabolic network, we denote, S as the stoichiometric matrix, K as the null spacematrix of S, and cðtÞ as the
vector of metabolite concentrations. Metabolites are categorized as balanced, typically intracellular, or non-balanced, typically external.

Leighty and Antoniewicz, (2011) defined and determined internal free fluxes, uðtÞ as a function of linear splines. It divides the time domain
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½t1; tn� of a culture into smaller intervals ½tk� 1;tk �, assuming constant rate changes in fluxes between distinct DMFA time points. Hence, the flux

dynamics are modeled as linear flux changes between two points as:

vðtÞ = K$uk� 1$

�
1 � t � tk� 1

tk � tk� 1

	
+K$uk$

�
t � tk� 1

tk � tk� 1

	
(Equation 2)

In a more compact form:

vðtÞ = K$U$kðt; tkÞ (Equation 3)

where, U = ½uk� 1;uk ;.;un�, uk� 1 and uk denote the free internal fluxes to be fitted at times tk� 1 and tk respectively. kðt; tkÞ is a time depen-

dent parameter matrix for the linear spline with its collocations defined in.77 Integrating Equations 1 and 3 yields:

cðtÞ = c0 + S$K$U$gðt; tkÞ (Equation 4)

where, c0 is a fitted variable defined as the initial metabolite concentrations, and gðt; tkÞ is the integral form of kðt; tkÞ. For estimating flux

transients, the variance-weighted sum of squared residuals (SSR) is minimized subject to Equation 4 as follows:

min SSR =
X ðci � ci;mÞ2

si
2

Subject to : ci = ci;0 + Si$K$U$g;c i˛ I (Equation 5)

where, ci;m are measured concentration profiles for metabolite pools; I are sets of metabolites in the model; si are the specific measurement

variances assumed as experimentally determined fluctuations. Hence, direct linear explicit and global optimums, p are obtained from:

p : =



c0
U

�
= H� 1$J (Equation 6)

where, the Hessian and Jacobian matrices, H and J respectively are calculated as:

H ≝
X"�

dci
dp

	T

$si
2$

�
dci
dp

	#
and J ≝

X"�
dci
dp

	T

$si
2$ci;m

#
with the derivatives of ci,

dci
dp

≝
�
Ei

�
gT$Di

� �
where, Di = diagðSi$KÞ and EiHdi;j =

�
1 if i = j
0 if isj

With the current formulation, solving the linear system involves inverting the Hessian matrix, H to estimating the parameter set, p. How-

ever, when data includes noisy (such as in our study the large variation in the distributions of si) or incomplete measurements the problem

might be ill-posed; that is, it may not have a unique solution, or small changes in the data might lead to drastically different solutions.H could

as well be near singular or ill-conditioned, its inversion can lead to numerical instability. Overfitting is another concern, where the estimated

model fits the noise in the data rather than the underlying process. Tikhonov regularization ofHwas used to address these issues by adding a

regularization term that conditions H, making its inversion more stable. This regularization promotes numerical stability and generalization

The regularized Hessian, H0 is given by:

H0 = H+ lI (Equation 7)

where, I is an identity matrix. With the regularized Hessian,H0, the regularization parameter, l, balances the trade-off between fitting the data

and regularizing the solution in Equation 6, and can be chosen via methods like cross-validation or information criteria. In this study, the reg-

ularization parameter, l, is chosen through a systematic grid search optimization utilizing the SSR, and Bayesian Information Criterion (BIC).

Optimal l was chosen with the smallest BIC value. In our study, we obtained lopt = 1310� 4 for both independent biological duplicates.

Building upon the L-DMFAmethod, which assumes linear flux changes between designated DMFA time points, our approach in the same

fashion employs an iterative process to determine the optimal set of linear time intervals. This process aims to minimize the Sum of Squared

Residuals (SSR), (see Figure S3) thereby ensuring the model’s convergence and bolstering its predictive accuracy. However, central, and spe-

cifically to our approach is enhancing the L-DMFA fitting process by the use of cubic spline interpolation. This technique not only incorporates

every data measurement point but also generates additional points from cubic splines within these intervals, with the stipulation that each

interval encompasses strictly one data point, no less, no more. These supplementary points serve as inflection points, enabling the modeling

of linear flux changes between them. The result is a significantly smoother curve that more faithfully represents the experimental data’s non-

linear flux changes, thus improving themodel’s precision. This is coupled with earlier regularization steps formetabolic flux analysis. Upon this

refinement, the formulation aligns with the L-DMFA approach as delineated by Leighty and Antoniewicz (2011).77 The predicted fluxes, based

on the average concentration profiles, are intended to reflect the typical flux distributions for cultures C andD. Consequently, we have roughly

estimated the standard error for these average flux distributions, as illustrated in Figure 5. Following this, we adopted a comprehensive strat-

egy that involves uniform convex polytope sampling, referred to as dynamic flux sampling. This technique was employed to achieve a more

accurate distribution of fluxes, which is elaborated upon in the subsequent two subsections.
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Additionally, we deliberately maintained the reversibility of all reactions in this pathway because we are analyzing data from inside cells.

This decision wasmade to expand the range of our predictions, allowing for a wider exploration of metabolic pathways without being limited

to predetermined outcomes. The regularizedDMFA framework, r-DMFA as amodified version of theMATLAB implementation developed by

Leighty and Antoniewicz (2011)77 was scripted and used to calculate the reaction rates for each enzymatic reaction in the network.

Estimating enzyme metabolic demands

By intertwining thermodynamics and enzyme kinetics, we used the concept of enzyme metabolic demands which facilitates a holistic under-

standing of underlying mechanism dictating the efficiency, speed, and equilibrium of enzymatic reactions in our network. This proffers an

estimation of active enzyme molecules partaking in the reaction. To this end, we determined the variable enzyme metabolic demands,

EMD for each reaction in the network as defined byNoor et al.,.54 This was summedover all reactions to also obtain the enzyme levelmetabolic

demand. For a single reaction, j, the enzyme metabolic demand is defined as the ratio of metabolic reaction flux, vjðtÞ and the relative/

apparent turnover frequency (k+cat ), our experimentally fitted TOF and a measure of reaction speed, given by the equation:

EMD;jðtÞ = vjðtÞ
k+cat

where; k+cat = k+
cat

�$g$K (Equation 8)

k+cat
� will be the actual enzyme turnover number independent of thermodynamic and substrate saturation. g˛ ½ � 1;1�, is the thermodynamic

driving force. K ˛ ½0;1�, is the enzyme specific substrate saturation factor.

Analyzing transient flux distribution through dynamic flux sampling

A concerted approach employing a uniform convex polytope sampling strategy was adopted to delve into the high-dimensional dynamic flux

solution spaces, encompassing diverse alternate optimal dynamic flux distributions. This entailed uniformly generating random transient con-

centration profiles within the known experimental constraints, leading to the truncation of the bounded flux polytope—amodality prevalently

utilized for characterizing metabolic solution spaces.57,58 To enable an efficient sampling process and mitigate the inefficiencies inherent in

rejection sampling, the r-DMFA framework was further modified by incorporating a global optimization strategy facilitated by the BARON

global solver.59

Following this, a flux modulation ratio was computed for each culture, defined as the fold changes of each flux in the generated ensemble

dynamicmodel relative to the average representative flux distribution per culture. These flux fold changes served to characterize the influence

of each reaction on the variations observed within the ensemble of dynamic flux modulation ratios, providing insight into the reaction-driven

flux alterations across different cultures.

In the characterization of the emergent dynamic flux fold changes, we employed the two-dimensional t-Distributed Stochastic Neighbor

Embedding (t-SNE) for dimensionality reduction. t-SNE, a nonlinear technique, excels in the visualization of high-dimensional datasets within

two or three-dimensional spaces.78 This method transforms the Euclidean distances in high-dimensional space into conditional probabilities

that mirror similarities amongdata points, thereby facilitating an intuitive representation of complex data structures. Subsequent to the appli-

cation of t-SNE, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithmwas utilized to delineate representative

clusters within the resultant two-dimensional space.79 This clustering technique enables the identification of dense regions of data points,

which are indicative of relative clusters, thereby augmenting the analysis with a robust spatial interpretation of the data’s inherent groupings.

To elucidate the relationships and correlations between the predicted metabolic concentration profiles and those obtained through dy-

namic sampling, Spearman’s rank correlation analysis was employed. This statistical approach, leveraging the robustness of Spearman’s non-

parametric method, allowed for the assessment of monotonic relationships between the two sets of data. By comparing the ranked positions

of metabolic concentrations across both predicted and dynamically sampled profiles, we were able to quantify the degree of correlation

without the assumption of linear relationships or normal data distribution. MATLAB’s ‘‘corr’ function facilitated this analysis, providing not

only the Spearman’s rank correlation coefficients but also the corresponding p-values. These p-values, derived either from exact permutation

distributions for smaller datasets or from large-sample approximations for larger ones, offered a statistical basis to gauge the significance of

the correlations observed. This approach enabled a rigorous evaluation of the predictive accuracy of our dynamic models against the back-

drop of experimentally derived data, underscoring the potential variances and consistencies in metabolic behavior.

The distribution of Spearman’s correlation coefficients, rho (r), and their respective p-values were meticulously analyzed to discern sensi-

tivity of approach and statistically significant correlations, thereby illuminating the strength and direction of the relationships between pre-

dicted and sampledmetabolic concentration profiles. This statistical scrutiny was paramount in distinguishing genuine biological correlations

from those potentially arising by chance. The insights garnered from this analysis not only augmented our understanding of themetabolic flux

distributions but also provided a foundation for further exploration into the dynamic intricacies of metabolic pathways. Through this method-

ical examination, we aimed to broaden the scope of our investigation, facilitating a more comprehensive understanding of the metabolic

dynamics at play within various cultures and even under varying experimental conditions, which could be the case with high data variability.

Analyzing the sensitivity and robustness of predictions

In analyzing the sensitivity and robustness of predictions within the context of metabolic pathway regulation, as depicted in Figure S6 which

offers significant insights through the analysis of flux modulation ratios. These ratios, defined as fold changes of flux in relation to the average

flux per culture, have been computed for each dynamic flux ensemble and culture, effectively characterizing the influence and variability of
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individual reactions. The application of t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality reduction has successfully

transformed high-dimensional flux data into a two-dimensional space, where the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm then identified distinct clusters indicative of reaction partitioning within the metabolic network.

The sensitivity and robustness of the predictions enabled by DBSCAN clustering process across different sample sizes in the analysis of

metabolic flux distributions is shown in Panel A of Figure S5. The panel displays the DBSCAN clusters for various reactions in both C and D

cultures, with sample sizes ranging from 1E+4 to 4E+6 and a separate category for outliers. Outliers here are determined by the Spearman’s

rho (r) correlation distributions with respect to the fits of the concentration profiles as would be in Figure S4. Note that this follows the defi-

nition that a value that is more than three scaled median absolute deviations (MAD) from the median of the Spearman’s rho (r) correlation

values. Moreover, the color-coding represents different clusters, while the numbers indicate the cluster to which each reaction belongs or

whether it is classified to have been impacted by noise effects (i.e., does not belong to any distinct cluster).

The consistent clustering of reactions across varying sample sizes demonstrates the robustness of the predictive model and approach.

Reactions that maintain their cluster assignment despite changes in sample size indicate a strong and stable signal in the predictions, which

could reflect the reactions’ consistent behavior under different conditions. For instance, reactions that consistently fall within the red cluster

across different sample sizes suggest a high level of regulation and a critical role in maintaining cellular homeostasis, as these reactions are

less sensitive to fluctuations in sample size, indicating a stable role in metabolic processes.

Conversely, reactions that shift between clusters or to the outlier category as the sample size changes could either indicate a sensitivity to

the data density or reveal insights into the biological variability of these reactions. This observation underlines the capacity of the model to

differentiate between tightly regulated andmore flexiblemetabolic reactions, thereby highlighting the nuanced balancewithin themetabolic

network that sustains cellular function under various conditions.

The minimal variation in cluster assignments, especially for significant reactions across the full range of sample sizes, underscores the

method’s precision. This consistent clustering across different sample sizes also supports the robustness of the metabolic model, suggesting

that the predictive insights it offers are reliable and can withstand the test of varying data quantities, an essential feature and focus of this study.

Assessing predicted metabolic concentration profiles

Residuals analysis. Weassessed the accuracy of our predicted dynamic profiles by analyzing the residuals, which demonstrated a tendency

to cluster around zero, indicating a good fit for the species within both C and D cultures (refer to Figure S3 for details).

Correlation analysis. To evaluate the relationship between predicted metabolic concentration profiles and dynamically sampled profiles,

we employed Spearman’s rank correlation coefficient. This non-parametric measure assesses howwell the relationship between two variables

can be described using a monotonic function. Unlike Pearson’s correlation, Spearman’s correlation does not assume a linear relationship be-

tween variables or that the variables are normally distributed. Instead, it relies on the ranked values of the data points, making it more robust

against non-normal data distributions and outliers. This methodology facilitated a comprehensive and statistically robust analysis of the cor-

relations between predicted timemetabolic concentration profiles and the randomly sampled dynamic profiles, broadening the scope of our

investigation into metabolic pathway dynamics.

Spearman’s rank correlation coefficient - mathematical overview. Spearman’s rank correlation coefficient, rho (r), is defined as:

r = 1 � 6
P

d2
j

nðn2 � 1Þ
where:

dj is the difference between the ranks of corresponding variables cpredi ðjÞ and csampled
i ðjÞ for j˛ ½t1; tn�

n is the number of observations, i.e., time points, j.

A rho (r) value of +1 indicates a perfect positive monotonic relationship,�1 a perfect negative monotonic relationship, and 0 indicates no

monotonic relationship.

Implementation and Statistical Significance. We utilized MATLAB’s ‘corr‘ function to compute Spearman’s rho (r) and associated

p-values between the predicted and sampled metabolic concentration profiles. The ‘corr‘ function also offers the capability to calculate Ken-

dall’s tau, but for our analysis, Spearman’s rho (r) was chosen for its ability to provide ameasure ofmonotonic relationships. Depending on the

size of our datasets, the function automatically selects between exact permutation distributions (for small sample sizes) and large-sample ap-

proximations to compute p-values. These p-values are crucial for determining the statistical significance of the correlations we observed. A

lower p-value, particularly one less than 0.05, indicates that the correlation (r) between two variables significantly deviates from zero, suggest-

ing a meaningful association contrary to the null hypothesis, which posits no relationship.

Generating perturbation models by knockouts (KO)

Perturbations were induced through single enzyme and reaction knockouts, performed by leveraging additional constraints to the r-DMFA

framework, grounded on the Minimization of Metabolic Adjustment (MOMA) principle,60 to predict dynamic model responses. In other
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words, our MOMA-based r-DMFA framework employed quadratic programming, relaxing optimal WT flux assumptions, facilitating precise

metabolic phenotype predictions of mutants, and elucidating cellular adaptation to enzymatic dysfunction. Furthermore, this approach uti-

lized convex transformation methods in the global optimization algorithm of the BARON solver.61 Moreover, the perturbations could take on

the form of enzyme overexpression, inhibition, or knockout and is formulated as an additional constraint to the problem in Equation 5

given by:

fei;1vj;minðtÞ % vjðtÞ% vj;maxðtÞfei;1 (Equation 9)

where,gei;1 represents the introduced regulation fold change in enzyme expression compared to the reference state.

After each perturbation, the goal was to compare the predicted responses from single knockouts against the experimental WT predic-

tions. An evaluation metric, zd , and spearman’s rank correlation was employed to evaluate the metabolic distance between each mutant dy-

namic flux phenotype and the WT dynamic flux phenotype. A supplementary module was integrated into the original framework to facilitate

these modifications. Additionally, a modified version of the MATLAB implementation as developed by Leighty and Antoniewicz (2011)77 was

utilized to conduct the simulations in this study. The dynamic model along with all requisite scripts for generating the results of this study are

made accessible via the link: https://github.com/ssbio/r-DMFA.

Quantifying metabolic distances in dynamic perturbation models

An evaluation metric, defined as the average relative deviation between WT determined fluxes and those predicted by perturbed (mutant)

dynamicmodels, was employed. Themetric utilizes the coefficient of variation80 to scale the terms in themetric function, zd , thereby capturing

potential degenerate polytopic uncertainty associated with experimental measurements. Consequently, reactions with a tighter confidence

interval contribute more significantly to the function. The metric is expressed as:

zd =
X
j˛Nr

X
t ˛T

ln

 
1

CVjðtÞ

vjðtÞ � vWT
j ðtÞ

vWT
j ðtÞ


!

(Equation 10)

where, vWT
j ðtÞ represents theWT flux profile of reaction j;CVjðtÞ denotes the coefficient of variation for each mutant dynamic flux of reaction j

at each timepoint, employed to assess the relative dispersion of the flux-space solution with sensitivity to experimental measurement uncer-

tainty. NT represents the number of considered timepoints of T , the time domain ½t1;.; tn� ; Nr is the set of nonzero flux reactions in the WT

dynamic model. It is noteworthy that reactions that do not carry flux for the WT may exhibit nonzero flux in a perturbed dynamic model.

Excluding zero-flux WT reactions from the comparative measure of metabolic distance enables a rigorous and relative comparison across

mutants. Mathematically, this excludes jump discontinuities.

Additionally, to assess the metabolic differences between mutant and WT strains, Spearman’s rank correlation was utilized. This method

calculates Spearman’s rank correlation coefficients for each metabolic reaction across various time points. Accompanying each output cor-

relation coefficient, designated as rho, is a statistical measure, the p-value, indicating statistical significance. From this, two primary metrics

were derived: the ratios of positive correlation reactions and negative correlation reactions. These metrics represent the proportion of reac-

tions displaying significant positive (rho >0.5, p < 0.05) and negative (rho <�0.5, p < 0.05) correlations, respectively. This provides a succinct

depiction of metabolic congruence or divergence between the two strains.

QUANTIFICATION AND STATISTICAL ANALYSIS

Within this study, various statistical and analytical tools were employed. The two-sample Kolmogorov-Smirnov test (KS test) (Frank J. Massey,

1951)56 was utilized to compare distributions, while the Bhattacharya coefficient was employed for overlap measurement between distribu-

tions. Bootstrap resampling was employed to provide estimation accuracy, and linear regression was used for examining relationships be-

tween variables. Additionally, Spearman’s rank correlation coefficient was implemented to evaluate the monotonic relationships between

dynamic flux distributions, particularly given that the data in this study did not satisfy the requirements of linearity and homoscedasticity,

thereby providing a non-parametric alternative to assess associations without assuming a specific distribution.
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