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Glucose homeostasis is the tight control of glucose in the blood. This complex control is

important, due to its malfunction in serious diseases like diabetes, and not yet sufficiently

understood. Due to the involvement of numerous organs and sub-systems, each with

their own intra-cellular control, we have developed a multi-level mathematical model,

for glucose homeostasis, which integrates a variety of data. Over the last 10 years,

this model has been used to insert new insights from the intra-cellular level into the

larger whole-body perspective. However, the original cell-organ-body translation has

during these years never been updated, despite several critical shortcomings, which

also have not been resolved by other modeling efforts. For this reason, we here present

an updated multi-level model. This model provides a more accurate sub-division of how

much glucose is being taken up by the different organs. Unlike the original model, we

now also account for the different dynamics seen in the different organs. The new model

also incorporates the central impact of blood flow on insulin-stimulated glucose uptake.

Each new improvement is clear upon visual inspection, and they are also supported by

statistical tests. The final multi-level model describes>300 data points in>40 time-series

and dose-response curves, resulting from a large variety of perturbations, describing both

intra-cellular processes, organ fluxes, andwhole-bodymeal responses.We hope that this

model will serve as an improved basis for future data integration, useful for research and

drug developments within diabetes.

Keywords: glucose homeostasis, glucose uptake, insulin signaling, mathematical modeling (medical), multi-level

model

INTRODUCTION

A dysfunctional glucose homeostasis is a hallmark for both type 1 and type 2 diabetes mellitus
(T1D and T2D). In T1D, the insulin-producing beta-cells are destroyed by the immune system.
Since the other organs are unaffected, the treatment of T1D simply consists of insulin, taken via
injections or insulin pumps. In T2D, the patient has both a reduced capacity to produce insulin
and has developed a resistance to the hormone. This resistance appears in all of the three most
metabolically active organs, which all respond to insulin: adipose tissue, muscle, and liver. Inside
each of these organs, the response to insulin is governed by an interaction between intracellular
signaling and metabolic networks. The resistance is spread between the organs, in ways which are
not yet fully understood, but which involves numerous hormones, cytokines, and metabolites. To
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better understand this complex interaction, both in health and
in disease, dynamic mathematical models are needed. Models for
the top-level glucose homeostasis, involving a simple interaction
between glucose and insulin, have been around for decades
(Bergman et al., 1981). A first more advanced model (Dalla Man
et al., 2007) was based on calculated flows of glucose and insulin
between organs in response to a meal. A version of this model,
trained on data from patients with type 1 diabetes, is approved
by the Food and Drug Administration, FDA, for replacement
of animal experiments in the approval of the algorithm inside
new insulin pumps (Kovatchev et al., 2009). For more general
applications involving T2D, the intracellular insulin resistance
must be combined with the whole-body interactions. Such
models are called multi-level models.

There have been several efforts to create multi-level models
of glucose homeostasis, reviewed in e.g., (Nyman et al., 2012,
2016; Ajmera et al., 2013). One of the more comprehensive
efforts is a series of non-linear mixed effects models (Jauslin
et al., 2007; Silber et al., 2007, 2010) developed to describe
plasma levels of glucose and insulin after different interventions
for single patients with T2D. Another effort has developed a
glucose homeostasis model, based partly on Dalla Man et al.
(2007), to create a simulator to use in education and to simulate
scenarios of disease (Maas et al., 2015). A third effort is the
multi-level model of human glucose homeostasis we created
10 years ago (Nyman et al., 2011). This model contains the
dynamic glucose-insulin interaction between organs in response
to a meal, based on Dalla Man et al. (2007). In this model, we
sub-divided the original insulin-responding uptake in a muscle
and a fat component, and linked the fat tissue glucose uptake
to intracellular insulin signaling data, coming from our own
studies. This link was possible since insulin-stimulated glucose
uptake can be measured both in isolated adipocytes and in
organs. The adipocyte uptake is measured in vitro together with
insulin signaling data; the organ-level uptakes are measured
using isotopic labeling and/or arteriovenous (AV) difference data,
whichmeasures the difference between arterial and venous blood.
Since the uptake measurements from isolated adipocytes should
correlate with the AV difference-based uptake-measurements
for fat tissue, one can build a translation from in vitro to in
situ, in humans. However, neither this model, nor any of the
previously mentioned multi-level models, have subdivided the
glucose uptake into the individual contributions of all of themain
insulin-responding and glucose-utilizing organs: adipose tissue,
muscle, and liver.

In this paper, we have updated the original multi-level
connections in Nyman et al. (2011), and resolved three critical
questions or issues (Q1-Q3), regarding the role of each of the
metabolically active organs in glucose uptake (Figure 1). More
specifically, we have explicitly included the liver in the model as a
glucose-utilizing organ, in contrast to the original models, which
only considered it as a glucose producing organ (Q1). Secondly,
we have included a timing difference betweenmuscle and adipose

Abbreviations: T1D, Type 1 diabetes; T2D, Type 2 diabetes; AUC, Area under the

curve; EGP, Endogenous glucose production; AV, Arteriovenous; ODEs, Ordinary

differential equations.

tissue glucose uptake in the response to a meal (Q2). Thirdly,
we have updated the model to include the impact of blood flow
on glucose uptake in adipose tissue (Q3). Finally, we merge
these three improvements together with all of the other already
published improvements described above, to an updated multi-
level model (Q4). This model constitutes an updated view on the
multi-level roles that each organ plays in glucose homeostasis,
and allows for integration of future data for specific sub-systems
into an integrated and more complete picture.

MATERIALS AND METHODS

Glucose Dynamics in Plasma and
Interstitial Tissue
The models are built up by ordinary differential equations
(ODEs) in the standard form. All of the equations are given in the
Supplementary Files, both as equations and as simulation files,
and here we only describe the most central equations, relating
to the changes done in this paper. The equations describing the
dynamics of glucose in interstitial tissue (Gt) and plasma (Gp) are
given by

d

dt
(Gt) = −Uid + k1 · Gp − k2 · Gt

Gt(0) = 130[mg/dl] (1)

d

dt
(Gp) = EGP + Ra− E− Uii − k1 · Gp + k2 · Gt

Gp(0) = 178[mg/dl] (2)

where Uid is insulin and glucose dependent glucose uptake, i.e.,
in fat, muscle, and liver; where Uii is insulin independent and
constant glucose utilization, i.e., glucose uptake by organs such as
brain and kidneys; where EGP is endogenous glucose production
from the liver; where Ra is glucose rate of appearance from
the intestine; where E is glucose excretion through the kidneys;
and where k1 · Gp and k2 · Gt denotes the flux from plasma
to intestines and back, respectively. Note that Gt and Gp are
states, while Uid, Uii, k1 · Gp, k2 · Gt , EGP, Ra, and E are the
reaction rates that describe flows of glucose. Similarly, k1 and k2
are parameters—rate constants—which are constant over time.

Insulin-Dependent and Dynamic Glucose
Uptake
The above equations are identical to those in the original Dalla
Man model (Dalla Man et al., 2007), and the change that was
implemented in Nyman et al. (2011) was thatUid was sub-divided
into a muscle and an adipose tissue part. We now sub-divide the
insulin-dependent dynamic glucose uptake into three parts, i.e.,

Uid = Uidm + Uidl + Uidf (3)

where Uidm, Uidl, and Uidf denotes the uptake rates into
the muscle, liver, and fat, respectively. All of these uptake
descriptions have changed to same extent, so let us now go
through them one by one.
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FIGURE 1 | Overview of the improvements made to the original multi-level model. Q1: New distribution of postprandial glucose uptake among tissues in the

whole-body level model. Q2: Implemented timing difference in glucose uptake between muscle and adipose tissue by adding phosphorylation of intracellular glucose

in the adipocyte module for glucose uptake (non-shaded arrows in adipocyte, see Supplementary Figure 1 for details). Note that the addition of a detailed myocyte

module is not needed to explain the considered data. Q3: Inclusion of the impact of blood flow on glucose uptake in adipose tissue. Q4: Merging Q1, Q2, and Q3

boxes together gives an updated multi-level metabolic model.

Glucose Uptake in Muscle
Glucose uptake in muscle is given by

Uidm = Vmmax ·
Gt

(Km + Gt)
(4)

where Vmmax is the non-scaled maximal glucose uptake, and
where Km is the corresponding Michaelis-Menten parameter.
The insulin-dependency of the glucose uptake is located in the
expression for Vmmax

Vmmax = partm · (V + VX · INS) (5)

where partm is a scaling parameter to balance the uptake of the
muscle with the other organs, where V is the basal rate of glucose
utilization, and VX is the maximum rate of glucose entering
the tissue (here muscle) from the surrounding tissue, and where

INS denotes the interstitial insulin concentration. So far, these
equations for the muscle uptake are the same as in Nyman et al.
(2011). In contrast, although INS is almost calculated in the same
way as in Nyman et al. (2011), the parameters describing the
rate of entry and the rate of degradation are now allowed to be
different, i.e.,

d

dt
(INS) = V1 − V2 (6)

V1 = k1 · (I − Ib) (7)

V2 = k2 · INS (8)

where V1 and V2 describe the rate of transport from the plasma
and the rate of degradation, with corresponding rate constants k1
and k2, respectively; where Ib denotes the basal plasma insulin
concentration; and where I denotes the insulin concentration
in plasma.
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Glucose Uptake in the Liver
The liver was not included in the previous models, and thus
its equations are new. They are similar to the equations for
muscle, i.e.,

Uidl = Vlmax ·
Gt

(Kl + Gt)
(9)

where Kl is a Michaelis-Menten constant, and where Vlmax

represents the maximum rate of glucose utilization in the liver.
Just as for the equations for muscle, the insulin dependence is
incorporated into the expression for Vlmax, which is given by

Vlmax = partl · (V + VX · INS) (10)

where partl represent the relative glucose utilization of the liver
in comparison with other tissues.

Note that the insulin-dependency of the liver glucose uptake
is described as being direct, while in reality this dependency
is indirect. Glucose uptake in the liver is done via the GLUT2
transporter, which is not regulated by insulin. In contrast, the
glucose uptake in muscle and adipose tissue is done by the
GLUT4 transporter, which is regulated by insulin. In the liver,
insulin instead indirectly effects glucose uptake by up-regulating
intracellular glucose phosphorylation and utilization. However,
since the model is lacking intracellular reactions, this indirect
effect present in the liver is approximated in the same way as
the direct effect for the muscle. Note, finally, that the endogenous
glucose production (EGP) in the liver is also regulated by insulin,
and that this is described as a separate process, in the same way
as in Nyman et al. (2011).

Glucose Uptake and Metabolism in
Adipose Tissue
Glucose uptake in the adipose tissue is the most advanced
part of the model, since it is determined by intracellular
processes, both regarding metabolism and regarding insulin
signaling. The ultimate calculation of the uptake is given by the
following expression

Uidf = partf · (Vin − Vout) (11)

where partf is a scaling parameter, and where Vin and Vout

describe the rate of glucose transport into, and out of, the cell,
respectively. These two fluxes are given by

Vin = p4 · Gt · INSf ,e (12)

Vout = p3 · Gluin · INSf ,e (13)

where p3 and p4 are transport parameters, where Gluin is the
amount of intracellular glucose, and where INSf ,e is the effect of
insulin on these transport rates. These two equations show that
the glucose uptake in the fat tissue depends on both intracellular
metabolism, which alters the value of Gluin, and the intracellular
signaling, which alters the value of INSf ,e. The intracellular
metabolism incorporates the first two steps of glycolysis, i.e.,

the steps involving intracellular glucose-6-phosphate (G6P). The
equations are given by

d

dt
(Gluin) = p1 · (Vin − Vout)− VG6P (14)

d

dt
(G6P) = VG6P − Vmet (15)

Vmet = p2 · G6P (16)

VG6P = VG6Pmax ·
Gluin

(kgluin + Gluin)
·

1

(kG6P + G6P)
(17)

where p1 and p2 are rate constants, VG6Pmax is the maximum
rate of phosphorylation of glucose, and where Vgluin and kG6P are
Michaelis-Menten parameters for glucose phosphorylation. The
intracellular insulin signaling is the same as in Brännmark
et al. (2013), and it starts with insulin binding to the
receptor (Supplementary Equation 26), and ends with
translocation of the GLUT4 transporter to the membrane
(Supplementary Equations 46 and 45). What is new compared
to Nyman et al. (2011)and Brännmark et al. (2013) instead
concerns the usage of the GLUT4 transporter to calculate the
resulting impact on glucose uptake, INSf ,e. In our updated
model, this insulin effect is given by

INSf,e = nC · (k8 ·
GLUT4m

pf
+

GLUT1

pf
+ bfef ) (18)

where GLUT4m is the amount of GLUT4 in the membrane,
where GLUT1 is the amount of GLUT1 in the membrane,
and where bfef is the effect of blood flow; nC, k8, and pf
are parameters. The GLUT4 and GLUT1 terms corresponds to
the transport via the two glucose transporters, and bfef was

introduced in Nyman et al. (2011) as a scaling parameter between
the data from the in vitro setting studying isolated adipocytes, and
the in situ setting, where the adipose tissue is still located in the
human body. In other words, the blood flow effect is not there
when simulating in vitro experiments. In Nyman et al. (2011),
this difference in insulin effect was hypothesized to be dependent
on blood flow, and in this paper, we show that such an impact
on blood flow is indeed present. If one does not have data for the
blood flow, the model will set bfef to a constant value, and if there

is data for blood flow, we propose to use the newmodel described
in the next section.

Equations for the Impact of Blood Flow on
Glucose Uptake in Adipose Tissue
The impact of blood flow on glucose uptake is dependent on
insulin. The same equations for adipose tissue are used formuscle
glucose uptake (Equations 6-8).

d

dt
(INSfbf ) = C2bf · (I − Ib)− C1bf · INSfbf (19)

where I is insulin in plasma and Ib is the basal insulin level, and
where C1bf and C2bf are rate constants.

Second, to calculate the impact of blood flow, we need to have
an expression for how the blood flow is calculated. In this study,
we only look at blood in controls, and in presence of Bradykinin,
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which increases the blood flow. This increase is also dependent
on insulin. This control of blood flow, denoted bf f is given by

bf f = (be+ kbf · (INSfbf + INSoffset)) · bradykinin (20)

where be describes the direct effect of Bradykinin on blood
flow; where kbf describes the combined effect of insulin and
Bradykinin, and where INSoffset is a small offset introduced to
make insulin concentrations positive (same as in Nyman et al.,
2011). The value of bradykinin is 1 in the absence of Bradykinin,
and 2.2 in the presence of Bradykinin.

Finally, the blood flow and insulin are combined to impact the
glucose uptake via the following expression for bfef

bfef = (bf f − bf b) · (INSfbf − INSb) · pbf (21)

where bf b is the basal blood flow, where pbf is a parameter, and
where INSb is the basal insulin level in adipose tissue.

These are all the equations that have been changed in the
current version of the model. The full set of ODEs from the final
model, including the original simulation files, are found in the
Supplementary Material. The equations are also visualized in
the interaction graph in Supplementary Figure 1.

Model Simulation
The initial values were obtained through steady state simulation,
except for the initial values for the Dalla Man submodule, which
were kept the same as in Dalla Man et al. (2007). All Initial values
used in the simulations can be found in Supplementary Table 4.

Total Glucose Uptake
The total glucose uptake was approximated with the area under
the curve (AUC) of the simulation curves for the 6 h that the
dynamic data (Figures 2C,D, 3, 6) was measured for. Specifically,
it was calculated using the Matlab function trapz.

Parameter Estimation
Parameter values for existing models are used from Brännmark
et al. (2013). The agreement between model simulations
and experimental data is used to estimate values for new
model parameters. This agreement is done by minimizing the
distance between estimation data, denoted y, and corresponding
simulated data for parameter p, which is denoted ŷ(p). In our
case, the estimation data consists of uptake rates of glucose into
the adipose tissue and muscle, which are denoted Uidf and Uidm,
respectively. The cost function used is the conventional weight
least square, i.e.,

v(p) =

N
∑

i=1

(

yi − ŷi(p)

SEMi(t)

)2

(22)

where the subscript i denotes the data point, where N denotes
the number of data points, and where SEM denotes the standard
error of the mean for the data uncertainty (Cedersund and Roll,
2009).

We use a χ2-test to evaluate the agreement between model
simulations and data. To be more specific, we use the inverse of

FIGURE 2 | Updated distribution of glucose uptake among tissues. (A) In

model M1, liver is added, the amount of glucose utilization in muscle and

adipose is reduced, and the uptake that is constant during a meal of other

tissues is increased compared to the original M0 model. Note that there is no

glucose uptake in the liver in M0. (B) Glucose distribution among organs

observed in data from Gerich (2000). Note that the data shows that the liver is

the largest source of glucose uptake. (C) Glucose uptake in muscle and

adipose tissue combined for M1 and M0. In M1, parameter Uii was changed,

and parameters partm, partf , and partl were added and chosen to reflect the

data of total glucose uptake in (B). The area under the curve for M0 is higher

than seen in data from Frayn et al. (1993) and Coppack et al. (1996), and M0

is thus rejected. M1 correctly predicts total glucose uptake based on the

independent data from Frayn et al. (1993) and Coppack et al. (1996). (D)

Comparison between model M1’s predictions of adipose and muscle glucose

uptake with new data not used for parameter estimation (Frayn et al., 1993;

Coppack et al., 1996). M1 correctly predicts independent data for muscle

tissue, while it slightly over-predicts independent data for adipose tissue due to

timing issue.

the cumulative χ2 distribution function for setting a threshold,
and then compare the cost function v(p) with a threshold.

Fourteen parameters present in the new equations presented
herein are optimized. These parameters are k1, k2, Km, Vm, Vmx,
Km, Vl, Vlx, Kl, p1, p2, p3, p4, kgluin, kG6P, VG6Pmax, and Uii.
For detailed description of these parameters, see description of
equations above or Supplementary Table 3. All other parameters
are fixed and set to values used in Nyman et al. (2011), and these
values are found in Supplementary Tables 1, 2. We exploited
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FIGURE 3 | Improved dynamic behavior of adipose tissue glucose uptake by improved intracellular module. (A) Illustration of the new intracellular adipose tissue

module and ODE equations added to M2b. The flow of glucose in to the cell, Vin, is dependent on the amount of glucose in interstitium (Gt ) and inside the cell (Gluin),

and the amount of GLUT4m and GLUT1 membrane glucose transporters through INSf ,e. The out flow, Vout, is only dependent on Gluin, which in turn depends on,Vin,

Vout, and the phosphorylation of glucose into G6P (VG6P ). The rate of phosphorylation to G6P is only dependent on VG6P and the usage of G6P in metabolism (Vmet ).

These equations are detailed in Methods, Equations (11–18). In M2b, the parameters introduced in these equations are optimized together with Vm, Vmx , Km, Vl , Vl ,

Kl , Uii , partm, partf , and partl . For all optimized parameters in M2b with a description and their values, see Supplementary Table 4. The equations of the intracellular

module that already existed in the original multi-level model (i.e., those of M0, represented by dotted lines for reactions) are kept unchanged in all models presented

herein. They are represented by the dotted arrows and describe the insulin induced intracellular signaling, resulting in glucose uptake in the cell. Specifically, they

represent the phosphorlyation of intracellular proteins. For example, the two blue arrows pointing out from IR (the insulin receptor) represent the IR-induced

phosphorylation of IRS1. For details on this part of the intracellular adipocyte module, see Equations (23–50) in supplementary Figure 1, and (Nyman et al., 2011).

(B) Timing comparison between uptake seen in data and the two models: M2a without phosphorylation, and M2b with glucose phosphorylation. In M2b, the peak

comes earlier and the quantity of glucose taken up is closer to data than in M2a.

the modular structure of the model by fitting the parameters
in the adipose tissue sub-model separately. In this sub-problem
parameter estimation, the input to the adipose tissue sub-model,
Gt , was considered as a fixed input signal. In the final simulation
with the multi-level model, all aspects of the model are simulated
at the same time.

The parameter values were estimated using the particleswarm
and simulannealbnd algorithms in Matlab R2020b, the
former run before the other. The optimization was restarted
multiple times, and partially run in parallel at the local
node of the Swedish national supercomputing centre
(NSC). The parameter estimation was allowed to freely
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find the best possible combinations of parameter values
within boundaries.

Apart from the formal optimization described above, some
additional ad-hoc requirements were added to the parameter
estimation. Specifically, to get a good estimate of the proportions
of glucose taken up by the different tissues, a term that adds
slightly increasing punishment for having a total uptake of
glucose in liver higher than 50% or lower than 40% of total
glucose uptake in all organs. The total glucose uptake of other
organs except adipose, muscle and liver tissue (Uii) was punished
in the same way for values higher than 30 % and lower than 18
% total glucose uptake of all organs. Furthermore, the simple
fitting to the subdivision of glucose uptake between muscle,
fat and adipose tissue, as well as the fitting to the impact of
blood flow on glucose uptake was done by hand. Finally, a
representative simulation was chosen for the comparison to the
data uncertainties for total glucose uptake from Dalla Man et al.
(2007) (Figure 5).

Uncertainty Estimation
The uncertainty of the model was estimated using step 1 in
Cedersund (2012). This step consists of a re-utilization of the
previous optimization step: one then saves all parameter sets
found by the optimization algorithm, which are acceptable
according to a χ2-test (see section above). To increase the
variation found using this method, a wide variety of starting
guesses was performed, when initiating the optimization. After
this set of acceptable parameter values were found, these values
were used as a basis for simulations, and the maximal and
minimal values of these simulations were plotted to get an
estimate of the uncertainty of the model.

Code and Data Availability
We used MATLAB R2020b (MathWorks, Natick, MA) and
the IQM toolbox (IntiQuan GmbH, Basel, Switzerland) for
modeling. The experimental data as well as the complete code
for data analysis and modeling are available at https://gitlab.liu.
se/ISBgroup/projects/updated-multi-level, https://zenodo.org/
record/4524626#.YCME9OhKguU, and at https://codeocean.
com (doi: 10.24433/CO.9800652.v2).

Experimental and Clinical Data
No new data were collected in this study. We therefore refer
to the methods sections in the original articles (Frayn et al.,
1993; Coppack et al., 1996; Gerich, 2000; Iozzo et al., 2012;
Moore et al., 2012; Brännmark et al., 2013) for the corresponding
experimental methods.

RESULTS

Distribution of Postprandial Glucose
Uptake Between Adipose, Muscle, and
Liver (Q1)
We present the model development as a series of smaller
improvements, with associated rejections of the previous model
without that improvement, to demonstrate exactly why each
model improvement has been made. The first improvement

FIGURE 4 | Interaction between blood flow and insulin on adipose glucose

uptake. (A) Illustration of blood flow and insulins effect on adipose tissue

glucose uptake. Bradykinin increases the blood flow. The new equations for

blood flow (bf ), dependent on bradykinin (bradykinin), and blood flow effect

(bfef ), dependent on blood flow dependent insulin in fat tissue (INSfbf ). The

parameters changed/added here are bfb, bradykinin, be, pbf , and INSb. See

Supplementary Table 4 for description and value. (B) Behavior seen in data

as response to insulin and Bradykinin. Insulin alone has a relatively small effect

on glucose clearance, but increases glucose uptake significantly when

combined with Bradykinin (Iozzo et al., 2012). (C) The same behavior as in (B)

(Iozzo et al., 2012) can be simulated with the model. Adding Bradykinin is

simulated by increasing the value of bradykinin, and adding insulin infusion is

simulated by increasing the value of INSoffset from 0.

made to the original model (Nyman et al., 2011), referred to
as M0, was to update the redistribution of the glucose uptake
among the different tissues (Figure 2A). The liver stands for
almost half of the total postprandial glucose uptake (Figure 2B)
(Gerich, 2000), which was not explicitly accounted for in M0
(Figure 2A, dotted line). We therefore adopted the fluxes to fit
to the data in Figure 2B. More specifically, the liver was added
as a glucose consuming organ, with a high net consumption
compared to the other organs. In the updated model, referred
to as M1 (Table 1), the liver is set to take up 45% of the total
postprandial glucose uptake (Figures 2A,B), while adipose and
muscle uptake were both reduced to approximately 5 and 27%,
respectively. Furthermore, the glucose uptake by organs whose
uptake is not affected by a meal (e.g., brain and kidneys) was
changed to 23%. Note that in Figure 2A, this constant uptake
is symbolized by the kidneys and the brain, because those are
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FIGURE 5 | The behavior of the final updated multi-level model. (A) Simulations of glucose uptake in all organs and tissues and time-series for the data used to fit the

model (Coppack et al., 1996). The total glucose uptake is within the bounds presented in Dalla Man et al. (2007). (B) Total glucose uptake for all organs, simulated by

the final model and from the data used to fit the model (Coppack et al., 1996). (C) Simulations of plasma glucose and insulin compared with independent data from

Adams et al. (2018). The green line represents the parameter set with the best fit to validation data.

the most prominent glucose consumers (Gerich, 2000), but that
other tissues and organs can be seen as represented in this uptake
as well.

As a validation of these changes, we compared the
resulting model simulations with data from other studies. More
specifically, we compared the uptake of glucose in adipose
and muscle tissue, as simulated by the two models M0 and
M1, with data that measures the uptake in these two organs
specifically (Figure 2C). Such measurements are possible using
e.g., AV difference data. In Figure 2C, the AUC for M0 of adipose
and muscle combined (dashed, light orange) is approximately
2 times bigger than the AUC of the data (solid, brown) in
(Frayn et al., 1993; Coppack et al., 1996). Note that the model

has not been fitted to this data. This is clearly beyond the
experimental uncertainty, and M0 is therefore rejected by a χ2

test [V(θ) = 77.7 > 16.9 = χ2
cum,inv(9, 0.05)]. In contrast, M1

has approximately the same AUC as the data, and its simulations
lies within the experimental uncertainty for most data points.
Therefore, the time series is not rejected by the test based on these
independent data [V(θ) = 5.36 < 16.9 = χ2

cum,inv(9, 0.05)]. The
two data points with the narrowest uncertainties were estimated
to have themean data uncertainty for both the test ofM0 andM1.
For these reasons, we reject M0, in favor of the new model M1.

A more detailed check of the quality of the updated model
M1 is obtained by looking at the muscle and adipose tissue
glucose uptake one by one (Figure 2D). For muscle (red),
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TABLE 1 | Differences between the herein presented models.

Legend table for modifications

M0 Original multi-level model Rejected by Figure 2

M1 Updated glucose distribution among organs Adding equations 3,9,10 Can describe Figure 2 Rejected by Figure 3

M2a Updated glucose dynamic behaviors by improving interstitial insulin.

Modifying/adding equations 6–8

Rejected by Figure 3

M2b Updated glucose dynamic behaviors by redesigning an intracellular

model Adding equations 11–18

Can describe Figure 3 Rejected by Figure 4

M3 The impact of blood flow and insulin has an effect on adipose tissue

glucose uptake Adding equations 19–21

Can describe Figure 4

M4 Combining all updates and reformulating to enable moular simulation Can describe Figure 5

Each modification is implemented based on the previous one, e.g., M2 is implemented based on M1. The final model, M4, combines all new additions made in earlier models. All new

equations are described below.

both the time-dynamics (left) and AUC (right) agrees between
simulations (light red) and independent data (dark red). This
visual observation is supported by a χ2 test [V(θ) = 4.9 <

16.9 = χ2
cum,inv(9, 0.05)]. In contrast, the adipose tissue shows

a reasonable agreement with data, but it is not quantitatively
acceptable according to a χ2 test [V(θ) = 29.5 > 16.9 =

χ2
cum,inv(9, 0.05)]. Note also the discrepancy between the steady-

state value of the simulation and the data in both 2C and D—the
data starts and ends at almost 0mg/kg/min, while the simulations
end at values closer to 1. This discrepancy is due to the model
not being fitted to this data. Looking closer at the time-series
reveals that the value at the maximal uptake is fine, but that the
problems lies in the fact that the dynamics of the uptake inmuscle
and adipose tissue are different, and that this is not captured in
the model.

Difference in Time-Resolved Glucose
Uptake in Adipose and Muscle Tissue (Q2)
Since the timing and agreement with dynamic glucose uptake in
the muscle tissue is fine already in the model M1, this model
was kept essentially intact. However, one minor modification
that effects muscle uptake was introduced. In the previous model
(M1), the rate constant of insulin transport into the interstitium
(V1) is assumed to be the same (k1) as for the rate of the
subsequent degradation of insulin (V2). Since there is no reason
for these values to be the same, we updated the model to give
these two reaction rates their own rate constants (k1, and k2,
respectively).We refitted both parameters together with the other
new parameters (introduced below) to the data, and the resulting
model is referred to as M2a.

The developments for the adipose tissue glucose uptake
needed to be more elaborate, and are available in Figure 3: the
new model structure is depicted in Figure 3A and comparison
with data is included in Figure 3B. As can be seen, the same
difference as was introduced for muscle, M2a, yields a poor
agreement with data for the adipose tissue, since the peak is too
late. The main problem is that the glucose uptake in the adipose
tissue has gone down to baseline levels already after around 100
min, when insulin levels still are high (Dalla Man et al., 2007)
(Figure 6). Therefore, since the glucose uptake in the current
model cannot go down before insulin goes down, an additional
mechanism is needed. One such possible mechanism is the fact

that the hexokinase reaction has a product inhibition (May and
Mikulecky, 1983). This leads to two new states in the next version
of the model (M2b, Figure 3A, red circle): intracellular glucose
GLUin and phosphorylated glucose, G6P. As seen, there is an
inhibition from G6P to the rate of phosphorylation of GLUin.

This modification allows for the following chain-of-events.
When glucose uptake begins, the amount of intracellular glucose
starts to build up, which is then phosphorylated into G6P.
When the G6P reaches saturation levels, G6P inhibits the
phosphorylation process from intracellular glucose, which leads
to increasing intracellular glucose levels. Since the net glucose
uptake is driven by the gradient across the cell membrane,
this increase in intracellular glucose will decrease the glucose
uptake, even though insulin levels still might be high. The
resulting simulations of glucose uptake in muscle and adipose
tissue (Figure 3B, right), agrees with the data both according
to a visual check, and according to a χ2 test [V(θ) =

24.5 < 28.9 = χ2
cum,inv(18, 0.05)]. Note also that the

steady-state values of the simulations is closer to that of
the data.

Improvements in the Intracellular Adipose
Tissue Model: Glucose Metabolism and
Blood Flow Effects (Q3)
The final improvement made was the addition of the impact
of blood flow on insulin-stimulated glucose uptake in the
adipose tissue. This interaction was hypothesized in Iozzo et al.,
where they looked at the effect of blood flow and insulin,
separately and combined, on glucose uptake in adipose tissue
(Iozzo et al., 2012) (Figures 4A,B). Increased blood flow was
achieved with the drug Bradykinin. In these experiments, Iozzo
et al. observed that glucose clearance was not significantly
changed when only adding Bradykinin (Figure 4B, left). In
contrast, when combining both Bradykinin and insulin, the
glucose uptake is increased compared with only adding insulin
(Figure 4B, right). The same behavior is produced by the model
in Figure 4C, where the glucose uptake only increases when both
Bradykinin and insulin is present. The parameter bradykinin was
changed from 1 to 3,500 (estimated by hand) to represent the
addition of Bradykinin, and the parameter INSoffset is changed
from 0 to 7 to represent insulin infusion (Figure 4A). This
behavior also agrees with data according to according to a
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FIGURE 6 | Simulations of M4 (lines) in comparison with data (dots) and uncertainties (gray areas) from Dalla Man et al. (2007). M4 simulations are within the data

uncertainties established in Dalla Man et al. (2007).

χ2 test [V(θ) = 0.26 < 3.8 = χ2
cum,inv(2, 0.05), where

the degrees of freedom have been compensated for with the
number of new parameters, 4-2 = 2]. The updated model
is referred to as M3, and as for the other model additions,
the new equations are shortly depicted in the figure (here
Figure 4A), and described in detail inMaterials andMethods and
Supplementary Files.

The Final Model (Q4)
Finally, we consider the performance of the resulting final
multi-level model, in relation to all of the data that has been
generated over the years. The final model can fit to dynamic
data of postprandial glucose uptake in both adipose and muscle
tissue (Figure 5A, same data as in Figure 2D, from Coppack
et al., 1996). The same figure displays predictions of dynamic
uptake in the liver (for which the same type of AV difference

data is non-existent), and for the tissues with a constant
demand of glucose (such as the brain). Finally, the right-
most sub-figure in Figure 5A shows that the model agrees well
with the total dynamic glucose uptake from Dalla Man et al.
(2007).

Furthermore, the AUCs for the 6h simulations of the

different tissues in the final combined model is in line with the
corresponding AUC data (Figure 5B), just as they were in step

Q1 (Figure 2B). The two left-most bars, for muscle and adipose
tissue, are given by the AUC of the corresponding time-series in
Figure 5A (cf Figure 2D), and the liver and brain/kidney uptake
are the same as in Figure 2B. To further test the resulting final
model, we have compared it with a new data set from another
paper, not used for model training (Adams et al., 2018). As
can be seen, the model agrees with the data [V(θ) = 29.8 <

30.6 = χ2
cum,inv(15, 0.01)]. (The test and simulated line in
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FIGURE 7 | Simulations of M4 (lines) in comparison with experimental data (error bars) from Brännmark et al. (2013). M4 can describe data for intracellular insulin

signaling in adipocytes, both normally (blue) and in T2D (red). IR, insulin receptor; IRS1, insulin receptor substrate-1; PKB, protein kinase-B; AS160, Akt-substrate

160; S6K1, Ribosomal protein S6 kinase beta-1; S6, Ribosomal protein S6; YP, tyrosine phosphorylation; SP,serine phosphorylations (on sites 235/236, 307, 473);

TP, threonine phosphorylation (on site 308).

Figure 5C concerns the found parameter set with the best fit to
validation data.)

The final model is also in agreement with data previously
used in the model development. The agreement with the most
important such data sets are re-plotted in Figure 6 (Dalla Man
et al., 2007), which describes meal responses for the following
variables: Plasma Glucose, Plasma insulin, Endogenous Glucose
Production, Glucose Rate of Appearance from the intestines,
Glucose uptake or utilization, and insulin secretion. As can be
seen, the model simulations (lines) are within the experimental
uncertainty (gray area) for all these time curves (agreements

between simulation and data are similar as in Dalla Man et al.,
2007).

Similarly, because of the hierarchical way that the multi-
level model is constructed, it also still agrees with all of the
intracellular signaling data, which we have collected over the
years (Brännmark et al., 2013). The most important such data
is depicted in Figure 7. These data (error bars) describe time-
series and dose-response curves in response to insulin for a
number of intracellular proteins: the insulin receptor (IR), the
insulin receptor substrate-1 (IRS1), protein kinase-B (PKB),
Akt-substrate 160 (AS160), Ribosomal protein S6 kinase beta-1
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(S6K1), Ribosomal protein S6 (S6), as well as cellular glucose
uptake. Themodel simulations (lines) are in agreement with both
data from non-diabetic and lean controls (blue), and from obese
people with type 2 diabetes (red), with changes only in a few
key parameters (for more details, see Brännmark et al., 2013).
Similar agreements for additional proteins—such as extracellular
signal-regulated kinases (Erk1), ETS Like-1 protein Elk-1 (Elk1),
Forkhead box protein O1 (FOXO1), etc—is equally possible to
obtain by replacing the intracellular part of the model with those
in Nyman et al. (2014) and Rajan et al. (2016).

DISCUSSION

Glucose homeostasis is a complex multi-organ and multi-level
system, which requires multi-level mathematical modeling for a
full understanding. We have herein improved an existing such
model (Nyman et al., 2011) for glucose fluxes in the circulation,
linked to intracellular pathways in adipocytes, in response to
a meal. Specifically, we have (Q1) made a new subdivision of
glucose uptake between all relevant organs, to provide more
reliable proportions and to include uptake in the liver (Figure 2);
(Q2) improved the elimination of interstitial insulin to be tissue-
specific, and included intracellular metabolism of glucose inside
adipocytes, to capture an earlier peak in the glucose uptake
in adipocytes compared to the corresponding peak in plasma
insulin (Figure 3); and (Q3) accounted for the impact of blood
flow on glucose uptake (Figure 4). The final combined model
(Q4) can fit to all of the new data for glucose uptake in all organs
(Figure 5), as well as to all previous data, such as the postprandial
glucose and insulin fluxes and concentrations in Dalla Man et al.
(2007) (Figure 6), and the intracellular data in Brännmark et al.
(2013) (Figure 7). To the best of our knowledge, this is the most
comprehensive description of such a wide variety of data for
glucose homeostasis in humans, and we hope that it will become
a useful resource also for integration of future data.

One of the main contributions in this work is the addition
of glucose uptake in the liver (Q1). This addition is important
because the liver is the organ that takes up the most postprandial
glucose: approximately 45% (Figure 2). The previously published
model did not include glucose uptake in the liver (Figure 2A),
which is problematic since data shows that it is the biggest source
of glucose clearance (Figure 2B). Apart from this, the liver has a
unique function in glucose homeostasis, since the liver and the
kidneys are the only organs that can produce glucose from other
metabolites. These two functions, glucose uptake and EGP, are
now modeled as separate processes. In other words, the liver can
both produce and take up glucose at the same time. While there
may be situations when only the net uptake/release is important,
there are also situations when one can experimentally resolve
the two fluxes. For instance, when labeled metabolites have been
ingested, one can see the rate by which these are converted to
glucose and secreted, even in postprandial conditions, when the
net effect of glucose transport is into the cell. There exist other
models where these kinds of data have been used to model the
two liver functions separately, such as in (Knig et al., 2012).
Such data have previously also been used to train the EGP fluxes

of our model (Figure 6) (Dalla Man et al., 2007), and we have
now added corresponding data for glucose uptake (Figure 5B).
Note that this model is only fitted to the data in Figure 2B,
and that the agreements seen in Figures 2C,D serve as a simple
validation of this part of the model. With this said, it should be
emphasized that both the muscle and the new liver module are
highly simplified. Only the muscle and adipose modules have
been tested with respect to dynamic uptake data, and only the
adipose module with an intracellular signaling part, based on
detailed intracellular data, resolving the complicated intracellular
metabolic fluxes. A natural next addition to the model would
be that of other detailed cell modules, using similar data for
other cell types. Dynamic data of glucose uptake in other tissues
(summarized as “other” in Figure 5A) would preferably also be
used to develop the model to include the particulars of those
processes. The same goes for the effect of blood flow on glucose
uptake, which is only detailed for adipose tissue as of now
(Figure 4). There is also a significant difference in the amount
of data used for the adipocyte module (> 30 time courses) and
that used for the systemic glucose homeostasis (2 time courses).
These limitations are present primarily because such data are rare
or non-existent.

At the heart of resolving both Q1 and Q2 lies measurements
of glucose fluxes, which have been measured in a variety of
ways. The glucose fluxes from Dalla Man et al. (2007) was based
on a triple tracer protocol, which allows for the simultaneous
calculation of plasma glucose, EGP, glucose rate of appearance,
and glucose utilization (Figure 6). These data are based on
advanced calculations, which in turn are based on various
assumptions and mathematical models developed within the
field of tracer based measurements (Wolfe et al., 2005). These
particular assumptions are not necessary in the organ specific
glucose utilization curves, available e.g., for muscle and adipose
tissue (Figures 2C,D). These data are based on an AV difference-
based protocol, which samples in both an artery and veins
that have past through either muscle or adipose tissue, and
by looking at the difference between the ongoing and the
outgoing blood (Coppack et al., 1996). This is a more direct
way of measuring how each organ contributes to the glucose
disappearance from the blood. Nevertheless, also AV-difference
data does not measure glucose uptake in the primary cells,
myocytes, and adipocytes, respectively. This means that the quick
decline in glucose uptake in adipose tissue (Figure 3B) could in
fact be the result of a quick equilibrium between interstitial and
capillary glucose concentration. One could possibly develop an
alternative model based on that equilibration-based assumption,
to explain the quick decline of the glucose uptake in the adipose
tissue, either as a replacement or as a complement to the
herein implemented mechanism based on product inhibition
(Figure 3A). Note that even though some data used have a
relatively high uncertainty, these data are still enough to reject
the models without the new modifications. Finally, the fact that
the model is based on three different types of measurements of
glucose uptake (cellular in vitro, tracer-based, and AV-difference
based), and can describe all of these types of data simultaneously,
is a reason why a relatively simple validation, such as that in
Figures 2C,D, still is of value.

Frontiers in Physiology | www.frontiersin.org 12 June 2021 | Volume 12 | Article 619254

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Herrgårdh et al. Multi-Level Model of Glucose Homeostasis

The final question addressed herein (Q3) concerns the impact
of blood flow on glucose uptake, which is highly simplified
because the real relationship is a bidirectional one. The data in
Figure 4B shows that glucose uptake is increased by increased
blood flow, at least in cases when insulin is present. This
relationship is captured in the final model. However, that model
can only describe situations where the blood flow is altered in
a way that is not connected to the metabolic response, such
as when adding Bradykinin (Figure 4B). In other words, the
model cannot describe meal-induced blood flow changes and
its associated impact on glucose uptake. The development of a
model for blood-flow regulation during e.g., meal-responses is
an important task for future modeling works. Another weakness
regarding the blood flow part of the model concerns the lack of
validation. The model is only fitted to the data in Figure 5B. In
the analysis, we compensate for that by reducing the degrees of
freedom from the number of data points (4) to the number of
data points minus the number of parameters (4-2 = 2). However,
one could argue that the two baseline bars should not be counted
since they are normalized to be 100%. In such an interpretation,
the degrees of freedom are 0, a chi2 test can not be done, and
the only possible assessment of the quality of the model s a visual
comparison of the differences between Figures 4B,C. For all these
reasons, the blood flow part of the model is to be considered as a
first step in the development of a model for the blood flow and its
function in glucose homeostasis.

The model agrees with independent data saved for validation,
both herein and in previous papers describing sub-models,
but there are naturally still many limitations remaining. The
main new such validation was, as mentioned, done already in
Figures 2C,D, which are data the model has not yet been fitted
to. The reason why this is the main validation is that this
tests the key novel contribution of this paper: the updated sub-
division of glucose uptake profiles in the different organs.We also
included a final comparison with respect to independent data,
when evaluating the final model, which also that passes a chi-
square test (Figure 5C). Apart from these two new validations
herein, each constituent sub-model developed previously, has
already been tested with respect to such independent validation
data. For instance, the whole-body Dalla Man model has been
used and tested extensively (Man et al., 2014; Visentin et al., 2014,
2015), and is even accepted by the FDA for certain replacement
applications (Kovatchev et al., 2009). Similarly, the intracellular
insulin signaling model we use here was presented in Brännmark
et al. (2013), which e.g., was tested with respect to independent
data describing perturbation results for numerous proteins in
response to mTORC1 inhibition (Figure 7 in Brännmark et al.,
2013). Since then, the model has added additional proteins, such
as Erk1, Elk1 (validation in Figures 6, 7 in Nyman et al., 2014),
FOXO1 (Rajan et al., 2016, 2018), etc. However, despite these
successful tests with respect to independent data, it is not accurate
to say that the models are validated as such, and there are many
situations they still cannot correctly predict. For instance, the
Dalla Man model has problems when changing between two
different populations, when different complex meals are ingested
which e.g., not only consist of glucose, whenmoving to starvation
and hypoglycemia, in the presence of exercise, etc. Similarly, the

insulin signaling part does not describe most of the proteins
involved in the insulin signaling network (Humphrey et al.,
2013), other stimuli which cross-talk with insulin signaling, such
as insulin-like growth factor (De Meyts, 1994), catecholamines
(Krieger and Landsberg, 1988), etc. In summary, the model has
been tested with respect to independent data many times, but it
is still expected to have problems with many types of predictions.

Another limitation is that the uncertainty estimation of the
parameters was done only using Step 1 in Cedersund, 2012).
However, an initial profile likelihood analysis (data not shown)
shows that the individual parameters are not identifiable, which
means that e.g., a more extensive parameter characterization
method such as Markov Chain Monte Carlo methods (MCMC)
(Cedersund, 2012) probably would not converge. Note that this
parameter unidentifiability does not limit any of the conclusions
drawn herein, and that some predictions with the model still may
be identifiable, even though the parameters are unidentifiable.
Such well-determined predictions are sometimes called core
prediction, and this topic is further discussed in (Cedersund,
2012).

The complete regulatory system that makes up whole-body
and multi-level glucose homeostasis is a highly complex one, and
our new model is just an updated framework to incrementally
add pieces of data and knowledge as they become available—
and not a finished and complete picture. As outlined already
in (Cedersund and Roll, 2009; Nyman et al., 2011), we tackle
modeling of the glucose homeostasis in a hierarchical way,
with modules that have an internal structure that does not
need to be understood, when describing the cross-talk between
these modules. The top-level version of these modules are the
organs, and it is therefore important that the cross-talk between,
and relative role of, each organ is correct. This is the main
question raised in this manuscript, regarding the distributions
(Q1), timings (Q2), and impact of blood flow (Q3). With this
division of labor in place, one can then fill in details regarding
the internal and intracellular mechanisms in each organ as they
become available. In our model, such details are primarily filled
in for the adipose tissue, which is where we ourselves have had an
experimental capability to investigate those intracellular details
for many years. However, the same type of intracellular details
can be added for other intracellular processes in other organs,
when such in vitro data becomes available, and when such data
have been properly analyzed using modeling. Note that such
subsequent additions to the model can be done with minimal to
no change to the rest of the model, because of the hierarchical
structure. Therefore, although our model is relatively complex, it
is still developed in a minimal way, where details to the different
sub-models only are added if there are data available to support
and warrant those additions.

It is important to compare the model presented herein to
other similar models in the literature. In the introduction, we
mentioned the now classical non-linear mixed effects models
describing plasma levels of glucose and insulin (Jauslin et al.,
2007; Silber et al., 2007, 2010). These models have since these
early publications been used to scale data between pre-clinical
data from animals to clinical human data for glucose and insulin
concentrations (Alskr et al., 2017), and to describe cross-talk
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with more long-term processes, such as disease development
in mice (Choy et al., 2016) and dynamics of HbA1c (Kjellsson
et al., 2013; Mller et al., 2013). Glucose homeostasis-centered
models, focusing on the glucose-insulin interplay, lie at the
heart of mathematical models developed for type 1 diabetes,
e.g., to aid insulin-pumps, and to develop a so-called artifical
pancreas (Huang et al., 2012; Fabris and Kovatchev, 2020).
Another application of glucose homeostasis models exist for
meal response T2D simulator model, developed for pedagogical
and motivational purposes (Maas et al., 2015). None of these
models have subdivided glucose uptake in the different organs,
or included intracellular responses, in multi-level and multi-
organ models. There exists one model that does this, developed
by Uluseker et al. (2018). This multi-level model is based on
a version of the Dalla Man model (Dalla Man et al., 2007)
connected with our intracellular adipocyte model (Brännmark
et al., 2013), while also including hormonal effects on glucose
intake/appetite (leptin, ghrelin) and insulin levels (incretin).
However, this model does not compare their whole-body
simulations with any data, and does not include the liver as
a glucose consuming organ. There are also some other multi-
level and multi-scale models for other systems that should be
mentioned. One suchmodel is the one developed by Barbiero and
Lió (2020). This model combines whole-body dynamics with the
function of organs and individual cells, and is able to simulate
dynamics in seconds up to several days. The model was used
to simulate the cardiovascular and inflammatory effect of both
T2D diabetes and COVID-19, using personalized parameters.
However, this model has a similar important short-coming: its
simulations are not compared with any data. There also exists
interconnected models for e.g., heart function, describing the
function of cardiac cells up to the integrated behavior of the
intact heart (Smith et al., 2009). In addition to leptin and ghrelin,
there are other hormonal effects on glucose homeostasis that our
model disregards but that other models include, such as that of
incretins, glucagon, and epinephrine. Knig et al. (2012) developed
a detailed model of the role of the liver in glucose metabolism,
that includes glucagon and epinephrine. Grespan et al. developed
a model of the beta cell, specifically describing the effect of
two incretins (GIP and GLP-1) on insulin secretion (Grespan
et al., 2021). Furthermore, the model presented in this work
only included intake of glucose, and thus discarded the effects
of proteins and fat on the meal response, something that other
models do take into account, to some extent. Sips et al. developed
a model that integrates fatty acids with glucose metabolism (Sips
et al., 2015), but this model needs a triglyceride curve as input,
and lacks protein metabolism. Nevertheless, the Sips model is
another expansion of the Dalla Man model (Dalla Man et al.,
2007) and can thus be merged with the developments herein.
Two models that include protein and fat intake from a meal are
the ones developed by Hall et al. (2011) and Sarkar et al. (2018).
These models are however developed for long term simulations
(over several years), and can thus not simulate ameal response. In
similarity to the model presented here, the Sarkar model include
liver, muscle, and adipose tissue as glucose consuming organs, but
in contrast also adds the pancreas as a glucose consuming organ.
Furthermore, the Sarkar model disregards the organs taking up a

constant amount of glucose (brain and kidneys). In any case, the
Sarkar model only describes data for long-term dynamics, and
does not describe meal-responses. Another longitudinal model
describing glucose dynamics on both short and long-term time-
scale is the one developed by Ha and Sherman (2020). This model
is, in contrast to the other two longitudinal models mentioned
above, multi-scale in that it can look at both changes over years,
including the progression toward diabetes in a semi-mechanistic
fashion, as well as meal response dynamics happening in the scale
of hours and minutes. This model does, however, not include the
distribution of glucose among different organs.

In summary, there does not exist any other multi-level model
describing glucose meal response, that also separates between the
different organs’ glucose uptake. In this work, we present such a
model, that, due to its modular approach can be easily expanded
in different directions. This expansion-possibility is due to both
the modular structure, and to the fact that each module can be
treated as a separatemodeling problem. In other words, as long as
the model for each module agrees with the input-output profiles
of insulin and glucose, the new model can replace the old model,
with little alterations on whole-body dynamics. In the earlier
developed model (Nyman et al., 2011), we took this modularity
one step further, by replacing the simpler 5-state insulin receptor
module with a much more detailed 37-state module for the
receptor dynamics, including the possibility for a receptor to
bind up to three insulin molecules (Kiselyov et al., 2009). This
demonstrates the usefulness of developing a model in modules,
so that the right level of details can be included depending on the
data/questions you want to analyze.

Finally, since the original publication of our first multi-level
model (Nyman et al., 2011), we have built further on this model
in several directions, and all of these developments can be re-used
also in our new model. We have e.g., expanded the intracellular
part to explain a more and more comprehensive picture of the
alterations in intracellular signaling that occur in T2D. This has
been done by taking adipose tissue biopsies from both healthy
and T2D individuals, and characterize their respective insulin
signaling. In Brännmark et al. (2013), we presented a first model
of how the insulin resistance occurs, and in subsequent works,
we have added additional proteins, such as FOXO1 transcription
factor (Rajan et al., 2016), insulin control of MAPKs ERK1/2
(Nyman et al., 2014). Because of the modular way that our
multi-level model is structured, one can replace the herein used
intracellular model with any of these other alternatives. The same
expansions can be done also for other organs. We therefore hope
that this multi-level model in the future can serve as a hub
for connecting data and models together into a useful systems-
level understanding.
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