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Background.  Systemic drug reaction (SDR) is a major safety concern with weekly rifapentine plus isoniazid for 12 doses (3HP) 
for latent tuberculosis infection (LTBI). Identifying SDR predictors and at-risk participants before treatment can improve cost-effec-
tiveness of the LTBI program.

Methods.  We prospectively recruited 187 cases receiving 3HP (44 SDRs and 143 non-SDRs). A pilot cohort (8 SDRs and 12 
non-SDRs) was selected for generating whole-blood transcriptomic data. By incorporating the hierarchical system biology model 
and therapy–biomarker pathway approach, candidate genes were selected and evaluated using reverse-transcription quantitative 
polymerase chain reaction (RT-qPCR). Then, interpretable machine learning models presenting as SHapley Additive exPlanations 
(SHAP) values were applied for SDR risk prediction. Finally, an independent cohort was used to evaluate the performance of these 
predictive models.

Results.  Based on the whole-blood transcriptomic profile of the pilot cohort and the RT-qPCR results of 2 SDR and 3 non-SDR 
samples in the training cohort, 6 genes were selected. According to SHAP values for model construction and validation, a 3-gene 
model for SDR risk prediction achieved a sensitivity and specificity of 0.972 and 0.947, respectively, under a universal cutoff value 
for the joint of the training (28 SDRs and 104 non-SDRs) and testing (8 SDRs and 27 non-SDRs) cohorts. It also worked well across 
different subgroups.

Conclusions.  The prediction model for 3HP-related SDRs serves as a guide for establishing a safe and personalized regimen to 
foster the implementation of an LTBI program. Additionally, it provides a potential translational value for future studies on drug-
related hypersensitivity.

Keywords.  interpretable machine learning; latent tuberculosis infection; rifapentine; systemic drug reaction; transcriptome.

Treatment for latent tuberculosis infection (LTBI) is crucial 
for tuberculosis (TB) elimination [1]. A short-course regimen 
consisting of once-weekly high-dose rifapentine plus isoniazid 
for a total of 12 doses, termed 3HP, is recommended for adults 
and children aged ≥2 years for its similar efficacy, lower hep-
atotoxicity, and higher completion rate compared with 6- or 
9-month isoniazid monotherapy [2]. However, unpredictable

systemic drug reaction (SDR) occurs in 3.5%–11.2% of partici-
pants who receive the 3HP regimen, accounting for 38%–50% 
of permanent discontinuation of 3HP treatment [3]. Among 
those who experience SDRs, 0.6%–4.2% may require hospital-
ization [3-6].

The associated phenotypic risk factors for 3HP-related SDRs 
include female sex [4], age >35 years (particularly between 35 
and 65 years) [3, 4], and low body mass index (BMI) [4]. The 
mechanisms of these hypersensitivity reactions remain un-
clear and are likely to be multifactorial, involving direct tox-
icity of the drug or its metabolites, host immunity constitution, 
formation of the circulating antibody–antigen complex [7], 
plasma isoniazid concentration, and genetics [8, 9]. For pre-
cision medicine against LTBI, a comprehensive phenotypic 
anchoring of genome-wide gene-expression signatures is nec-
essary [10]. This will enable the establishment of a prediction 
model for SDRS to provide solid evidence for related patho-
genesis and a decision aid for TB preventive therapy and to 

2022;75(5):743–52

Transcriptome for SDR Prediction on 3HP • CID 2022:75 (1 September) • 743

mailto:jywang@ntu.edu.tw
mailto:jywang@ntu.edu.tw
https://creativecommons.org/licenses/by/4.0/


facilitate cost-effective implementation of an LTBI program by 
using the 3HP regimen.

Some studies have proposed gene signatures for LTBI and 
TB diagnosis [11-13]. However, these studies have not provided 
absolute thresholds of gene signatures, and the transcriptome-
based prediction of SDRs from blood samples before 3HP 
treatment is lacking. To address these issues, we developed a 
hierarchical system biology model (HiSBiM) [14] and therapy–
biomarker pathway approach to identify a transcriptional sig-
nature for 3HP-related SDRs in peripheral blood and then 
constructed interpretable SDR prediction models with a uni-
versal cutoff value by using SHapley Additive exPlanations 
(SHAP) values [15] to foresee 3HP-related SDRs in LTBI indi-
viduals before 3HP treatment.

METHODS

Study Design

Between January 2017 and January 2020, 447 participants who 
ever took at least 1 dose of 3HP in 2 medical centers were en-
rolled. Among them, 44 developed SDRs during 3HP treat-
ment. All of the 44 SDR cases and 143 of the 404 non-SDR cases 
were selected to identify SDR-related biomarkers. The 8 SDR 
and 12 non-SDR cases enrolled between January 2017 and June 
2019 were grouped as the pilot cohort. The remaining cases, 
enrolled after July 2019, were randomly divided 80% into the 
training cohort (28 SDR and 104 non-SDR cases) and 20% into 
the testing cohort (8 SDR and 27 non-SDR cases).

The study consisted of 4 main parts (Figure 1). First, the pilot 
cohort was used to identify candidate transcripts that showed a 
high association with SDR occurrence from peripheral blood 
transcriptomic profiles through the incorporation of biological 
similarity score (BS) and HiSBiM (Supplementary Methods). 
Second, 6 transcripts were selected based on the candidate 
gene expression profiles by using reverse-transcription quan-
titative polymerase chain reaction (RT-qPCR; Supplementary 
Methods, Supplementary Table 1) of pre-3HP samples after 
pathway-based biomarker selection and validation from 3 SDR 
and 2 non-SDR samples in the training cohort. Third, random 
forest (RF) models and SHAP values were applied for SDR pre-
dictive model construction by using all samples in the training 
cohort. Finally, the accuracy of the SDR predictive model was 
independently evaluated using the testing cohort.

Participant Selection Criteria

Individuals were eligible for enrollment if they were aged 
≥13 years and received ≥1 dose of 3HP treatment for LTBI, 
which was diagnosed using QuantiFERON-TB Gold In-tube 
(Cellestis/Qiagen, Carnegie, Australia). Participants with ac-
tive TB, a history of LTBI treatment, obesity (BMI >30  kg/
m2, which inevitably resulted in a low dosage of isoniazid and 
rifapentine), malignancy under treatment, living with human 

immunodeficiency virus, and acute illness with inflammatory 
symptoms and signs were excluded.

Study Protocols and SDR Assessment

Eligible participants received 12 doses of weight-adjusted 
weekly high-dose rifapentine plus isoniazid under supervision 
(Supplementary Methods). Within 2 days after each dose of 3HP, 
the manifestations [4] and severity [16] of any adverse drug re-
action (ADR) were assessed and recorded. Blood samples were 
collected before 3HP treatment, monthly after 3HP treatment, 
and after SDR development (Supplementary Methods).

Definition of SDR

SDR phenotypes included hypotension (systolic blood pres-
sure <90 mm Hg), urticaria, angioedema, acute bronchospasm, 
or conjunctivitis and more than 4 of the following symp-
toms occurring concurrently (more than 1 of which had to 
be grade ≥2): weakness, fatigue, nausea, vomiting, headache, 
fever, aches, sweating, dizziness, shortness of breath, flushing, 
or chills [4]. The causative association of 3HP was determined 
using the Naranjo algorithm [17].

Bioinformatics Analysis and Candidate Gene Selection

For RNA-seq data (GSE174552) obtained from the pilot cohort 
[18], we used the HisBiM and therapy-biomarker pathway ap-
proach to identify transcriptomic signatures (Figure 2). A fold 
change of ≥1.5 and P < .05 (t test) were set to identify 1243 dif-
ferentially expressed genes (DEGs) before and after 3HP treat-
ment (Figure 1). To investigate the composition of cell types of 
each sample, we used CIBERSORT to analyze the signatures of 
the DEGs [19].

To infer potential biomarkers, we first analyzed enrichment 
pathways using hypergeometric distribution of these 1243 
DEGs. Then, we proposed an integrated gene score (SIG) to cal-
culate the importance of each DEG (Supplementary Methods). 
Third, these DEGs were clustered into 60 groups based on BS by 
using hierarchical clustering analysis (Supplementary Methods) 
[20]. We then identified 19 potential biomarkers by integrating 
BS and SIG scores and applied RT-qPCR for further valida-
tion (Figure 2A). Finally, 6 genes were determined using the 
therapy–biomarker pathway approach and domain knowledge 
(Figure 2B).

Interpretable Prediction Model

To build a robust prediction model with a universal cutoff 
value, the training cohort was used to develop interpretable 
RF models with SHAP values (Supplementary Methods). First, 
to avoid overfitting in the prediction of 3HP-related SDRs, we 
systematically tested parameters (eg, trees, features, samples, 
and leaf nodes) to investigate the characteristics of RF models 
through the scikit-learn Python library (sklearn.ensemble.
RandomForestClassifier) [21].
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Next, the SHAP method was applied to these models to re-
veal the impact of each gene on each sample. The default values 
were then used to build simple and robust models. The sum of 
SHAP values of a sample’s input features was used to compare 
universal cutoff values for predicting 3HP-related SDRs. Finally, 
the independent testing cohort was used to evaluate the perfor-
mance of the models based on sensitivity (sen), specificity (spe), 
and their geometric mean (G-mean, calculated as 

√
sen × spe)  

[22].

Sensitivity and Statistical Analyses

We assessed the performance of the selected SDR predictive 
models in the joint population of training and testing cohorts 
as well as various subpopulations, stratified by age, sex, BMI, 
presence of systemic comorbidity, and renal function (using es-
timated glomerular filtration rate [23] as a surrogate).

The demographic data, comorbidity status, laboratory 
data, treatment course, and all ADRs were programmatically 
collected. The intergroup difference was analyzed using the 

Figure 1.  Overview of the case enrollment and analysis plan. The main steps included case enrollment, biomarker derivation, SDR model construction, and validation. SA 
represents samples from the SDR group after 3HP treatment; SB represents samples from the SDR group before 3HP treatment; NA represents samples from the non-SDR 
group after 3HP treatment; and NB represents samples from the non-SDR group before 3HP treatment. ∗Seven cases had acute upper respiratory infection, 2 had urinary tract 
infection, 2 had influenza, 1 had pneumonia, and 1 had cellulitis. #Please see Supplementary Methods. Abbreviations: 3HP, weekly rifapentine plus isoniazid for 12 doses; 
BS, biological similarity score; HiSBiM, hierarchical system biology model; LTBI, latent tuberculosis infection; qPCR, quantitative polymerase chain reaction; SDR, systemic 
drug reaction; SHAP, SHapley Additive exPlanations. 
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Figure 2.  Gene expression signature and therapy–biomarker pathway for predicting SDR in participants with latent tuberculosis infection before treatment with 3HP. A, 
Heat map and hierarchical clustering of gene expression (left) and pathway (right) for 19 potential biomarkers in SA, SB, NA, and NB samples. Of the 19 genes, 4 are signif-
icantly upregulated after 3HP treatment (dark green), whereas the other 15 genes are not (light green). Among these genes, the 6 selected potential biomarkers are marked 
in red. B, Therapy–biomarker pathways for illustrating potential genes associated with SDR development under 3HP treatment. For better visualization, the 19 potential 
biomarkers are underlined with the 6 selected genes marked in red. C, Bar chart for the expression of ATP5PF, GABARAPL2, ATP6V0E1, PIGX, SPCS1, and DDT in 3 SDR (red) 
and 2 non-SDR (blue) samples collected before 3HP treatment. The expression levels were validated through reverse-transcription quantitative polymerase chain reaction. 
Abbreviations: 3HP, weekly rifapentine plus isoniazid for 12 doses; MHC, major histocompatibility complex; NA, samples from the non-SDR group after 3HP treatment; NB, 
samples from the non-SDR group before 3HP treatment; NAD, nicotinamide adenine dinucleotide; SDR, systemic drug reaction; SA, samples from the SDR group after 3HP 
treatment; SB, samples from the SDR group before 3HP treatment. 
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Mann–Whitney U test for continuous variables and the χ2 
test for categorical variables. Statistical significance was set at 
2-sided P < .05. The exact binomial method was applied to cal-
culate 95% confidence intervals (CIs) of sensitivity and speci-
ficity. Standard normal distribution was used to calculate the 
95% CI of the area under the receiver operating characteristic 
curve.

Ethic Approval

The study was approved by the institutional ethics committees 
of National Taiwan University Hospital and Kaohsiung Medical 
University Hospital. Each participant provided informed con-
sent before enrollment.

RESULTS

Selection of Study Participants

Among the 44 SDR cases and 143 non-SDR cases (Figure 1), 
some had been reported in previous studies (Supplementary 
Results). Of the 44 SDR cases, 38 (86.3%) presented as flu-like 
syndrome (Supplementary Table 2), and 93.2% had ≥1 flu-like 

symptoms. Most SDRs occurred 4–5 hours after the third dose 
of 3HP and persisted for a median duration of 18–29 hours. The 
occurrence of SDRs resulted in permanent discontinuation of 
3HP in 13 (30%) SDR cases.

The baseline characteristics of the SDR and non-SDR parti-
cipants were similar, except that the SDR group in the training 
cohort had a lower prevalence of hypertension and diabetes 
mellitus and a lower level of serum alanine transaminase (Table 
1; Supplementary Table 3).

Selection of Candidate Transcripts

Because of unqualified RNA, 4 non-SDR samples collected be-
fore treatment were excluded from mRNA sequencing (Figure 
1). On the basis of SIG and BS scores, we identified 19 candidate 
genes with significantly higher expression in the 16 SDR sam-
ples (orange) than in the 20 non-SDR samples (purple; Figure 
2A, left). The accuracy in the discrimination of SDR and non-
SDR populations was 94% (34 of 36).

By analyzing the hypergeometric distribution, 4 genes (ie, 
ATP5PF, ATF4, NDUFB11, and TUBA1C) were involved in the 
neural-related pathways in Kyoto Encyclopedia of Genes and 

Table 1.  Clinical Characteristics of Participants

Characteristic 

Pilot Cohort Training Cohort Testing Cohort

SDR  
(n = 8) 

non-SDR  
(n = 12) 

SDR  
(n = 28) 

non-SDR  
(n = 104) 

SDR  
(n = 8) 

non-SDR 
(n = 27) 

Age, y 51.2 ± 10.8 48.8 ± 10.8 47.7 ± 14.1 50.8 ± 19.8 48.1 ± 14.0 55.1 ± 21.3

 � ≤35 1 (12.5%) 1 (8.3%) 6 (21.4%) 30 (28.8%) 2 (25.0%) 5 (18.5%)

 � >35 7 (87.5%) 11 (91.7%) 22 (78.6%) 74 (71.2%) 6 (75.0%) 22 (81.5%)

Female sex 6 (75.0%) 10 (83.3%) 17 (60.7%) 49 (47.1%) 4 (50.0%) 12 (44.4%)

Body mass index, kg/m2 22.6 ± 2.7 23.3 ± 2.5 23.7 ± 3.3 24.7 ± 3.9 24.0 ± 3.6 25.3 ± 4.6

Diabetes mellitus 1 (12.5%) 2 (16.7%) 2 (7.1%) 25 (24.0%)a 1 (12.5%) 8 (29.6%)

Hypertension 1 (12.5%) 1 (8.3%) 4(14.3%) 36 (34.6%)a 1 (12.5%) 11 (40.7%)

Autoimmuneb 1 (12.5%) 0 1 (3.6%) 2 (1.9%) 0 0

Isoniazid/Rifapentine dose, mg/kg 15.1 ± 1.8 15.2 ± 1.5 14.4 ± 2.6 13.6 ± 2.2 14.8 ± 2.3 13.4 ± 2.2

Hemoglobin, g/dL 13.2 ± 1.3 13.9 ± 1.1 14.0 ± 1.6 14.1 ± 1.8 13.8 ± 1.4 14.1 ± 1.7

Leukocyte, K/µL 6.6 ± 1.2 7.2 ± 1.3 6.5 ± 1.3 7.2 ± 1.8a 6.9 ± 1.4 7.9 ± 2.5

Platelet, K/µL 270 ± 36 281 ± 60 286 ± 61 267 ± 62 276 ± 76 259 ± 72

Alanine transaminase, U/L 22.0 ± 12.2 18.0 ± 11.3 19.6 ± 8.2 24.2 ± 14.8a 24.4 ± 17.2 20.0 ± 5.8

Estimated glomerular filtration rate, 
mL/min/1.73m2

105 ± 30 112 ± 30 102 ± 37 95 ± 25 99 ± 18 86 ± 31

QuantiFERON response, IU/mLc 2.1 ± 2.1 1.9 ± 2.5 1.8 ± 1.6 2.4 ± 25 2.3 ± 3.2 3.6 ± 2.8

Any adverse event due to weekly 
rifapentine plus isoniazid for 12 
dosesd

8 (100.0%) 8 (66.7%) 28(100.0%) 63 (60.6%) 8 (100.0%) 12 (44.4%)

 � Grade 3 2 (25.0%) 1 (8.3%) 3 (10.7%) 1 (1.0%) 2 (25.0%) 0

 � Grade 2 6 (75.0%) 1 (8.3%) 25 (89.3%) 22 (21.2%) 6 (75.0%) 3 (11.1%)

 � Grade 1 0 6 (50.0%) 0 40 (38.5%) 0 9 (33.3%)

Data are presented as number (percentage) or mean ± standard deviation.

Abbreviation: SDR, systemic drug reaction.
aP < .05 between SDR and non-SDR groups.
bThe autoimmune disease was rheumatoid arthritis for the pilot cohort and 2 non-SDR cases in the training cohort. The autoimmune disease was Sjögren syndrome for the SDR case in 
the training cohort.
cQuantiFERON response was defined as the difference between the interferon-gamma levels of Antigen and Nil tubes as obtained using the QuantiFERON-TB Gold in-Tube test (Cellestis/
Qiagen, Carnegie, Australia).
dFor detailed information on each adverse event, please see Supplementary Table 3.
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Genomes (P < .05; Figure 2A, right; Supplementary Figure 
1). Other genes were involved in immune, infection, and 
metabolism-related pathways, implying the hyperinflammatory 
status. Furthermore, the therapy–biomarker pathway was con-
structed based on above 19 genes to illustrate and classified into 
6 biological functions (Figure 2B; Supplementary Results).

The RT-qPCR results of 3 SDR and 2 non-SDR samples 
(Supplementary Table 4) in the training cohort revealed that 11 

of the 19 genes are consistently highly expressed in SDR sam-
ples (Figure 2C; Supplementary Figure 2). According to the 
therapy–biomarker pathway approach and RT-qPCR results 
of these 5 samples, 6 potential biomarkers, namely, ATP5PF, 
ATP6V0E1, PIGX, SPCS1, GABARAPL2, and DDT, were fur-
ther selected (Supplementary Table 5).

According to CIBERSORT analysis, a high proportion 
of activated dendritic cells (11.2% vs 2.6%, P = .006) and a 

Figure 3.  RF model and SHAP models of the 6 selected genes to discriminate pretreatment samples collected from participants with and without SDR in the training co-
hort. A, Box plot of the G-mean of sensitivity and specificity of the RF model (green) and SHAP model (yellow) in 50 random unbalanced testing sets (8 SDR and 27 non-SDR 
samples) and balanced testing sets (8 SDR and 8 non-SDR samples). The P values were calculated using the Mann–Whitney U test. B, Box plot of the G-mean of the RF 
model (green) and SHAP model (yellow) in 50 random testing sets (8 SDR and 27 non-SDR samples) under various model parameters, including default, number of trees (500), 
number of genes (6), minimum number of samples required to be at a leaf node (leaf = 5), and minimum number of samples required to split an internal node (split = 5). The P 
values were calculated using the Mann–Whitney U test. C, Box plot of the expressions of ATP5PF, ATP6V0E1, PIGX, SPCS1, GABARAPL2, and DDT for the 28 SDR (pink) and 
104 non-SDR (blue) training samples. Boxes indicate the sample median and interquartile range, whereas bars and colored dots indicate the range and outliers, respectively. 
Data were analyzed using the Mann–Whitney U test. D, Box plot of the SHAP output values of the 4 best performing models in SDR (orange) and non-SDR (steel blue) training 
samples. Abbreviations: G-mean, geometric mean; RF, random forest; SDR, systemic drug reaction; Sen, sensitivity; SHAP, SHapley Additive exPlanations; Spe, specificity. 
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low proportion of monocytes (3.7% vs 14.3%, P = .009) be-
fore 3HP treatment were significantly associated with SDRs 
(Supplementary Figure 3).

SDR Prediction Models

To establish a robust prediction model with a universal cutoff 
value, we developed interpretable RF models with SHAP. 
Comparisons between RF and SHAP models can be summar-
ized as follows: first, the SHAP model (yellow) has similar per-
formance, with a G-mean of approximately 0.7 for unbalanced 
and balanced datasets (Figure 3A). Conversely, the G-mean of 
the RF model for the unbalanced dataset (green) was signifi-
cantly lower than the G-means of the RF models for balanced 
datasets and the G-means of the SHAP models for unbalanced 
datasets (P < .001). Second, SHAP models significantly outper-
formed RF models in various parameter settings, including de-
fault, 500 trees, 6 genes, 5 samples required to be at a leaf node, 
and 5 samples required to split an internal node (P < .001; Figure 
3B). On the basis of these results, we used the SHAP model to 
provide a universal cutoff value and foresee 3HP-related SDRs 
before preventive therapy.

The expression profiles by RT-qPCR of all 6 genes were sig-
nificantly higher in the SDR group compared with the non-SDR 
group in the training cohort (Figure 3C). Systemic combin-
ations of the 6 selected gene expression signatures were used 
to build SHAP models. Among the 14 top-ranked models, the 
worst G-mean in the training cohort was 0.976, whereas the 
best G-mean was 0.985 (Supplementary Table 6).

Gene clustering analysis showed that the gene expressions 
of ATP5PF and DDT were similar in the 132 training samples. 

Furthermore, SPCS1 and GABARAPL2 had a similar expres-
sion level (Supplementary Figure 4). On the basis of the find-
ings of redundancy, we selected 4 models with a high G-mean, 
shown in Figure 3D (details in Supplementary Table 6) for 
further analysis of SDR prediction. The box plots show signif-
icant differences in the SHAP output value between SDR and 
non-SDR samples (P < .001; Figure 3D). Under a universal 
cutoff, the SHAP model provided an output value for each 
sample in these 4 selected models (Supplementary Figure 5).

Testing of SDR Prediction Models

The expression profiles based on RT-qPCR of all 6 selected 
genes were significantly higher in the SDR group compared 
with the non-SDR group in the testing cohort (P < .005; 
Supplementary Figure 6). The performance of the 4 selected 
SDR prediction models for the testing samples is shown in 
Supplementary Table 7. The area under the curve of the 2 best 
prediction models, that is, ATP6V0E1-PIGX-SPCS1 (yellow) 
and ATP6V0E1-PIGX-SPCS1-DDT (green), were 0.921 and 
0.894, respectively (Figure 4A). The SHAP values of SDR sam-
ples were significantly higher than those of non-SDR samples 
(P < .001; Figure 4B). The interpretation models provide the 
SHAP output value (Figure 4C), and PIGX is often the most 
influential in prediction.

SDR Prediction Model in Subpopulations

The best SDR prediction models ATP6V0E1-PIGX-SPCS1 and 
ATP6V0E1-PIGX-SPCS1-DDT for the joint population from 
training and testing cohorts had G-means of 0.959 (sen = 0.972, 

Figure 4.  SHAP models of the 2 selected models to discriminate pretreatment samples collected from participants with and without SDR in the testing cohort. A, Receiver 
operating characteristic curve and AUC of the 3-gene (ATP6V0E1-PIGX-SPCS1) and 4-gene (ATP6V0E1-PIGX-SPCS1-DDT) models in the testing cohort. B, Box plot of the SHAP 
output values of 2 models for the 8 SDR (orange) and 27 non-SDR (steel blue) testing samples. Boxes indicate median and interquartile range, whereas bars and colored dots 
indicate the range and outliers, respectively. Data were analyzed using the Mann–Whitney U test. C, Interpretation of SDR predictive models with universal cutoffs for SDR 
(orange) and non-SDR (blue) testing samples. The SHAP output value in each sample is a red diamond, and the universal cutoff is 0 (deep red line). G-mean represents the 
geometric mean of sensitivity and specificity. Abbreviations: AUC, area under the curve; SDR, systemic drug reaction; SHAP, SHapley Additive exPlanations.
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spe = 0.947; Figure 5A) and 0.955 (sen = 0.972, spe = 0.939; 
Figure 5B), respectively, by using 0 as the cutoff value for SHAP 
output values. The performance of these SDR prediction models 
was similar across different subpopulations (sen = 0.933–1.000, 
spe = 0.900–0.986).

DISCUSSION

This is the first study to provide an accurate prediction model 
with a universal cutoff value through the integration of clinical 
samples, bioinformatic techniques, and explainable machine 
learning to foresee SDR occurrence before 3HP treatment for 
LTBI. In the management of 3HP-related SDRs, in addition to 
treatment and supportive care, we herein propose a practical 
module that consists of the expression profiles of 3–4 genes by 
using peripheral blood samples to provide a decision aid for 
safely selecting people with LTBI to undergo 3HP, the most 

convenient regimen for TB prevention. The SDR prediction 
model represents a major step forward for precision medi-
cine in TB preventive therapy. As the ancient Greek physician 
Hippocrates said, “the first and most important oath for being 
a doctor is do no harm.” This is especially true in the field of 
preventive medicine. Using the SDR prediction model invented 
in the current study, almost 97.2% of 3HP-related SDRs can be 
foreseen and prevented. The intervention program for LTBI 
treatment could therefore be successfully, safely, and cost-ef-
fectively rolled out.

An SDR usually occurred 4–5 hours after the third 3HP dose, 
most likely due to immune response to certain drug acting 
as an allergen to elicit endogenous proteins or peptides [24]. 
Results of CIBERSORT analysis suggest that the difference in 
immune cell constitution before treatment may be an impor-
tant driver for T cell–mediated hypersensitivity reaction against 
3HP. The proliferation of circulating activated dendritic cells at 

Figure 5.  Forest plots of the performance of ATP6V0E1-PIGX-SPCS1 (A) and ATP6V0E1-PIGX-SPCS1-DDT (B) models used to predict SDR from pretreatment samples in the 
joint population of training and testing cohorts as well as various subgroups. Abbreviations: eGFR, estimated glomerular filtration rate; SDR, systemic drug reaction.
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baseline may result in the augmentation of immune response 
with reexposure to the same antigen [25].

SDR prediction models are based on interpretable SHAP 
models rather than RF models because of 3 advantages (Figure 
3A and 3B). First, the SHAP model is suitable for unbalanced 
data without the need for adjusting any model parameters. 
Second, under various machine learning parameters, the SHAP 
model is more stable and accurate than the RF model. Last, the 
SHAP model can provide a universal cutoff value based on the 
comprehensive consideration of the contribution of every fea-
ture in each sample.

The underlying pathogenetic mechanism of the 3HP-related 
hypersensitivity reactions remains unclear. PIGX, a type I trans-
membrane protein in the endoplasmic reticulum, is required for 
the complete activation of the regulatory and effector functions 
of T lymphocytes [26]. GABARAPL2 [27, 28] and ATP6V0E1 
[29] both encode proteins essential for autophagy in macro-
phages. DDT (D-dopachrome tautomerase) regulates a diverse 
range of physiological functions related to innate immunity and 
inflammation [30]. SPCS1 (signal peptidase complex subunit 1) 
is involved in the post-translational processing of the structural 
proteins of Japanese encephalitis virus, Zika virus, and hepa-
titis C virus [31, 32]. ATP5PF encodes ATP synthase-coupling 
factor 6 and enhances oxidative phosphorylation in mitochon-
dria during inflammation [33]. However, the exact physiolog-
ical functions and molecular interactions of the aforementioned 
genes on 3HP-related SDRs remain undetermined.

The current study has 3 unique characteristics. First, we 
used a rather large number of clinical samples with clear 
clinical phenotypes [3]. Second, we proposed a therapy–bi-
omarker pathway approach to identify candidate signatures 
and developed interpretable machine learning models with 
SHAP values to provide a universal cutoff value for SDR pre-
diction. Third, the accuracy of the SDR prediction model 
constructed in the training cohort was confirmed to be high 
by using an independent testing cohort under a standard-
ized framework of validation. We believe that the multidis-
ciplinary collaboration and the way the clinical problem was 
addressed as well as the way the SDR prediction model was 
constructed and tested could be a research model for other 
severe ADRs in the future.

The current study has some limitations. First, SDRs are likely 
to be heterogenous. The exact mechanisms that surround both 
the predictive transcriptomes and the intercellular processing of 
host immunity remain unexplained. Second, we cannot identify 
the offending drug for SDRs. However, the finding that 4 of the 
19 potential genes identified in the pilot cohort were involved 
in the neural-related pathways and the well-documented neu-
rotoxicity of isoniazid (INH) [34] suggest that further investi-
gation of the potential contribution of INH to SDR is necessary. 
Third, this study only recruited Asians. External validation using 
non-Asian populations is necessary to confirm the performance 

of the current SDR prediction models. Fourth, the best signa-
tures depended on the PIGX transcript, yet it was present in 
tiny amounts. However, it may not be a critical limitation in 
clinical application given that the average cycle threshold value 
was 30.3 ± 2.8 and 31.2 ± 1.9 in SDR and non-SDR groups, re-
spectively, suggesting that the low expression level of PIGX in 
most clinical samples should remain detectable by RT-qPCR. 
Last, the current predictive tool would likely be unaffordable or 
difficult to logistically implement in resource-limited countries, 
which have the highest TB burden. Further optimization and 
simplification of the technology or expanding our evaluation 
to assess its utility in whole blood, as others have similarly ex-
plored, might make this tool more feasible to implement.

CONCLUSIONS

By using RNA sequencing to create a global picture of cellular 
function across all expressed genes, bioinformatic tools to select 
candidate genes, and machine learning to interpret RT-qPCR 
results, we provided SDR prediction models with a universal 
cutoff value to foresee 3HP-related SDRs and provide an aid 
for treatment decisions before preventive therapy. The SDR 
prediction model represents a major step forward for preci-
sion medicine in TB preventive therapy and may speed up the 
global uptake of public health programs against LTBI for TB 
elimination.
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