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Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of

acute-onset hypoxemic respiratory failure characterised by an acute, diffuse,

inflammatory lung injury, and increased alveolar-capillary permeability, which

is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant

mitochondria and mitochondrial DNA(mtDNA) level are associated with the

development of ALI/ARDS, and plasmamtDNA level shows the potential to be a

promising biomarker for clinical diagnosis and evaluation of lung injury severity.

In mechanism, the mtDNA and its oxidised form, which are released from

impaired mitochondria, play a crucial role in the inflammatory response and

histopathological changes in the lung. In this review, we discuss mitochondrial

outer membrane permeabilisation (MOMP), mitochondrial permeability

transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs),

and passive release as the principal mechanisms for the release of

mitochondrial DNA into the cytoplasm and extracellular compartments

respectively. Further, we explain how the released mtDNA and its oxidised

form can induce inflammatory cytokine production and aggravate lung injury

through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of

interferon genes (STING) signall ing (cGAS-STING) pathway, and

inflammasomes activation. Additionally, we propose targeting mtDNA-

mediated inflammatory pathways as a novel therapeutic approach for

treating ALI/ARDS.
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1. Introduction

The Lung is a complex branched organ that terminates in a

highly vascularised alveolus designed to efficiently exchange

inspired oxygen with carbon dioxide (1). The alveolus, which

takes up 90 percent of the total lung volume, consists of an

epithelial layer of simple squamous epithelium, and an

extracellular matrix surrounded by capillaries and is vulnerable to

various extrapulmonary/indirect (e.g. sepsis, pancreatitis, trauma)

or pulmonary/direct (e.g. pneumonia, aspiration) insults (2, 3).

There has been growing evidence of diffuse alveolar damage in

alveolar specimens taken from patients suffering from ARDS, and

laboratory studies have documented epithelial and endothelial

damage, which leads to the accumulation of protein-rich

inflammatory fluids in the alveolar space (4). Excessive

inflammatory fluids in the interstitium and alveoli cause impaired

gas exchange, decreased compliance, and increased pulmonary

arterial pressure. The annual rate of ARDS is generally 13–23

people per 100,000 in the general population (5), and is higher in

intensive care units; approximately 10 to 15 percent of admitted

patients and up to 23 percent of mechanically ventilated patients

meet the criteria for ARDS (6), which may be underestimated

seriously due to the ongoing COVID-19 pandemic. Over the past

decades, great progress has been made in understanding the

epidemiology, pathogenesis, and pathophysiology of ARDS,

which is identified as a heterogeneous syndrome. Additionally,

randomized trials have identified improved outcomes for patients

with ARDS following the optimization of mechanical ventilation,

fluid therapy, prone position ventilation, and neuromuscular

blockade. However, none of these supportive therapies can reduce

inflammation in the lungs nor have efficiently decreased the

mortality of ALI/ARDS. According to the severity of lung injury

(mild, moderate, and severe), the mortality rate remains high,

approximately 27% to 45% (6), and has caused worldwide

concern, especially in the COVID-19 pandemic, to establish more

effective treatment strategies based on the pathogenesis to reduce

the ALI mortality is urgently needed.

Mitochondria are the powerhouses of cells, which generate a

large portion of adenosine triphosphate (ATP) through

oxidative phosphorylation depending on the electron transport

chain (ETC). In addition to their canonical function,

mitochondria also play a role in immune modulation against

infectious and sterile insults (7). Furthermore, mitochondria are

closely associated with cellular integrity, alveolar surfactant

secretion, and repair of alveolar epithelial and endothelial

barriers (8–10). Mitochondrial dysfunction is a crucial

causative factor that leads to pathological features of lung

injury, such as inflammatory cell infiltration, explosive release

of inflammatory cytokines, microvascular hyperpermeability,

release of mitochondrial damage-associated molecular patterns

(mtDAMPs), increased reactive oxygen species (ROS)

production, and mitochondrial DNA damage (8, 11–16).
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However, several studies demonstrate that mitochondrial DNA

(mtDNA), a mtDAMP, is significantly associated with ALI

development under various stimuli (17–21). Furthermore,

mtDNA obtained from bronchoalveolar lavage fluid (BALF) in

animal models, and patients is associated with ALI development

(22–25). Although evidences suggest some accessible ways to

effectively protect against ALI by eliminating mitochondrial

mtDNA (26–30), the mechanisms by which mitochondrial

mtDNA promotes ALI and ARDS are complex and require

further study. Thus, in this review, we summarize the possible

mechanisms of mtDNA release, the pathogenic mechanisms of

mtDNA in ALI/ARDS, as shown in Figure 1, and prospective

therapeutic directions for ALI/ARDS.
2. Released mtDNA serves as a
danger-associated molecular
pattern in ALI/ARDS

Human mitochondrial DNA (mtDNA), localised in the

mitochondrial matrix, comprises 16.5 kb circular dsDNA

lacking introns and codes for 22 tRNAs, two rRNAs, and 13

mRNAs that encode the essential oxidative phosphorylation

(OXPHOS) protein subunits (31). However, according to the

mitochondrial endosymbiotic theory, which explains

mitochondrial morphology (structurally similar to bacteria)

and that mitochondria have their genetic code (32, 33), the

unmethylated CpG and formylated peptides frommitochondrial

DNA can be recognized as “foreign molecules” by our bodies

after escaping from mitochondria (34–36). Thus, mtDNA is

gradually recognized as a damage-associated molecular pattern

(DAMP), a cellular component of dying cells, which contributes

to initiating and propagating inflammation (37, 38). Moreover,

under various stimuli such as bacterial or viral infections,

trauma, and burns, mtDNA can be released into the cytoplasm

and extracellular environment. As a newly identified

mitochondrial DAMP in the last decade, mtDNA has attracted

increasing attention in clinical and basic research, including

ALI studies.

In the early stages of ALI/ARDS, mitochondrial dysfunction

is observed in different types of ALI/ARDS, including infection,

trauma, and burns (39, 40). Extracellular mtDNA in the blood

and BALF of patients with ALI/ARDS has recently been

investigated. As reported, mtDNA copies measured in the

peripheral blood were associated with 28-day survival in

patients with ARDS and poor outcomes in COVID-19 patients

(41, 42). After multiple transfusions, mtDNA can also enter the

receiver’s circulation and probably contributes to ALI/ARDS

(43, 44).

Furthermore, circulating mtDNA in the blood has been

suggested as a promising biomarker in the clinical context of

ALI/ARDS (38, 45–48). Apart from circulating mtDNA, BALF
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mtDNA levels were significantly increased in patients with ALI/

ARDS and were positively correlated with ALI progression (25).

Moreover, numerous in vivo and in vitro experiments have

shown the critical role of mtDNA in promoting ALI

progression (49–52). Animal experiments have confirmed that

mtDNA plays a critical role in ALI/ARDS models by activating

the TLR9/MyD88/NF‐kB signalling pathway (18). Moreover,

the administration of isolated mtDNA into the lungs or

circulation induces the production of pro-inflammatory

mediators (22, 29, 53). To further prove the hazardous
Frontiers in Immunology 03
potential of mtDNA, suppressing mtDNA levels by

cyclosporine-A has been shown to alleviate ALI in LPS-

induced ALI models (26).

The above evidence suggests that extracellular mtDNA is a

significant damage factor during ALI progression and could

serve as a promising predictor of ALI. Furthermore, strategies

targeting mtDNA-related methods have been prospectively

tested for treating ALI (26, 53).

The innate immune system is crucial in mediating injuries to

alveolar epithelial cells and capillary endothelial cells in ALI/
FIGURE 1

The schematic diagram of mtDNA-releasing and sensing pathways mediating injury in lung tissue. In cell injury or infection conditions, abnormal
mtDNA can be released from mitochondria into cytosol through mPTP, GSDMD pore, MOMP mediated by BAX/BAK and VDAC, or from cytosol
to extracellular environment by EVs. Once in the cytosol, mtDNA, which comes from intracellular injured mitochondria or extracellular space,
can be recognized by three major sensors that drive the innate immune response. First, the released mtDNA can bind to TLR9 on the surface of
erythrocytes to induce an immune response or bind to TLR9 in the endosome, which promotes the expression of downstream NF-kB or p38
MAPK, leading to an upregulation of pro-inflammatory factor expression. Cytoplasmic mtDNA is also recognized by cGAS and leads to increased
expression of cytokines, adhesion molecules, and chemokines through different pathways and can inhibit autophagy and endothelial cell
proliferation. In addition, the released mtDNA activates PRRs such as NLRP3 and AIM2, recruiting ASC and procaspase-1 to form inflammasomes
and promoting IL-1b and IL-18 maturation and pyroptosis.
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ARDS. During ALI/ARDS, elevated cytokines produced by

innate immune pathways are pivotal factors in the

deterioration of histopathological changes and lung function

(54–56). Due to the unique features of mtDNA, it can trigger the

activation of the innate immune system in numerous

pathological conditions such as sepsis, ALI/ARDS, kidney

injury, heart failure, and liver failure (18, 57–60). In terms of

the wide distribution of mtDNA and its hazard potential, there is

an urgent need to determine the comprehensive role of mtDNA

in ALI/ARDS.
3. Mechanisms of mtDNA release in
ALI/ARDS

Given the important role of mtDNA in the development of

ALI/ARDS, we review the possible molecular mechanisms

triggering the release of the mitochondrial genome into the

cytoplasm and extracellular space as follows.
3.1 Mechanisms of mtDNA releasing into
the cytosol

3.1.1 mtDNA release mediated by MOMP
MOMP is a highly regulated process responsible for

activating caspases and initiating apoptosis, usually controlled

through the interactions between pro- and anti-apoptotic

members of the B cell lymphoma 2 (BCL-2) family (61). This

process is initiated by intrinsic apoptotic stimuli, such as DNA

damage or endoplasmic reticulum (ER) stress, and mediated by

BCL-2-associated X (BAX) and BCL-2 antagonist killer (BAK)

to release intermembrane proteins into the cytosol (61). Then

BAX/BAK oligomers induce the formation of macropores in

mitochondria, which allows the herniation of the inner

mitochondrial membrane (IMM) from these pores, resulting

in the loss of membrane integrity and the subsequent release of

the mitochondrial content, including mtDNA, into cytosol (62).

Additionally, research has found that following MOMP, when

the mitochondrial inner membrane is extruded through the

permeabilized outer membrane, mitochondrial inner

membrane permeabilization (MIMP) can then occur, allowing

mtDNA egress into the cytosol (63). Recently, Li and colleagues

found that severe fever with thrombocytopenia syndrome virus

(SFTSV) infection triggers BAK upregulation and BAX

activation in THP-1 cells, leading to mtDNA oxidization and

subsequent cytosolic release (64). Additionally, ALI models

induced by LPS in mice are characterized by an increased

expression of BAK and BAX, indicating the participation of

MOMP mediated by BAK/BAX in ALI/ARDS (65).

In addition, the mechanism of mtDNA release can also be

mediated by voltage-dependent anion channels (VDACs)
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oligomers. VDACs are a family of pore-forming proteins

discovered in the mitochondrial outer membrane and have the

ability to form large mitochondrial outer membrane(MOM)

pores, which are BAX/BAK-independent MOMP pathway. In

mammals, three different isoforms have been described, namely

VDAC-1, VDAC-2, and VDAC-3, which have different

functions (66). Human VDAC-1 appears to be the most

abundant isoform, and its oligomerization is associated with

Cyto c release and apoptosis induction (67). In MEFs, Kim et al.

reported that mtDNA fragment release requires VDAC

oligomerization, and direct mtDNA–VDAC1 interactions are

likely to increase VDAC oligomerization and mtDNA fragment

release (68). Furthermore, in rats’ ALI models induced by

paraquat, VDAC and caspase-3, -8, and -9 are significantly

increased, together with acute diffuse damage of alveolar

capillary endothelial cells, alveolar epithelial cells, and

interstitial cells, indicating that VDAC plays a role in

MOMP (69).

3.1.2 mtDNA release mediated by mPTP
mPT is a phenomenon in which the accumulation of Ca2+

in the mitochondrial matrix makes IMM permeable and poorly

selective (70). The mPTP is comprised of VDAC, adenine

nucleotide translocase (ANT), and cyclophilin D (CyD) which

is a permanent ingredient and modulator of mPTP (71).

Moreover, alternating mitochondrial membrane potential,

elevated Ca2+ level, oxidative stress, thiol oxidation, or altered

pyridine nucleotide status could modulate mPTP opening (71).

In 2004, Patrushev et al. firstly showed that the opening of the

mPT pore could trigger the release of DNA fragments from

mitochondria (72). Subsequently, a similar result was confirmed,

the opening of the mPTP allowing the release of mtDNA

fragments into the cytoplasm in multiple models, including

immune cells, induced by irradiation, oxidative stress,

lipopolysaccharide and extracellular ATP (70). Moreover,

Fonai and colleagues discovered that the loss of this essential

protein improves survival rate and intensely ameliorates LPS-

induced lung injury in CyD(-/-) mice through inhibition of pro-

inflammatory cytokine release, redox-sensitive cellular pathways

such as MAPKs, Akt, and NF-kB activation, and the production

of ROS (73). These data demonstrate that CyD-dependent mPT

plays a crucial role in mitochondrial DAMPs (including

mtDNA) release to inhibit inflammation and disease

progression in ALI/ARDS.
3.2. Mechanisms of mtDNA releasing into
extracellular space

3.2.1 Release of mtDNA outside the cells
through EVs

EVs, a heterogeneous group of cell-derived membranous

structures comprising exosomes, microvesicles (MVs) (74, 75),
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and apoptotic EVs (ApoEVs) (76), are considered a mode of

intercellular communication, acting as transport cargo of

different messengers, including nucleic acids (mitochondrial

and genomic DNA, non-coding RNA) and proteins (74, 77)

Exosomes are a subset of EVs with a size range of 40 to 160

nm (average 100 nm around) in diameter with an endosomal

origin (78).Lázaro-Ibáñez and colleagues identified the existence

of mtDNA in exosomes from the human mast cell line HMC-1

and erythroleukemic cell line TF-1 with sequencing analysis

(79). Microvesicles (MVs), whose dimensions generally range

from 50 to 500 nm, are circular fragments of membranes

released from the endosomal compartment or shed from the

surface membranes of most cell types (80), which have been

shown to contain mtDNA from some contexts such as

Streptococcus pneumonia (81). Apoptotic bodies (ApoBDs)

with dimensions ranging between 1~5µm, a major subset of

ApoEVs generated by apoptotic cells during the final stages of

apoptosis (76), are formed through a process termed apoptotic

cell disassembly characterized by a series of tightly regulated

morphological steps including plasma membrane blebbing,

apoptotic membrane protrusion formation, and fragmentation

into ApoBDs (76)[05]. Although a recent study has

demonstrated the existence of mtDNA in apoptotic bodies

from acute myeloid leukaemia cells (82), more investigations

in ALI/ARDS are urgently demanded.

Till now, growing evidence shows EVs not only participate

in many physiological processes but also contribute to the

pathogenesis of some diseases (83). In ALI/ARDS, alveolar

macrophages (AMs)-derived MVs may play a significant

role in the regulation of ALI-associated inflammation since

macrophages were the major source of MVs in bronchoalveolar

lavage fluid (84). Additionally, a recent study demonstrated

that lung epithelial EVs or AM-EVs are responsible for the

development of lung inflammation after sterile (hyperoxia) or

infectious(P. pneumonia and S. pneumonia) stimuli in mice,

respectively (85). However, due to the complex composition of

the Evs, it is still difficult to confirm whether all components

(including mtDNA) of the EVs can exacerbate lung damage,

which needs further investigation.
3.2.2 Release of mtDNA outside the cells
through ETs

Recently, growing evidence has associated Extracellular

Traps (ETs) with mtDNA, indicating ETs may participate in

the process of mtDNA exteriorization. Neutrophil extracellular

traps (NETs) are studied with great enthusiasm. Following

strong activation signals, neutrophils release granule proteins

and chromatin that form extracellular fibres that bind Gram-

positive and -negative bacteria, shaping the so-called NETs (86).

Moreover, NETs formation can be found in trauma or operation

patients and are made of mtDNA without nuclear DNA
Frontiers in Immunology 05
component (87). However, the origin of mtDNA is a mystery.

In LPS-induced ALI mice models, NETs produced by the

recruited neutrophils can promote lung injury and

inflammation, which can be rescued by NET inhibitors (88).

Moreover, in ALI/ARDS models caused by influenza

pneumonitis, neutrophils from infected lungs strongly induced

NETs generation and augmented endothelial damage (89). In

patients with severe pneumonia or COVID-19 acute respiratory

distress syndrome, the plasma NETs level is also increased and

associated with ARDS severity and mortality (90, 91). Although

some evidence confirms the mtDNA release from immunocytes

to form ETs, the release mechanisms are still unclear. Moreover,

due to the direct evidence of mtDNA in ALI/ARDS ETs being

scarce, the role of mtDNA from ETs in ALI/ARDS models and

patients demands further investigation.

3.2.3 Passive release of mtDNA
Passive release of mtDNA is mainly induced by cell death. In

current knowledge, the main forms of cell death associated with

ALI/ARDS can be concluded into apoptosis, necrosis, and

pyroptosis (92). The most well-characterized and prevalent

form of controlled cell death is apoptosis. According to

different initiators in apoptosis pathways, the process can be

summarized as the extrinsic and intrinsic pathways, the latter

known as the mitochondrial pathway of apoptosis. During the

intrinsic pathway, stimuli such as toxins, hypoxia, viral

infections, and free radicals cause changes in the IMM and

open the mPTP, causing mitochondrial components, including

mtDNA and cytochrome c, to be released into the cytoplasm

(93). ApoBDs are formed during the final stages of apoptosis and

then released into the extracellular space with mtDNA and other

materials inside.

Unlike apoptosis, necrosis is an alternative uncontrolled cell

death induced by external injury, such as hypoxia or

inflammation. This process often involves upregulating various

pro-inflammatory proteins and compounds, such as nuclear

factor-kB. The rupture of the cell membrane causes the

spillage of the cell contents(including mtDNA) into

surrounding areas during necrosis, resulting in a cascade of

inflammation and tissue damage (92). Numerous studies have

shown that circulation-free mtDNA level is associated with the

extent of necrosis or damage, indicating that mtDNA is released

from the necrotic cells into plasma (94, 95). In addition, in

gastric aspiration-induced mice ALI models, mtDNA from cell-

free bronchoalveolar lavage fluid increased 120-fold, indicating

acid-induced cellular necrosis release numerous mtDNA and

may augment lung injury (95).

Except for apoptosis and necrosis, pyroptosis also

participates in the process of mtDNA release. Pyroptosis is a

pro-inflammatory form of regulated cell death that relies on the

enzymatic activity of inflammatory proteases that belong to the

cysteine-dependent aspartate-specific protease (caspase) family
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and the subsequent cleavage of gasdermins (GSDMs) by

different caspases (96). The latest study has found that GSDMs

mediate the cellular release of mtDNA during pyroptosis or

intrinsic apoptosis (97). Carlos and colleagues confirmed that

GSDMDNT (amino-terminal of gasdermins D) contributes to

mitochondrial DNA relocalization to the cytosol and

GSDMENT (amino-terminal of gasdermins E) facilitates the

cellular release of mtDNA in bone marrow-derived

macrophages, HEK293T cells, and mice. In the development

of ALI/ARDS, pyroptosis may be more common than other

types of cell death due to uncontrolled progressive lung

inflammation, and pyroptosis in different types of cells such as

macrophages, neutrophils, alveolar epithelial cells, and capillary

endothelial cells may play vital roles in lung injury and excessive

inflammation (97).
4. Pathogenic mechanisms of
mtDNA in ALI/ARDS

During the development of ALI/ARDS, dysfunctional

mitochondria in the injured endothelium, epithelium, and

recruited leukocytes generate large amounts of reactive oxygen

species (ROS) and release mtDNA. Excessive ROS can disturb

protein folding and structure and cause mitochondrial DNA

mutations (98). Damaged mitochondrial genomes may disrupt

aerobic respiration, cause cellular dysfunction, and even cell

death. Moreover, the released mtDNA can contribute to the

activation of the innate immune response through mtDNA

sensors. Accumulating evidences suggest that mtDNA can be

recognized by different mtDNA sensors (34, 99). Various

mtDNA sensors and damaged mtDNA have been reported to

play vital roles in ALI progression, as discussed below.
4.1 The TLR9 signaling

Toll-like receptors (TLRs) are critical components of innate

pattern recognition receptors. To date, 12 TLRs have been

identified in mice, and ten have been found in humans.

Among these receptors, TLR9 is currently the only receptor

that recognizes mtDNA with hypomethylated CpG motifs (100).

TLR9 belongs to the type I integral membrane glycoprotein

family with an N-terminal ligand recognition domain, a single

transmembrane helix, and a C-terminal cytoplasmic signalling

domain. It is mainly present in the endoplasmic reticulum (ER)

membrane of unstimulated cells. When stimulated by CpG

DNA, TLR9 translocates to the membrane of endosomes,

where it recognizes its ligands and initiates cellular activation

(101). After binding to mtDNA, TLR9 signalling can proceed

through the adaptor myeloid differentiation primary response

protein 88 (MyD88) to activate nuclear factor-kB (NF-kB) and
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through mitogen-activated protein kinases (MAPKs) to trigger

inflammatory responses (34, 102). MAPKs include extracellular

signal-regulated kinases (ERKs), c-Jun amino-terminal kinases

(JNKs), and p38. p38 MAPKs are vital regulators of

inflammatory cytokine expression and are activated by various

stimuli (103). The transcription factor NF-kB plays its most

important and evolutionarily conserved role in the immune

system by regulating the expression of inducers and effectors

at multiple points in the immune response (104).

Previous studies have revealed that mtDNA activates p38

MAPK after CpG-TLR9 interaction to induce inflammation in

neutrophils (105, 106). Injury caused by cell-free mtDNA via the

TLR9-p38 MAPK pathway has also been confirmed in some

organs (59, 107, 108). In ALI, in vivo experiments demonstrated

that TLR9 contributes to the development of ALI and systemic

inflammation, and inhibition of TLR9 prominently attenuated

histopathological changes and pro-inflammatory mediators,

including interleukin-1 beta (IL-1b), interleukin-6 (IL-6), and

tumor necrosis factor–a (TNF-a) (50, 109–114). Meanwhile,

enhanced levels of mtDNA have been found in BALF and

plasma from ALI patients and animal models (22, 25, 115).

Additional administrations of mitochondrial DNA into the

trachea or peritoneum aggravate systemic inflammation and

lung injury in a TLR9-dependent manner via P38 MAPK

activation (109, 110). Moreover, inhibition of TLR9 or p38

MAPK attenuated this effect, proving that extracellular

mtDNA could mediate lung injury through the TLR9-p38

MAPK pathway (52, 110, 116, 117).

In addition, studies have found that mtDNA can induce NF-

kB activity through TLR9 to regulate the expression of pro-

inflammatory cytokine genes. According to these studies,

mtDNA can increase NF-kB, IkB-a, and TLR9 expression in

macrophage (118), and CPG-TLR9 activates NF-kB by

regulating MyD88 to increase the production of pro-

inflammatory mediators, such as TNF, IL-6, and adhesion

molecules in lung epithelial cells (101, 119, 120). Furthermore,

MyD88 knockout markedly reduced the levels of inflammatory

cytokines and NF-kB and attenuated ALI (121). Suppression of

TLR9 also partly decreases the production of inflammatory

mediators by the TLR9-NF-kB pathway in alveolar epithelial

cells (102, 122, 123). In addition to the single mechanisms

described above, CpG DNA can promote collaborative

activation of p38 MAPK and NF-kB in type I IFN-

independent induction of IRF-7, CXCL10, and CCL3 to

enhance IFN-a gene expression in human plasmacytoid

dendritic cells (124). Additionally, although exogenous DNA

from bacteria and viruses can activate interferon regulatory

factors in a TLR9-dependent manner to enhance type I IFN

responses, the role of mtDNA in this pathway still lacks

strong evidence.

Interestingly, as conventional oxygen deliverers, red blood

cells have been found to have a novel function: immune

sentinels. Hotz et al. in 2018 found that red blood cells harbor
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a type of molecular sensor, TLR9, that recognizes and sticks to

DNA molecules containing CpG motifs (125). In vivo

experiments revealed a critical role of red blood cells in

regulating systemic inflammation by scavenging cell-free

mtDNA and demonstrated the importance of RBC-mediated

DNA scavenging in limiting lung injury (125). Mangalmurti

et al. in 2021 then explored the mechanisms by which RBCs

binding with mtDNA through TLR9 appeared beneficial during

quiescent states, where it promotes the scavenging of trace CpG

to prevent nonspecific inflammation. During conditions

characterized by excess circulating CpG, such as sepsis and

COVID-19, binding CpG by RBC-TLR9 may lead to

inflammation, and anaemia (126). Altogether, mtDNA

recognition by TLR9 on RBCs provides evidence that RBCs

are immune sentinels (127). However, the exact mechanism of

this pathway requires further investigation.
4.2 The cGAS-STING pathway

Cyclic GMP-AMP synthase (cGAS) is a cytoplasmic DNA

sensor that detects self-and non-self-DNA to synthesize cGAMP

in a DNA-dependent manner (128, 129). cGAMP, a cyclic

dinucleotide, is a second messenger usually generated by cells

following DNA transfection or DNA virus infection (128). These

cGAMPs bind to and activate STING to induce type I IFNs

production. Stimulator of interferon genes (STING, also known

as MITA, MPYS, ERIS, and TMEM173), a transmembrane

protein located in the endoplasmic reticulum (ER) membrane,

functions as a direct sensor of cGAMP and an essential signalling

adaptor linking the interferon response to cytosolic DNA (130).

Initially, studies illustrated that cytosolic DNA induces type I

IFNs through the endoplasmic reticulum membrane protein

STING, which subsequently activates the transcription factors

NF-kB and IRF3 through the kinases IKK and TBK1,

respectively (131–133). However, the mechanism upstream of

STING activation is not fully understood. Subsequently, the

cGAS-cGAMP-STING pathway was found to be essential for

DNA-mediated immune response irrespective of cell type or

DNA sequence, filling the gaps missing upstream of STING

(134–137).

Activation of the cGAS-STING pathway begins with DNA

recognition. DNA binds cyclic GMP-AMP synthase (cGAS) in a

nonsequence-dependent manner through its phosphate

backbone to form a 2:2 cGAS: DNA complex (138).

Subsequently, cGAS generates a unique cGAMP, characterized

by two phosphodiester bonds: one between the 2’OH of GMP

and the 5’phosphate of AMP and the other between the 3’ OH of

AMP and the 5’ phosphate of GMP, hereafter referred to as

cGAMP (139). This novel class of second messengers is

recognized by the ligand-binding pocket of STING and binds

with hydrophobic interactions and hydrogen bonds (138),

inducing an extensive conformational change in STING that is
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postulated to release a carboxy-terminal tail (CTT) that recruits

and activates TBK1 (137). After binding to cGAMP, STING exits

the ER in the form of vesicles and is transferred to the Golgi,

where two cysteine residues of STING (Cys88 and Cys91)

undergo palmitoylation, essential for STING oligomerization

(140). STING recruits TANK-binding kinase (TBK1) and

activates transcription factors IRF3 and NF-kB, inducing the

production of type I interferons and pro-inflammatory cytokines

(137, 141–143). Additionally, substantial evidence indicates that

the cGAS-STING pathway also leads to dysfunctions in

autophagy and endothelial proliferation (144–146).

Previous studies on STING have mainly focused on the

immune response mediated by foreign nuclear acids from DNA

viruses, retroviruses, bacteria, and parasites. Owing to the lack of

pathogen-specific attributes, cGAS can participate in the

antimicrobial defense and recognize self-DNA, including

genomic and mitochondrial DNA. Cellular DNA is usually

confined to the nucleus or mitochondria. However, in

response to specific cellular stress or environmental insults,

mitochondrial DNA is more susceptible to oxidative damage

than nuclear DNA (nDNA) because of the incomplete DNA

repair capacity in mitochondria and the proximity of mtDNA to

the respiratory chain, which is the source of ROS production

(34). Recent evidence has shown that mtDNA release and the

cGAS-STING pathway can drive lung injury, making this

pathway a promising therapeutic target for ALI (147).

Activation of the cGAS-STING pathway plays a significant

role in ALI/ARDS models and patients (51, 148, 149).

Specifically, CMA (10-carboxymethyl-9-acridanone), a species-

specific agonist of STING in mice, can promote type I IFN

production by recognizing STING (150). DMXAA (5,6-

dimethylxanthenone-4-acetic acid), another STING agonist in

mice, can bind to STING and activate the TBK1-IRF-3 signalling

pathway inducing IFN-b production (151). Recently, Togbe et al.
found that the synthetic, non-nucleotidyl STING agonist diABZI

induced type I IFN and pro-inflammatory mediators in bone

marrow-derived macrophages and human airway epithelial cells.

Furthermore, endotracheal administration of diABZI also

increased IFNa and IFNb levels in BALF and triggered

neutrophilic inflammation, accompanied by a substantial

increase in mtDNA (149). Then, they treated mice receiving

local airway diABZI with DNase I, efficiently abrogating dsDNA

in the BALF and reducing neutrophil recruitment and

neutrophil extracellular trap (NET) formation in the airways,

while the levels of type I IFN and pro-inflammatory mediators

were barely affected (149). In addition, antagonists of STING,

such as C-178 and C-176 for mouse STING and H-151 for

human STING, have been shown to inhibit the palmitoylation of

STING, reduce TBK1 phosphorylation, and abrogate type I IFNs

and IL-6 (152, 153). In addition, recent studies have revealed

that recruited macrophages in the lung suppress alveolar

macrophage-STING signalling via sphingosine kinase-2

(SPHK2)-mediated generation of sphingosine-1-phosphate
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(S1P), thereby mitigating inflammatory signalling and vascular

injury (154, 155). Furthermore, as upstream stimulators of the

cGAS-STING pathway, mtDNA and oxidized mtDNA were

confirmed to play an essential role in enhancing immune and

inflammatory responses (156–158). Li Liu et al. revealed that

endogenous mtDNA and oxidized mtDNA could induce the

formation of NETs depending on the TLR9 and STING

pathways in bone marrow neutrophils from C57BL/6 mice

then, the effect was abrogated by TLR9 knockout, STING

knockout and reactive oxygen species scavenger (156).

Additionally, Qing et al. reported that mtDNA in the

cytoplasm triggered pyroptosis in a cGAS-STING-dependent

manner, and the NLRP3 inflammasome participated in

downstream effects to induce the production of IL-1b and IL-

18 in mice (158). However, they did not reveal a connection

between TBK1-IRF3 and NLRP3 activation in the downstream

effects of the cGAS-STING pathway.

Besides the above mechanism, autophagy dysfunction has

reached a stage recently (159–161). Ren et al. confirmed that

autophagy dysfunction triggered by mtDNA could promote

sepsis-related ALI via STING. They revealed that mtDNA

contributed to disordered lysosomal acidification via STING,

which caused deficient autophagic flux, and aggravated the

disease in mice macrophages. Moreover, they revealed that

STING-mediated autophagic flux blockade is partially

associated with TBK1 downstream signalling (51). In addition,

downstream signalling of the cGAS-STING pathway can

suppress vascular regeneration to promote inflammatory lung

injury. Huang et al. discovered that cGAS/STING activated by

the released mtDNA inhibited endothelial proliferation by

suppressing YAP signalling in HEK293 cells, human and

mouse lung microvascular endothelial cells. Moreover,

mtDNA-induced activation of TBK1 activated LATS1,

inducing YAP phosphorylation and degradation, thereby

prevent ing downstream YAP-mediated endothel ia l

proliferation and repair (162). Interestingly, STING influences

the mechanical barrier repair of endothelial cells and their

paracrine function by over-expressing adhesion molecules and

chemokines, which can organise the recruitment of immune

cells and regulate leukocyte extravasation at places of

inflammation. Wu et al. discovered that STING inhibition

alleviated LPS-induced ALI in mice by suppressing vascular

endothelial cell-mediated immune cell chemotaxis and adhesion.

They revealed that a STING inhibitor or STING knockdown

downregulated the expression levels of adhesion molecules and

chemokines by decreasing the phosphorylation of the

transcription factor STAT1 in HMEC-1cells (153).
4.3 Activation of inflammasomes

Inflammasomes are large multimolecular complexes

consisting of receptor and sensor molecules, an adaptor
Frontiers in Immunology 08
protein (apoptosis-associated speck-like protein containing a

CARD [ASC]), and the inflammatory cysteine protease

caspase-1. There are five central receptors contributing to the

formation of an inflammasome, including NOD, LRR, pyrin

domain-containing protein 1 (NLRP1), NLRP3, NLR family

CARD domain-containing protein 4 (NLRC4), absent in

melanoma 2 (AIM2), and pyrin (163). Most of these receptors

are activated by exogenous pathogen-associated molecular

patterns (PAMPs) that gain access to the cytosol during

microbial infection and endogenous DAMPs released from

damaged or dying cells. Activated inflammasomes then

activate the proteolytic enzyme caspase-1, which conversely

regulates the proteolytic maturation of IL-1b and IL-18, as

well as a quick, noxious, and inflammatory form of cell death

termed pyroptosis (164). Recent studies have revealed the role of

mtDNA in inducing caspase-1-mediated innate immune

responses through the NLRP3 and AIM2 inflammasomes.

NLRP3 inflammasome is one of the most studied

inflammasomes and is generally located in the cytoplasm. The

NLRP3 inflammasome can be activated by a wide range of

exogenous and endogenous stimuli such as lipopolysaccharide,

nigericin, asbestos, alum, and extracellular ATP. In 2011,

mtDNA was first revealed to contribute to NLRP3

inflammasome activation, confirming that upon LPS and ATP

stimulation, mitochondrial ROS and mitochondrial membrane

permeability increase prominently, causing the release of

mtDNA into the cytoplasm. The translocated mtDNA requires

activation of NLRP3 and could directly induce downstream

activation of caspase-1 in response to treatment with LPS and

ATP to enhance the production of IL-1b and IL-18 (165). Then,

Shimada et al. discovered that oxidized mtDNA, generated and

released into the cytosol during apoptosis, can bind to NLRP3

and activate the NLRP3 inflammasome, which 8-OH-dG

competitively inhibits. They also demonstrated that NLRP3 is

preferentially activated by oxidized DNA and AIM2 by normal

DNA (166). Subsequently, Zhong and colleagues also confirmed

that different activators of NLRP3 cause a specific form of

mitochondrial damage that results in fragmented mtDNA

release and increased production of ROS that is responsible

for the conversion of mtDNA to an oxidized form, to be used as

the ultimate NLRP3 ligand (167). However, the process of

NLPR3 inflammasome activation induced by cytosolic mtDNA

and extracellular mtDNA may differ. Li Ning et al. discovered

that the cystolic mtDNA released from self-mitochondria

contributed to LPS-induced ALI by upregulating cGAS,

activating STING, and activating NLRP3 in mice. They also

revealed that cGAS or STING deficiency relieved NLRP3-

mediated pyroptos is of macrophages , and NLRP3

overexpression abolished the protective roles of STING

deficiency in macrophages, indicating that the activation of

NLRP3 is essential for the proinflammatory responses of

STING (158). Nevertheless, the mechanism by which

extracellular mtDNA induces the activation of the NLRP3
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inflammasome is slightly different. Wu et al. first revealed the

specific mechanism by which extracellular mtDNA in the lung

induces NLRP3 inflammasome priming and activation through

TLR9- p38 MAPK- NF-kB in THP-1 macrophages. They

showed that knockdown of TLR9 offsets mtDNA-induced

NLRP3 upregulation, decreases extracellular mtDNA-induced

NLRP3 inflammasome transcription, and suppresses the

production of mtDNA-induced IL-1b and TNF-a. This is

consistent with the inhibition of p38 MAPK or NF-kB (52).

Together with these studies, this shows that after the body is

subjected to various external stresses, mitochondria are damaged

and mtDNA is released into the cytoplasm. When cystolic

mtDNA further activates the NLRP3 inflammasome in the

cell, pyroptosis may be induced, and more mtDNA can be

released outside the cell, causing the activation of the NLRP3

inflammasome in the peripheral cells, which may aggravate

diseases such as ALI/ARDS.

AIM2 functions as a cytoplasmic dsDNA sensor and has

been studied for over a decade. It binds DNA, recruits the

inflammasome adaptor ASC, and activates caspase-1 (168, 169).

Studies have found that the C-terminal HIN-200 domain

interacts with the dsDNA sugar-phosphate backbone in a non-

sequence-specific DNA recognition pathway, whereas the PYD

domain of AIM2 associates with the adapter molecule ASC to

activate both NF-kB and caspase-1 (170–172). Furthermore,

activated caspase-1 promotes the maturation of IL-1b and IL-18

and cleaves gasdermin D, which can induce pyroptosis by

forming pores on cellular membranes. Recently, Li et al.

revealed that DNA from NETs, which accumulates in the

lysosomes of alveolar macrophages under LPS treatment,

binds with the AIM2 sensor to tr igger the AIM2

inflammasome inducing the production of proinflammatory

cytokines and macrophage pyroptosis (173). The study also

found that the degradation of NET DNA or silencing of the

AIM2 gene can alleviate pyroptosis in alveolar macrophages co-

stimulated with LPS and NETs. Although NETs have been

identified as an important source of extracellular mtDNA (87,

174, 175), the interaction between mtDNA from NETs and

AIM2 sensors in lung injury has not been specifically illustrated.

Further studies are needed to explore the interactions involved

in ALI pathogenesis.

In addition, some studies have provided evidence of mtDNA

binding to NLRC4 complexes. For example, in 2015, Jabir et al.

discovered that mitochondrial DNA could bind specifically to

NLRC4 immunoprecipitates and that the transfected mtDNA

could directly activate the NLRC4 inflammasome in BMDMs

from mice and HEK cells (176). They also revealed that

inflammasome activation was enhanced by DNA oxidation

and downregulated by autophagy. However, it is still

challenging to demonstrate the role of the mtDNA-NLRC4

interaction in lung injury owing to the lack of direct evidence.
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5. mtDNA in ALI/ARDS caused by
bacterial and viral pneumonia

Bacterial and viral pneumonia account for the major cases of

ARDS in recent clinical trials. Increasing evidence showed

bacterial and viral infection could induce mitochondria damage

and mtDNA release (64, 81, 162, 177–181). Once leaving its

original location, the mtDNA can be recognized as foreign,

eliciting a potent innate immune response. Nerlich et al. found

that the pneumolysin produced by Streptococcus pneumoniae

(S.pn.) could causemtDNA to release throughmPTP opening and

transfer into extracellular space via microvesicles, which may

contribute to S.pn. related inflammatory lung injury (81).

Meanwhi le , Huang e t a l . demonstra ted that LPS

(Lipopolysaccharide), the main pathogenic component of

Gram-negative bacteria, activated the pore-forming protein

Gasdermin D, which formed mitochondrial pores and induced

mitochondrial DNA (mtDNA) release into the cytosol of

endothelial cells, suppressing endothelial cell proliferation by

cGAS-YAP signalling pathway and promoting inflammatory

injury (162). Additionally, upon different viral infections,

including cytomegalovirus (MCMV) and Sendai virus (SeV),

both of which are associated with the ALI/ARDS development

(182, 183), vaccinia virus-related kinase two is associated with

voltage-dependent anion channel 1 (VDAC1) and promoted

VDAC1 oligomerization and mtDNA release, leading to the

cGAS-mediated innate immune response (178). Moreover,

Moriyama and colleagues discovered that the cytosolic mtDNA

release induced by Influenza A virus can be partially inhibited by

the knockdown of Bax and induce cGAS/STING-dependent IFN-

b gene expression

(177), indicating the critical role of Bax/Bak for mtDNA

release into the cytosol after the influenza virus infection which

can lead to ARDS, a fatal complication (184). Although studies

have now elucidated the release of mitochondrial DNA and the

immune response generated by some bacteria and viruses,

further exploration of common pathogens causing ALI/ARDS

is still urgently needed due to the large heterogeneity between

different pathogens.
6. Prospects for treatment in
ALI/ARDS

As the release of mtDNA and its oxidized form are the

common priming step for mtDNA-sensing pathways mediating

excessive immune responses, protective strategies specific to

mtDNA or mitochondria may be preferred choices for the

treatment of ALI/ARDS. Xian et al. demonstrated Metformin

inhibits mtDNA synthesis, abrogating NLRP3 inflammasome
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activation and pulmonary inflammation in LPS and SARS-CoV-

2 induced mice ARDS models (185). Additionally, prevention of

mtDNA release can also prominently alleviate lung injury.

Reversely, exogenous administration of mtDNA can provoke

lung injury and systemic inflammation (109).

Based on the essential role of mtDNA at the onset and

progression of ALI/ARDS, accessible therapeutic targets can be

divided into three main aspects: inhibiting the release of

mtDNA, clearing the released mtDNA, and impeding

mtDNA-mediated pathways. We conclude with the following

possible therapeutic methods.

In terms of mtDNA release mechanisms, the reduction of

mtDNA release primarily focuses on scavenging ROS and

maintaining mitochondrial homeostasis. For example, Chao

et al. found that peroxyauraptenol, isolated from the seeds of

Cnidium monnieri, could inhibit inflammation and NLRP3

inflammasome activation by reducing mitochondrial ROS

levels, indicating a possible candidate for anti-inflammatory

agents (186). Recently, Sok et al. found that 1′-cetoxychavicol
acetate, a natural compound from the tropical ginger Alpinia

species, is a promising inhibitor of the NLRP3 inflammasome

via mitochondrial ROS suppression (187). Additionally,

dexmedetomidine and tyrosine phosphatase SHP2 have been

shown to preserve mitochondrial dynamic equilibrium and

homeostasis respectively, to attenuate inflammation (188, 189).

In addition, some possible agents can limit mtDNA release with

unknown mechanisms, such as cyclosporine A, epigallocatechin

gallate, a7 nicotinic acetylcholine receptor signalling, and

metformin (26, 53, 185, 190, 191). Some of these agents can

inhibit inflammasome activation to alleviate inflammation by

limiting the release of mtDNA.

Autophagy is the most studied target in the process of

eliminating the released mtDNA. Several studies support the

crucial role of autophagy in eliminating and degrading

mitochondrial DNA (59, 165, 192, 193). Moreover, many

studies have revealed potent agents that can reinforce

autophagy to mitigate inflammatory injuries, such as Apelin-

13, carbon monoxide, genipin, and transcription factor EB (194–

197). Furthermore, some studies have found that enhanced

mitophagy can have similar effects in alleviating lung injury.

These agents include polydatin, redox, and Sestrin 2 (198–200).

In addition, DNaseI targeting mtDNA shows treatment

potential in paraquat-induced ALI and pulmonary fibrosis,

which needs further investigation in other kinds of ALI (201).

Regarding mtDNA-mediated pathways, regulating the

levels of re leased mtDNA can indirect ly abrogate

downstream pathways. The possible agents are principally

studied in the innate immune pathogenic pathways described

above to explore the direct inhibiting mechanisms, which may

not always be completely explained by the downstream

pathways and require further investigation. Such agents,
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including carbon monoxide, epigallocatechin-3-gallate,

riboflavin, Tanreqing, and ethyl pyruvate, need to be

explored further (28, 202–205).
7. Conclusion

For ALI/ARDS development, growing evidence associates

mitochondrial dysfunction with impaired metabolism and

pathological changes, leading to different levels of alveolar

inflammation and pulmonary edema (11, 12, 23, 206). Among

the mitochondrial DAMPs from impaired mitochondria,

mtDNA has shown a high correlation with the severity of ALI/

ARDS and has great potential to promote lung inflammatory

responses in clinical and basic research. Therefore, We

summarize the main mechanisms for releasing mitochondrial

DNA into the cytoplasm and extracellular compartments, such

as MOMP, mPTP, Evs, ETs and passive release. Moreover, we

also discuss the released mtDNA and its oxidized form can bind

to DNA sensors, such as TLR9, cGAS, NLRP3, AIM2, and

NLRC4, to induce lung injury and the production of

proinflammatory cytokines. According to the vital role of

mtDNA in ALI/ARDS, eliminating released mtDNA,

inhibiting the release of mtDNA, or disturbing mtDNA-

mediated pathways have shown prominent therapeutic effects,

indicating that therapies targeting released mtDNA are

promising. However, the mechanisms underlying mtDNA-

mediated pathways in ALI/ARDS must be explored. Moreover,

strategies targeting mtDNA-associated lung injury must be

optimized and made more efficient.
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