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Abstract

The estimation of parameters controlling the electrical properties of biological neurons is

essential to determine their complement of ion channels and to understand the function of

biological circuits. By synchronizing conductance models to time series observations of the

membrane voltage, one may construct models capable of predicting neuronal dynamics.

However, identifying the actual set of parameters of biological ion channels remains a formi-

dable theoretical challenge. Here, we present a regularization method that improves conver-

gence towards this optimal solution when data are noisy and the model is unknown. Our

method relies on the existence of an offset in parameter space arising from the interplay

between model nonlinearity and experimental error. By tuning this offset, we induce

saddle-node bifurcations from sub-optimal to optimal solutions. This regularization method

increases the probability of finding the optimal set of parameters from 67% to 94.3%. We

also reduce parameter correlations by implementing adaptive sampling and stimulation pro-

tocols compatible with parameter identifiability requirements. Our results show that the opti-

mal model parameters may be inferred from imperfect observations provided the conditions

of observability and identifiability are fulfilled.

Author summary

The accurate estimation of neuronal parameters inaccessible to experiment is essential to

our understanding of intracellular dynamics and to predicting the behaviour of biocir-

cuits. However, this program is met with challenges including our lack of knowledge of

the precise equations of biological neurons, their highly nonlinear response to stimulation

and error introduced by the measurement apparatus. The imprecise knowledge of model

and data introduces uncertainty in the parameter field. Our work describes a regulariza-

tion method that arrives at the optimal parameter solution with a probability of 94%. The

uncertainty on parameter estimates is further reduced with the help of an adaptive sam-

pling method that maximises the duration of the assimilation window while keeping the

size of the problem constant. Our work shows that the true configuration of a neuronal

system may be inferred from time series observations provided external stimuli are cali-

brated to drive the system over its entire dynamic range.
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This is a PLOS Computational Biology Methods paper.

Introduction

Data assimilation is increasingly important in quantitative biology to infer unmeasurable

microscopic quantities from the observation of macroscopic variables. It has successfully

obtained quantitative neuron models by synchronizing model equations to membrane voltage

oscillations [1–3] and inferred the connectivity of neuron populations from electroencephalo-

graphic recordings of brain activity [4, 5]. Models constructed from time series analysis have

been reported to accept multi-valued parameter solutions [6, 7]. The identification of the opti-

mal solution, among all others producing equivalent outcomes, is currently a road block on

the way to resolving the phenotype of neurons and biocircuits. A different, yet related problem,

is that, under ordinary conditions, biocircuits may exhibit functional overlap [8, 9], redundan-

cies [10] and compensation [11]. This further increases the need to determine whether experi-

mental protocols exist which can yield actual biocircuit parameters. Criteria for identifying the

true parameters of such systems would allow classifying neuronal phenotypes [12, 13],

unknown cell types [2, 14], and understanding the effect of channelopathy on neuron dynam-

ics [15] in Alzheimer’s disease [16–18], seizures [19, 20], and Parkinson’s disease [15, 21]. We

now briefly review the theoretical challenges of estimating parameters with inverse methods

before summarizing our solutions.

Neuron-based conductance models are described by nonlinear differential equations:

_xðtÞ ¼ F½xðtÞ; p; IinjðtÞ�: ð1Þ

The x1(t), . . ., xL(t) are the state variables including: membrane voltage, ionic gate variables,

synaptic currents; the p1, . . ., pK are model parameters; and Iinj(t) is the control vector whose

components are the current protocols injected in one or more neurons. Takens’ embedding

theorem states that information about a dynamic system is preserved within the time series

recording of its output over a finite duration [22, 23]. This warrants the existence of a unique

parameter solution provided the following conditions are satisfied:

• Observability
The system modelled by Eq 1 is observable if its initial conditions can be estimated from

observations of its state dynamics over a finite time interval [24–26]. If the neuron membrane

voltage, Vexp(t), is the state variable being measured, one defines a measurement function

Vexp(t) = h(x1(t), . . ., xL(t), p1, . . ., pK) = x1(t) which relates Vexp(t) to the L-dimensional state

vector x and the K-dimensional parameter vector p. Since parameters may be viewed as con-

stant state variables satisfying _p ¼ 0, the state of the system is a L + K-dimensional vector. A

single measurement of Vexp at time t however does not contain all the information needed to

determine all vector components. The missing information may be recovered by constructing

an L + K-dimensional embedding vector that is either based on the derivatives of the observed

state variable x1(t), . . ., x1(t)(L+K) or its delay coordinates x1(t), . . ., x1(t − (L + K)τ). This vector

is then embedded in the time series VexpðtÞ; . . . ;VðLþKÞ
exp ðtÞ or Vexp(t), . . ., Vexp(t − (L + K)τ)

respectively. Takens’ theorem specifies that the embedding space must have at least 2(L + K)

+ 1 samples for the system to be observable [22, 23, 27] although simulations by Parlitz et al.

[25, 26] have shown that an embedding space equal to the number of state variables is gener-

ally sufficient. The time series which are assimilated usually hold n = 10, 000 − 100, 000

data points [1–3] which amply fulfill the observability requirement, n� 2(L + K) + 1, if
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L + K< 100 typically. Twin experiments have verified that the assimilation of large data sets

[28–30] infers the original model parameters of well-posed problems [31].

• Identifiability
Any two pairs of parameter sets p1 6¼ p2 are identifiable if they result in different state trajec-

tories x1(t) 6¼ x2(t) given the same driving force, Iinj(t), and same initial conditions x1(0) =

x2(0). Parameter identifiability is highly dependent on the choice of driving force [32]. How-

ever, the driving force criteria that make parameters identifiable have not been studied so

far, partly because most investigations have focused on self-sustaining oscillators [8, 33].

• Local minima in the cost function
Variational cost functions are often riddled with local minima [34] giving sub-optimal

parameters solutions. The probability of parameter search arriving at such false solution is

enhanced by the presence of experimental error particularly when this error becomes com-

parable or greater than the error introduced by sub-optimal parameters. In this situation,

minimizing the cost-function alone is unable to resolve optimal from sub-optimal parameter

solutions. A regularization method is thus needed to recover the optimal solution.

• Ill-defined problems
The model equations of biological neurons are unknown [1, 2]. The guessed conductance

models carry model error whose effect on parameter solutions needs evaluating. Secondly

unknown models carry the risk of over-specifying ion channels and failing to meet identifia-

bility criteria [5, 35, 36].

Here we address the problem of multi-valued solutions in the optimization of neuron-

based conductance models. The effects of experimental and model error on these solutions

is demonstrated from general considerations on the cost function. We then use an exemplar

conductance model to demonstrate the enhancement of convergence towards the optimum

parameter solution. The model is a variant of the multichannel conductance models which

were proven to successfully assimilate biological neurons ranging from songbird neurons

[1, 2] and hippocampal neurons [3, 37] to respiratory neurons [3]. The exemplar model dis-

plays the same multiplicity of sub-optimal solutions encountered in all neuron-based con-

ductance models including those derived from Hodgkin-Huxley equations [1, 2, 37, 38] or

analog device equations [3, 39]. We began by performing random Monte-Carlo simulations

of the posterior distribution function (PDF) of model parameters estimated from noisy

data. We show that the interplay of model nonlinearity, experimental error and model

error, shifts the maximum likelihood expectation (MLE) and standard deviation of esti-

mated parameters. The realization of noise across the measurement window is found to

shift the location of the local and global minima relative to one another on the data misfit

error surface. Experimental error also tilts the principal axes of surfaces of constant data

misfit error centered on each minimum. We use these findings to regularize convergence

towards the optimum parameter solution when parameter search would otherwise stop at a

local minimum near the global minimum. This novel method increases the probability of

convergence towards the true global minimum from 67% to 94%. We also reduced the cor-

relations between parameters by over an order of magnitude by increasing the duration of

the assimilation window while keeping the size of the problem constant. For this we intro-

duced an adaptive sampling rate which applied a longer time step during intervals of sub-

threshold oscillations. Our simulations also show that models configured with sub-optimal

parameters output membrane voltage oscillations which are always distinguishable from

those of models configured with optimal parameters. Hence even biocircuits exhibiting

functional overlap under normal conditions [6, 8, 9, 40] may have their parameters fully
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determined under appropriate external stimulation with the regularization method we

introduce here.

The paper is structured as follows. The first section describes the effects of experimental

error and model error on the data misfit surface. We calculate the parameter offset δpσz as a

function of the amplitude (σ) and realization (z) of additive noise and model error. The second
section computes the posterior distribution functions of extracted parameters and investigates

their shape, MLE and, covariance. The third section describes the regularization method that

uses the above parameter offset to enhance the probability of convergence to the optimal

parameter solution. The fourth section describes the adaptive sampling method we use to

enhance parameter identifiability. The last section discusses predictions made by models con-

figured with optimal and sub-optimal parameters. The results show that under appropriate

conditions of stimulation, the oscillations produced by disparate sets of parameters are always

distinguishable.

Results

Noise-induced shift in parameter solutions

One defines a least-squares cost function to measure the distance between the state variable of

the membrane voltage in the model Vmod(ti, x(0), p) and the experimentally observed mem-

brane voltage Vexp(ti). x(0) are the initial conditions of the state variables for the model. The

cost function is evaluated at each mesh point i = 0. . .n of the assimilation window:

cðxð0Þ; pÞ ¼
1

2

Xn

i¼0

ðVexpðtiÞ � Vmodðti; xð0Þ; pÞÞ
2
þ u2ðtiÞ; ð2Þ

where the xl(t), l = 1. . .L are the state variables of the neuron-based conductance model and

the pk, k = 1. . .K are the parameters of the model. State variables are evaluated at discrete times

ti = iT/n, i = 0. . .n across the assimilation window of duration T. They typically include the

membrane voltages, gate variables and synaptic currents of conductance models. The function

u(t) is a Tikhonov regularization term [41] which smoothes convergence over successive itera-

tions by eliminating positive values of the conditional Lyapunov exponents [42]. u(t) is also

evaluated at discrete times like other state variables but under the constraint that it varies

smoothly rather than according to Eq 1 (see Methods section).

In order to separate the contributions of experimental error and model error, we introduce

the useful membrane voltage, Vuse(ti), that is the voltage that would be measured by the ideal

current clamp (Fig 1(a)). This approach allows us to separate experimental error, �exp(ti) =

Vexp(ti) − Vuse(ti), from model error, �mod(t, x(0), p) = Vmod(t, x(0), p) − Vuse(t). Experimental

error, �exp(ti), covers patch clamp noise, thermal fluctuations, stochastic processes associated

with the opening and closing of ion channels, the binding of signalling molecules to receptors,

and long term membrane potentiation [43]. We model this below with n + 1 random variables

�σz(ti), i = 0. . .n, each of which follows a normal distribution, N ð0; sÞ, with zero mean and

standard deviation σ. Individual realizations of noise across the assimilation window are

labelled z. The cost function in Eq. refeq:eq1 is only suitable for uncorrelated noise. Tempo-

rally correlated noise, or more generally temporally correlated measurements, would be

treated in the same way by substituting the least square cost function with a cost function

incorporating an error conditioning covariance matrix [44] accounting for correlations

between measurements through finite off-diagonal terms. Unlike experimental error, model

error depends on the model parameters. The cost function may thus be expanded with respect
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to model parameters as:

cðxð0Þ; pÞ ¼
1

2

Xn

i¼0

�2

modðti; xð0Þ; pÞ þ u2ðtiÞ

þ
1

2

Xn

i¼0

�2

sz
ðtiÞ þ

Xn

i¼0

�szðtiÞ�modðti; xð0Þ; pÞ;
ð3Þ

to separate the error contributions from model and measurements.

One now considers how perturbations of the useful signal by experimental error and model

error modify the cost function in the vicinity of a local/global minimum. Labelling the true

global minimum at zero noise, p�
0
, we compute the data misfit dc ¼ cðxð0Þ; pszÞ � cðxð0Þ; p�

0
Þ.

This gives the perturbation of the cost function by noise. The first three terms in the expansion

about the true minimum p�
0
:

dc ¼ F þ ðp � p�
0
Þ

TGþ
1

2
ðp � p�

0
Þ

TĤðp � p�
0
Þ � � � ð4Þ

include the offset F representing signal noise entropy, a finite gradient G arising from the

interplay between model nonlinearity and the realization of noise, and the Hessian Ĥ

Fig 1. Data misfit surface perturbed by experimental and model error. (a) Membrane voltage, Vexp(ti), recorded in

discrete time ti, i = 0. . .n (cross symbols); useful membrane voltage, Vuse(t), obtained from an ideal measurement

apparatus (black line); membrane voltage state variable of the conductance model, Vmod(t) (red line). Experimental

error: �exp(ti) = Vexp(ti) − Vuse(ti). Model error: �mod(t) = Vmod(t) − Vuse(t). (b) Lines of constant data misfit, δc = f(σ, z),

about the global minimum p�
0
. Different noise realizations, z1 (z2), shift the global minimum p�

0
! p�

sz1
(p�

0
! p�

sz2
).

Noise also tilts the principal axes of the data misfit ellipsoid (red/blue arrows) and modifies the principal semi-axes (λi,

λj). (c) RVLM neuron model membrane voltage Vexp (black line) induced by current injection Iinj (blue line). Additive

noise �σz is incorporated in the model data. (d) Posterior distribution function π(pk) of parameter pk, k = 1. . .K.

https://doi.org/10.1371/journal.pcbi.1008053.g001
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perturbed by experimental and model errors. These three terms are:

Hkk0 ¼
Xn

i¼0

@Vmod

@pk

�
�
�
�:
@Vmod

@pk0

�
�
�
�
p�

0

þ
@

2Vmod

@pk@pk0

�
�
�
�
p�

0

�szðtiÞ þ �modðti; xð0Þ; pÞ
� �

;

Gk ¼
Xn

i¼0

�szðtiÞ
@Vmod

@pk

�
�
�
�
p�

0

;

F ¼
1

2

Xn

i¼0

�2

sz
ðtiÞ þ

Xn

i¼0

�szðtiÞ�modðti; xð0Þ; pÞ :

ð5Þ

The surface of constant data misfit δc = f(σ, z) (Fig 1(b)), is a K-dimensional ellipsoid. Gradient

G (Eq 4) is responsible for shifting the centre of the ellipsoid from p�
0

to a new location p�
sz

.

This propels the new minimum to a different location in parameter space which depends on

the noise realization, z (Fig 1(b)). The vector components of G will in general remain finite

due to the interplay of model nonlinearity with noise (Eq 6). The dominant contribution to

the @Vmod/@pk term will come from jumps in membrane voltage (-100mV$ +45mV) near

action potentials that can be induced by minute changes in parameter values. Hence, noise

weighted derivatives @Vmod/@pk averaged across the assimilation window give finite gradient

values Gk(z) which depend on noise realizations. Different noise realizations thus give different

parameter offsets, dp
sz
¼ p�

sz
� p�

0
(Fig 1(b)).

Before proceeding with the calculation of the parameter offset, note the superposition of

noise and model error in Ĥ . The first term in Hk,k0 gives the curvature of the data misfit sur-

face. This term determines how tightly constrained a parameter estimate is, also labelled

parameter “sloppiness” by Gutenkunst et al. [7]. The second term in Hk,k0 gives the perturba-

tion of this curvature by noise and model error. As noted above, the second derivative of Vmod

with respect to parameters pk and pk0 weighted by error does not cancel by summation across

the assimilation window. As a result, noise and model error are expect to tilt the principal axes

of the ellipsoid and change their semi-axes. Experimental and model error thus alter parameter

correlations.

The F term represents the signal noise entropy supplemented by correlations between noise

and model error. The dominant first term is the random energy TσzdS that relates to noise

entropy dS through the Johnson-Nyquist theorem [45, 46]:

1

2

Xn

i¼0

�2

sz
ðtiÞ ¼ 2ðnþ 1ÞkBTsRDf ; ð6Þ

where kB is Boltzmann’s constant, R is the membrane resistance of the neuron, Δf is the band-

width of noise and Tσ is the noise-equivalent temperature.

The noise-induced shift in δpσz is obtained through principal component analysis of the

Hessian matrix. In the basis of its eigenvectors, the Hessian Ĥ 0 ¼ V̂ TĤV̂ is a K × K diagonal

matrix Ĥ 0 ¼ diagðl� 2

1
; . . . ; l

� 2

K Þ where the λk are the principal semi-axes of the data misfit ellip-

soid. V̂ is the K × K orthonormal matrix of eigenvectors transforming δp into dp0 ¼ V̂Tdp in

the new basis and G into Ĝ 0 ¼ V̂ TĜ. The data misfit may be written as:

dc ¼ F0 þ
XK

k¼1

dp0k þ
G0k
lk

� �
1

2lk
dp0k þ

G0k
lk

� �

; ð7Þ
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where

F0 ¼ F �
XK

k¼1

ðG0kÞ
2

2lk
: ð8Þ

The noise-induced offset follows from Eq 7 as dp ¼ VTĤ � 1G. Through gradient G, experimen-

tal error gives the first order contribution to the noise-induced parameter shift (Eq 7). Model

error gives a second order contribution through its perturbation of Ĥ . The tilt of the principal

axes of the ellipsoid is given by the eigenvectors in matrix V and their semi−axes are the λk

eigenvalues.

Posterior distribution function of optimal parameters

To demonstrate the above results, we now compute the effect of noise amplitude on the PDF

of optimal parameters. The next section will then evaluate the parameters arising from individ-

ual noise realizations rather than a statistical ensemble and calculate individual parameter off-

sets relative to when no noise is applied.

We choose the conductance model of a rostral ventrolateral medulla (RVLM) neuron

located at the base of the brain [47, 48]. This neuron accelerates heart rate when blood pressure

increases for instance and balances the bradycardia action of vagal motoneurons [47]. The

RVLM neuron has a wide complement of ion channels (Table 1), and as such is an appropriate

neuron to model. The somatic compartment of RVLM neurons includes the following ion

channels [48]: transient sodium channels (NaT), depolarization-activated potassium channels

(K), leak channels (Leak), hyperpolarization-activated cation channels (HCN), and low thresh-

old calcium channels (CaT). The RVLM model has 7 state variables (L = 7) and 41 parameters

(K = 41). The biological parameters are the vector components of ptrue in Table 2. Model data,

Vuse(t), were then synthesized by using the RVLM model configured with ptrue to forward inte-

grate the current protocol of Fig 1(c) (blue line)). We then conducted a “twin-experiment” to

infer model parameters back from the model data (Fig 1(c)) and validate the ability of nonlin-

ear optimization to recover the true parameter solution. The parameters were estimated using

an interior point line parameter search algorithm [28] which was used earlier to build predic-

tive neuron models [1, 2, 31]. The assimilation window had n = 10, 000 mesh points. The

mesh size was Δt = 20μs (T = 200ms). All 41 parameters of the optimal solution p�
0

are listed in

Table 2. Each parameter estimate was found to be within 0.2% of its true value.

We then synthesized experimental data by adding noise to the useful membrane voltage:

Vexp(t) = Vuse(t) + �σz(t). We generated R = 1000 different time series with different noise reali-

zations z to generate a statistical distribution of estimated parameters pðp�
sz
Þ. Convergence to

the optimum solution was secured by initializing the parameter search at p�
0
.

Fig 2(a) shows the distribution of estimated parameters centred on their mean value

(σ = 0.75mV). The sloppiest parameters are characteristically the recovery time constants, and

more specifically those of the Na channel (tm), HCN channel (tz), and low threshold Ca2+

channel (tq). The effect of increasing noise amplitude from σ = 0 to 0.75mV is to broaden the

distribution of estimated parameters. This is shown in Fig 2(b) and 2(c) for the HCN recovery

time (tz) and the maximum Calcium permeability (pT). As noise increases from σ = 0 to

0.75mV the MLE of parameter tz remains approximately constant and the standard deviation

broadens symmetrically. In contrast, the MLE of parameter pT increases monotonically as

noise increases from σ = 0 to 0.75mV. The parameter distribution is asymmetrical even at low

noise amplitude.
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We then used the 1000 parameter estimations to compute the PDFs and reveal the effects of

model nonlinearity. The PDFs of the parameters representing the transition regions of the acti-

vation curves of K+ (δVn) and HCN (δVz) are plotted in Fig 2(d) and 2(e) respectively. These

PDFs are compared to their Gaussian best fit (solid red line) at three noise amplitudes, σ =

0.25, 0.5, 0.75 mV. As observed for tz, the MLE of parameter δVn is independent of noise, the

PDF remains approximately Gaussian at all noise amplitudes, and its standard deviation

increases as noise amplitude increases (Fig 2(d)). In contrast, δVz, like pT above, has a non-

Gaussian PDF, and its MLE shifts to a lower voltage as σ increases (Fig 2(e)).

Lastly, we investigated the correlations between estimated parameters and investigated the

effect of increasing noise amplitude on parameter correlations. For this we calculated the

covariance matrix:

Ŝ l;m ¼
1

R � 1

XR

r¼1

pl;r � �pl

� �
pm;r � �pm

� �
; ð9Þ

which is related to the Hessian through Ĥ ¼ Ŝ � 1. R is the number of noise realizations and

hence the statistical sample of parameter sets used to calculate the covariance matrix. We cal-

culated the eigenvalues l
2

k of S which are the squares of the principal half-lengths of the data

misfit ellipsoid (Fig 2(f)). Clearly the RVLM model parameters exhibit correlations spanning

several orders of magnitude. Most parameters are well-constrained. However not all correla-

tions vanish as σ! 0. The two leftmost points (black circles) indicate pairs of parameters

which remain correlated irrespective of noise amplitude. These parameters are the recovery

time constants tm, tz and tq already noted in Fig 2(a) to have a wider dispersion than the other

parameters. Unsurprisingly, increasing noise amplitude increases parameter correlations. We

also calculated the dependence of the standard deviation of the PDF, σp, as a function of the

noise amplitude σ (Fig 2(g)) for arbitrarily chosen parameters. Note the sub-linear dependence

tending to saturation.

Regularization of convergence by additive noise

Due to the nature of data assimilation, certain initial guesses of state variables and parameters

may lead to sub-optimal solutions which are local minima of the data misfit function. The

local minimum nearest to the global minimum was identified by running parameter searches

initialized at random points in parameter space. This local minimum in the absence of additive

noise is given in Table 2 as p‘
0
. We now switch on noise and study the effect of noise amplitude

σ and noise realization z on the relative positions of p�
sz

and p‘
sz

.

Table 1. Ion channels of the RVLM neuron. Current densities with maximal conductances gα, α 2 {NaT, K, HCN, L}; sodium and potassium reversal potentials, ENa and

EK; hyperpolarized-activated cation reversal potential EHCN = -43mV [69]; leakage potential EL [70]. m and h are the state variables of the activation and inactivation gates

of the NaT channel. n is the activation gate of potassium. z is the HCN activation gate. The Calcium current is given by the Goldman-Hodgkin-Katz equation Eq 13 [71].

ID Channel Current density Maximal conductance

NaT Fast and transient Na+ current JNaT = gNaT m3h(ENa − V) gNaT = 110mS.cm− 2

K Transient depolarization activated K+ current JK1 = gK n4(EK − V) gK1 = 5mS.cm− 2

HCN Hyperpolarization-activated cation current JHCN = gHCNz(EHCN − V) gHCN = 0.092mS.cm− 2

CaT Low threshold Ca2+ current JCaT = GHK -

L Leakage channels JL = gL(EL − V) gL = 0.066mS.cm− 2

https://doi.org/10.1371/journal.pcbi.1008053.t001
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Table 2. Parameters of the RVLM neuron model. From left column to right column: parameter search interval, [pL, pU]; true parameters used to synthesize model data,

ptrue; optimal parameters estimated at the true global minimum of the cost function, p�
0

(σ = 0); sub-optimal parameters estimated at the global minimum shifted by noise,

p�
sz

(σ = 0.5mV); sub-optimal parameters estimated at the local minimum, p‘
0

(σ = 0), nearest to the global minimum p�
0
.

Ion Parameter Data Estimates

pL, pU ptrue p�
0

p�
sz p‘

0

C μF.cm−2 1.0, 1.0 1.0 1.0 1.0 1.0

ENa mV 42, 50 41 41.007 41.075 60.000

EK mV -90, -80 -100 -100.005 -100.763 -90.000

EH mV -30, -5 -43 -42.963 -42.793 -30.000

ELeak mV -110, -65 -65 -64.999 -64.964 -66.541

A ×104 μm2 202—502 2.90 2.90 2.91 2.90

NaT gNaT mS.cm−2 100, 120 69 68.912 69.924 100.000

m Vm mV -49, -27 -39.92 -39.921 -39.965 -30.931

δVm mV 5, 32 10 10.000 9.949 15.850

δVτm mV 5, 23.39 23.39 23.380 23.254 0.100

tm ms 0.02, 0.7 0.143 0.143 0.157 0.815

εm ms 0.012, 7 1.099 1.099 1.094 19.543

h Vh mV -79, -39 -65.37 -65.365 -65.558 -52.863

δVh mV -35, -5 -17.65 -17.652 -17.629 -13.752

δVτh mV 4, 43 27.22 27.218 27.670 14.107

th ms 0.02, 90 0.701 0.701 0.684 0.502

εh ms 1, 470 12.9 12.898 12.942 10.629

K gK mS.cm−2 0 6.9 6.905 6.736 2.232

n Vn mV -69, -21 -34.58 -34.557 -34.763 -39.654

δVn mV 5, 34 22.17 22.178 21.932 13.118

δVτn mV 5, 34 23.58 23.588 23.851 21.556

tn ms 0.01, 5.4 1.291 1.291 1.273 0.434

εn ms 0.002, 23 4.314 4.311 4.248 6.416

CaT pT ×10−4 cm.s−1 0, 80 1.035 1.035 0.210 0.130

Vq mV -80, -35 -65.5 -65.491 -64.483 -67.767

q dVq mV 5, 39 12.4 12.391 14.003 9.958

δVτq mV 10, 57 27 27.123 28.911 14.985

tq ms 0.02, 0.9 0.719 0.693 2.232 7.556

εq ms 0.5, 97 13.05 13.059 11.759 8.370

r Vr mV -90, -55 -86 -86.011 -73.916 -74.356

δVr mV -34, -5 -8.06 -8.065 -4.547 -3.962

δVτr ms 3, 55 16.71 16.760 9.829 0.100

tr ms 5, 190 28.17 28.120 27.435 55.095

εr mV 0.5, 7000 288.68 287.067 319.355 1000.000

HCN gH mS.cm−2 0, 10 0.150 0.150 0.149 0.177

z Vz mV -90, -40 -76 -76.001 -76.297 -79.121

δVz mV -30, -5 -5.5 -5.517 -5.430 -11.876

δVτz mV 5, 40 20.27 20.273 21.861 100.000

tz ms 0.1, 500 6.31 6.348 0.100 10.000

εz mV 0.1, 5000 55.05 55.019 60.471 50.323

Leak gL mS.cm−2 0.01, 0.6 0.465 0.465 0.463 0.482

https://doi.org/10.1371/journal.pcbi.1008053.t002

PLOS COMPUTATIONAL BIOLOGY Estimation of neuron parameters from imperfect observations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008053 July 16, 2020 9 / 22

https://doi.org/10.1371/journal.pcbi.1008053.t002
https://doi.org/10.1371/journal.pcbi.1008053


Our regularization method is depicted schematically in Fig 3(a). This relies on the noise-

induced shift in parameter solutions. We begin by choosing one realization of additive noise

(z) before varying the noise amplitude in the range −0.5mV < σ< +0.5mV. A negative value

of σ here implies a temporal realization of noise with negative amplitude but same Gaussian

probability distribution. (i) Starting from σ = 0, the local and global minima, p‘
0

(pink star) and

p�
0

(red star), are separated by a saddle point in the cost function surface (open dot). (ii) As σ
increases, the local and global minima shift relative to one another, getting closer or further

apart depending on the sign of σ. When p�
sz

and p‘
sz

(blue dots) approach one another, there

Fig 2. Probability distribution of estimated parameters. (a) Scatter plot of parameters pk, k = 1. . .41, estimated by

assimilating the RVLM membrane voltage incorporating different realizations of Gaussian noise. Noise amplitude: σ =

0.75mV. The dependence of this distribution on noise amplitude is plotted for 2 parameters: (b) the recovery time tz of

HCN inactivation gate and, (c) the maximum permeability of the CaT ion channel, �pCaT . (d,e) Probability density

functions (PDF) of parameters tz and �pCaT calculated at increasing noise amplitudes σ = 0.25, 0.50 and 0.75mV.

Statistical sample: 1000 parameter sets extracted for different noise realizations. The initial condition was p�
0

(f)

Eigenvalue spectrum of the 41 × 41 covariance matrix of parameter estimates. The λκ, κ = 1. . .41 are the semi-axes of

the data misfit ellipsoid δc = f(σ, z) and the l
2

k are the eigenvalues of covariance matrix S. Spectra are calculated at four

noise amplitudes: σ = 0, 0.25, 0.50 and 0.75mV. (g) Relationship between the standard deviation of a parameter, σp, and

the noise amplitude, σ.

https://doi.org/10.1371/journal.pcbi.1008053.g002
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exists a critical noise amplitude σcrit (iii) where the saddle point and the local minimum merge

inducing a saddle-node bifurcation [49] towards the global minimum: p‘
sz
! p�

sz
. (iv) p�

sz
ðzÞ is

then set as the new initial guess of the parameter search.σ is then ramped down to zero from

σcrit to obtain the optimal parameter solution p�
0
.

Steps (i) to (iii) are demonstrated numerically in Fig 3(b) and 3(c). The parameter search was

initialized at the local minimum p‘
0

where the cost function was cðxð0Þ; p‘
0
Þ ¼ 9:105306� 10� 5.

In contrast, the cost function at the global minimum p�
0

was almost two orders of magnitude

lower at Cðxð0Þ; p�
0
Þ ¼ 1:179402� 10� 6. The state variables were initialized at the same val-

ues throughout. The data time series had n = 10, 000 points and Δt = 20μs. Two different

noise realizations z1 and z2 were applied in Fig 3(b) and 3(c) respectively. Initializing the esti-

mation procedure at p‘
0
, the parameter solution was calculated and projected in the two-

dimensional plane (εz, EL) as σ varied from 0 to +0.5 (red dots) and 0 to -0.5 (blue dots). εz is

a parameter of the HCN activation gate which gives the difference in recovery times between

the half-open and fully open state of the gate. EL is the leak reversal potential. The same quali-

tative results are observed in other projection planes involving different pairs of parameters

Fig 3. Regularization of parameter search. (a) Profile of the data error misfit function δc plotted along a straight line

passing through the global minimum p�
0

(red star) and the nearest local minimum p‘
0

(magenta star). (I) In the absence

of noise (σ = 0), a saddle point separates p‘
0

and p�
0

(open dot). (II) Increasing noise amplitude up to a critical value σ<
σcrit shifts the local solution, p‘

0
! p‘

sz
, and the global solution, p�

0
! p�

sz
(blue dots). (III) At σcrit, the barrier at the

saddle point vanishes. Hence, the local minimum p‘
scritz

merges with the saddle point. (IV) Parameter search initialized

at p�
scrit z

converges smoothly to the optimal solution p�
0

as noise vanishes. In this way, parameter search is regularized.

(b) Trajectory of the local solution parametrized by noise as the noise amplitude varies from σ = −0.5mV to +0.5mV.

The noise amplitude is colour coded in each dot. The noise realization remains the same (z1). The 41-dimensional

trajectory is projected onto the 2D plane (EL, εz). At σcrit = −40μV, p‘
sz

merges with p�
sz

(step III). (c) Same as in (b) but

for a trajectory calculated with a different noise realization, z2. Here σcrit = +50μV. (d) Various trajectories of the

solution p�
sz

during step IV. The different starting points are the shifts induced by different realizations of noise, z3, . . .,

z8. (e) Probability of convergence to the optimal solution with noise regularization (red) and without (blue). The

success rate was calculated from a statistical sample of 150 parameter solutions computed from random parameter

initializations.

https://doi.org/10.1371/journal.pcbi.1008053.g003
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in Table 2. At σ = 0, the parameter solution remains the local minimum (Fig 3(b) and 3(c),

magenta star). For σ> 0, the local and global minima move away from one another causing

p‘
sz

to shift monotonically away from p0
sz

as σ increases (red dots). In contrast, when σ< 0,

the distance between the local and global minima decreases. At σcrit = −40μV, the saddle

point vanishes followed by an abrupt transition from the local minimum p‘
sz

to the global

minimum p�
sz

. The effect of using a different noise realization z2 in Fig 3(c) is to change the

path of the solution in parameter space. The saddle-node bifurcation also occurs at a differ-

ent noise amplitude of σcrit = +50μV.

Steps (iii) to (iv) are demonstrated in Fig 3(d). The optimal solution p�
0

was recovered by

ramping down σ from σcrit. The trajectories of p�
sz

converge to p�
0

as σ is progressively decreased

from σcrit. Fig 3(d) shows the trajectories calculated for 5 different noise realizations z1. . .z5.

Fig 3(d) thus demonstrates the dependence of the noise-induced parameter offset on noise

realization, as predicted by Eq 7.

Therefore, the two-step procedure we have described is useful to regularize convergence

towards the global minimum. The algorithm of the regularization method may be summarized

as follows: (i) Solve the inverse problem using smooth data. The solution may be optimal or

sub-optimal. (ii) Apply additive noise to the data and vary its amplitude while keeping its reali-

sation constant until an abrupt step in both δp and δc is observed. (iii) Progressively reduce

noise amplitude to zero to obtain the optimal parameter solution. Assimilations of the RVLM

neuron model starting from 150 random initial guesses of parameters and state variables were

found to converge to the optimum solution with a probability of 94.3% using noise regulariza-

tion, and 67% without. In the other 5.7% and 33% of cases, convergence terminated at local

minima. (Fig 3(e)).

Decorrelating parameters

Parameter uncertainty and correlations may arise from incomplete fulfilment of identifiability

conditions if the stimulation protocol is ill-chosen. For conductance models, this means that

the assimilation window must contain multiple action potentials as most model parameters

control the dynamics of depolarization. In addition, current protocols must include (i) current

steps of different durations to probe the recovery of ionic gates with different kinetics, and (ii)

current steps of different amplitude to extract information from the depolarized, sub-threshold

and hyperpolarized states of a neuron. These complex current protocols are required to dec-

orrelate the model constraints (Eq 2) linearized at consecutive time points of the assimilation

window. Increasing the window length also contributes to better constrained global parameter

solutions. The drawback, however, is that as n increases beyond nmax� 104 points, the cost

function becomes highly irregular due to an increased number of local minima [50, 51]. In

order to increase the length T of the assimilation window while keeping n< nmax, we intro-

duce a smart sampling method which samples sub-threshold oscillations with a larger step size

than action potentials. For membrane voltages above -65mV, we apply a mesh size of Δt1 =

10μs whereas sub-threshold oscillations are sampled with a mesh size Δt2 = nΔt1 (Fig 4(a)).

The rationale for this is that sub-threshold oscillations are controlled by fewer parameters than

the depolarized state. Since time intervals of membrane depolarization are few and far apart,

this approach allows considerable increases in duration of the assimilation window while keep-

ing n constant (see Methods).

We first studied the effect of the length of the assimilation window on parameter correla-

tions by computing the spectrum of eigenvalues of the covariance matrix Ŝ (Fig 4(b)). The

covariance matrix was generated by assimilating model membrane voltages with R = 1000

different realizations of additive noise of amplitude σ = 0.75mV. The assimilation window
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had 10, 001 data points but their time intervals varied. The spectrum of eigenvalues is plotted

for increasingly wide assimilation windows corresponding to Δt1 = 10μs (T = 200ms), 20μs

(T = 320ms), 40μs (T = 382ms). Fig 4(b) shows that increasing the duration of the assimila-

tion window uniformly reduces correlations, l
2

k , for all 41 parameters. Compare this with Fig

2(f) wheresome parameters remain highly correlated even at σ! 0. Fig 4(c) and 4(d) show

the progressive narrowing of the PDF of the gNaT and εCaT parameters as T increases. Con-

ductances such as gNaT are already well constrained hence their PDF becomes marginally

narrower as T increases. In contrast, the standard deviation of loosely constrained recovery

time constants in Fig 2(a) decrease by an order of magnitude as the duration of the assimila-

tion window increases from T = 200ms to 382ms (Fig 4(d)). We have therefore shown

that long assimilation windows increase parameter identifiability and considerably reduce

sloppiness.

Comparing model predictions with local and global parameters

We finally compare the predictions of models configured with 3 sets of parameters: p�
0
, p‘

0
and

p�
sz

, a vicinal location to the global minimum defined as the global minimum shifted by noise.

These parameters are listed in Table 2. Fig 5(a) shows the locations of p‘
0

(purple dot) and p�
sz

(orange dot) on the data misfit surface relative to p�
0

(red dot). The Euclidean norm was used

Fig 4. Increasing the duration of the assimilation window reduces parameter uncertainty. (a) An adaptive step size

was used to increase the duration of the assimilation window while keeping the size the problem constant and equal to

n = 10, 000 samples. The step size was Δt1 = 0.01ms during the depolarization time intervals (Vexp > −63mV) and Δt2 =

mΔt1, m = 1, 2, 4, elsewhere. (b) Dependence of the parameter correlations as the duration of the assimilation window

increase from T = 200ms (m = 1), 320ms (m = 2) to 382ms (m = 4). The eigenvalues of the covariance matrix were

calculated from parameters estimated from randomly initialized parameters and state variables. Additive noise had

amplitude σ = 0.25 mV. Posterior distribution function of two parameters chosen for controlling (c) action potentials
via the sodium conductance gNaT and (d) sub-threshold oscillations via calcium kinetics εr. Statistical sample for

histograms (b,d): 1000 assimilations started at the global minimum with a unique noise realization.

https://doi.org/10.1371/journal.pcbi.1008053.g004
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to evaluate the distance in parameter space kp � p�
0
k to the optimum solution. We show here

that predictions made with sub-optimal parameters p�
sz

, p‘
0

are always discernible from those

made with the optimal set p�
0
.

The predictions of the three RVLM neuron models configured with parameters p�
0
, p�

sz

and p‘
0

are shown in Fig 5(b), 5(c) and 5(d) respectively (red lines). These are compared to

the model data synthesized using ptrue (black line). The prediction error is the cyan line (Fig

5(b)–5(d)). Predictions obtained with p�
0

are identical to the model data. Interestingly, pre-

diction accuracy is maintained in spite of residual numerical error in p�
0
. These computa-

tional errors do not diminish the predictive power of the model (Fig 5(b)). In contrast,

predictions made by configuring the RVLM model with p�
sz

show systematic discrepancies at

the site of action potentials (Fig 5(c)). Spike bursts are completely missed and the height of

action potentials is incorrect. The sub-threshold dynamics is, however, represented with

great accuracy. Similarly, predictions made with p‘
0

show some missing spikes and some

additional ones (Fig 5(d)). These results suggest that the original parameters form the one

and only set capable of predicting the experimental time series. Hence, the injected current is

sufficiently discriminating for the identifiability condition to be validated. The membrane

voltage time series encodes the single-valued parameter solution as prescribed by Takens’

theorem. We have further verified in S1 Fig that a current protocol consisting of long rectan-

gular steps fail to constrain all model parameters. This demonstrates the importance of

selecting external stimuli that probe the full dynamic range of the nonlinear system for

parameters to be identifiable.

Fig 5. Effect of optimal and sub-optimal parameters on model predictions. (a) Value of the cost function at the site of local minima

(purple/orange/blue dots) in the vicinity of the global minimum (red dot) plotted as a function of the distance to the global minimum

defined by the Euclidean metric. The blue dots are the local minima situated further away from the global minimum. (b-d) Reference

membrane voltage (black line) induced by the current protocol (dark blue line). The membrane voltage predicted by configuring the

RVLM model with parameters: (a) p�
0
, (b) p�

sz
, (c) p‘

0
is shown as the red line. The difference between the predicted voltage and the

reference voltage is the prediction error (cyan lines).

https://doi.org/10.1371/journal.pcbi.1008053.g005
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Discussion

The significance of parameter estimation methods for extracting information from biologi-

cal systems has recently been discussed [6, 9]. An increasingly prevalent view among biolo-

gists is that parameters estimated from biological models are universally sloppy [7] and that

disparate sets of parameters can generate identical neuronal oscillations [37, 52]. The notion

that biocircuits must incorporate functional overlap is consistent with the observation of

brain remodelling and ageing. For example, the brains of the elderly lose between 2% and

4% of their peak number of neurons without significant decrease in cognitive abilities [53].

Therefore, if the function of a biological system is underpinned by redundant degrees of

freedom, can one reasonably expect to infer its internal structure from observations of its

dynamics?

The answer from nonlinear science is that the parameters and initial conditions that con-

trol neuronal oscillations can generally be inferred from the observation of its membrane

voltage over a finite time interval [22, 23, 27]. However, there are conditions to satisfy. The

condition of observability is satisfied by choosing a number of data points greater than L + K.

This condition is easily met. Both Toth et al [31] and ourselves in Table 2 have demonstrated

the system is observable by recovering the original parameters in twin experiments. The sec-

ond condition—identifiability—requires the system to be driven by an external stimulus

with the appropriate range of dynamics and current amplitudes to constrain all parameters.

For example, parameters extracted from data acquired under simpler current injection (S1

Fig) are not identifiable and are poorly constrained in contrast to those listed in Table 2 (p�
0
).

A driving force with complex dynamics is therefore necessary to warrant identifiability. In

addition, increasing the duration of the assimilation window matters to reduce correlations

between parameters and increase identifiability as observed by others [37, 50]. We have

achieved this in Fig 4 by introducing an adaptive step size within our gradient descent algo-

rithm. A second advantage of using an adaptive step size is that it allows longer assimilations

windows and longer current steps to be applied (500ms). This is essential to quantify the

effect of slow decaying currents on the long term potentiation of neurons [54]. When the

conditions of observability and identifiability are met, we have shown in Fig 5 that sub-

optimal parameters (at local minima) always give sub-optimal predictions which are easily

distinguished from predictions by the optimal set of parameters. Therefore, under these con-

ditions single-valued parameter solutions may be obtained from the time series observations

of the neuron membrane voltage.

One more complication is the presence of local minima in the cost function. The global

minimum becomes harder to distinguish from local minima when the noise-induced error

in the cost function becomes comparable to the data misfit error at a local minimum. In Fig 3,

we introduce a regularization method which makes constructive use of additive noise to bias

the gradient descent algorithm towards the global minimum when it would otherwise remain

stuck in a local minimum. This method is well suited to the assimilation of actual neuron data

acquired by low noise amplifiers in well-controlled experimental preparations for which exper-

imental error remains a perturbation of the useful signal [1, 2]. The assimilation of very noisy

data may still be approached using statistical inference methods such as expectation maximiza-

tion frameworks [37, 38] or path integral methods [55]. However these methods rely on prior

knowledge of parameter distribution functions whereas the present variational approach does

not.

Modern data assimilation [34, 44, 56] introduces experimental and model error in the form

of covariance products which weight each measurement with the error of the measuring appa-

ratus. These approaches are not suitable for highly nonlinear systems where a Gaussian shaped
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probability density on data does not translate into a Gaussian shaped probability density on

parameters. Moreover the same electrophysiological apparatus is used to record all data points

in the time series. Given each measurement carries the same error, this approach is fact

reduces to our least-squares cost function (Eq 2). The nonlinearity of the conductance model

implies that Bayesian approaches are no longer applicable to estimating MLE and standard

deviation of parameter PDFs [4, 5, 26, 32, 57–61]. Our work has studied separately the effect of

experimental and model error. We found that both errors shift the parameter solution on the

data misfit surface. However, the primary cause of the parameter offset is experimental error

with a second order contribution from model error. Our results identify the interplay between

model nonlinearity and the realization of noise across the assimilation window as the reason

for the parameter offset and its dependence on noise realization. An important consequence of

this noise-induced shift is that the parameter solution inferred in the presence of experimental

error is invariably wrong.

Our results show that while biocircuits may exhibit functional overlap in their parameters,

their underlying configuration can still be inferred provided an external driving force is

applied. Parameter identifiability is always relative to the degree of sophistication of external

stimulation. Unsurprisingly, functional overlap between parameters is primarily observed in

self-sustaining oscillators such as central pattern generators operating in the steady-state with-

out external input [9, 10, 40]. For such systems, parameter overlap [6, 9] may be useful to com-

pensate for loss of functionality [11], and parameter sloppiness may be pervasive [7]. However,

recent experiments have shown that among all network configurations with apparent overlap,

only a small subset of these was able to explain the adaptation of rhythmic outputs to tempera-

ture changes [62], and changes in pH levels [63]. There is no doubt that subjecting central pat-

tern generators to a wider range of entrainments would further reduce the set of parameters

compatible with the observed outputs, up to the point where a unique parameter solution

would remain that characterises all electrical properties. There is therefore no theoretical limi-

tation to inferring the underlying structure of ion channels or connectivity of small networks

other than the ingenuity in designing stimulation protocols that fulfill identifiability condi-

tions. Translated to the brain, redundancy may allow normal operation to continue with age-

ing but our work suggest that flexibility to adapt to external stimulation will decrease together

with the size of its parameter space.

In conclusion, parameter redundancy and compensation is relative to external stimulation.

Long and dynamically complex stimulation protocols were shown to reduce correlation

between estimated parameters. We also quantified the effects of noise and model error and

made constructive use of the induced parameter offset to increase the probability of conver-

gence to the optimal set of parameters.

Methods

Conductance model

We model the parasympathetic neuron of the rostral ventrolateral medulla (RVLM). The

RVLM neurons play a key role in cardiac regulation by accelerating heart rate and increasing

the force of contraction of the heart muscle. In this way, these neurons compensate the action

of vagal tone which reduces heart rate [47]. RVLM neurons have a greater complement of ion

channels than the textbook Hodgkin-Huxley neuron [31]. This makes these neurons a good

choice for evaluating the accuracy of the parameter estimation method when building models

of actual neurons. The ion channels of RVLM neurons include transient sodium (NaT), potas-

sium (K), low threshold calcium (CaT) and the hyperpolarization-activated cation current

PLOS COMPUTATIONAL BIOLOGY Estimation of neuron parameters from imperfect observations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008053 July 16, 2020 16 / 22

https://doi.org/10.1371/journal.pcbi.1008053


(HCN) [48]. The equation of motion for the membrane voltage is:

C
dVðtÞ

dt
¼ � JNaT � JK � JCaT � JHCN � JL þ IinjðtÞ=A; ð10Þ

where C is the membrane capacitance, V is the membrane potential, Iinj(t) is the injected cur-

rent protocol, A is the neuron surface area, and Jion are the voltage-dependent ionic current

densities across the cell membrane. The equations of individual ionic currents are given in

Table 1. These currents depend on maximum ionic conductances (gNaT, gK, gHCN), sodium,

potassium and HCN reversal potentials (ENa, EK, EHCN), and gate variables (m, h, n, p, q, s).
The control term u(tn)[Vexp(tn) − V(tn)] was added to the right hand side of Eq 10 to eliminate

the occurrence of positive conditional Lyapunov exponents and smooth convergence [64].

Ionic gates are assumed to recover from changes in membrane voltage according to a first

order equation:

dx
dt
¼

x1ðVðtÞÞ � xðtÞ
txðVðtÞÞ

; ð11Þ

where x 2 {m, h, n, s} represents the state of activation and inactivation of the NaT, K and

HCN ionic gates (Table 1). The (in)activation curve of individual gates is modelled as:

x1ðVÞ ¼
1

2
1þ tanh

V � Vtx

dVx

� �

; tx ¼ tx þ εx 1 � tanh 2 V � Vtx

dVtx

� �

; ð12Þ

where Vtx is the (in)activation voltage threshold of the gate, δVx is the width to the transition

region from closed to open states and, δVτx is the half-width-at-half-maximum of the bell-

shaped voltage dependence of the recovery time. The recovery time is tx + εx at the opening

threshold of the gate and tx in the depolarized and hyperpolarised states.

The transient low threshold calcium current is given by the Goldman-Hodgkin-Katz

(GHK) equation:

JCaT ¼ �p � p2 � q � z2 �
VF2

RT
�
½Ca2þ�i � ½Ca2þ�o � exp

� zFV
RT

1 � exp � zFV
RT

� � ; ð13Þ

where p and q are the activation and inactivation variables of the CaT channel. �p is the maximal

permeability, [Ca2+]i and [Ca2+]o are the intra- and extracellular calcium concentrations, z = 2

is the valence of Ca2+, F is Faraday’s constant, R is the ideal gas constant, and T = 298.15K. The

GHK equation was expanded about V = 0 into a Horner polynomial of order n = 25 to approx-

imate Eq 12 over the range of the membrane voltages.

Current protocols and model data

A set of current protocols Iinj(t) consisting of current steps of different amplitudes and dura-

tions was synthesized to provide stimulation to the neurons (Fig 5, dark blue line). Each proto-

col was calibrated to induce depolarisation or hyperpolarisation over different time scales

covering the recovery times of ion channels. Model data were synthesized by forward integra-

tion of these currents with the RVLM conductance model (Eqs 10–13) configured with the

ptrue set of parameters set in Table 2. The model equations were numerically integrated using

the LSODA solver [65] which is able to resolve stiff and potentially unstable nonlinear systems

[66]. Additive Gaussian noise �σz was generated with a pseudo random number generator and

added to the model membrane voltage. In this way, we obtained both current and membrane

voltage time series, Iinj(ti)) and Vexp(ti), used in data assimilation. The base sampling rate was

100kHz (Δt = 10μs).
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Nonlinear cost function optimization

The least-squares objective function constrained by model equations was minimized using

interior point line parameter search [28]. The Lagrangian of the problem was constructed

from the cost function, equality constraints and inequality constraints [29]. The Lagrangian

was minimized under the Karush-Kuhn-Tucker conditions [30]. Equality constraints were

obtained by linearizing the RVLM conductance model:

dxl

dt
¼ FlðxðtÞ; p; tÞ; l ¼ 1 � � � L; ð14Þ

at specific times across the assimilation window. The rate of change, Fl(), of state variable l
depends on all state variables x, parameters p and time t. Inequality constraints were specified

by the search intervals of individual parameters pk,L� pk� pk,U, k = 1. . .K which are listed in

Table 2. The bounds of parameter search are the only user-specified inputs of the minimiza-

tion problem. The Jacobian and Hessian matrices of the constraints and cost function were

computed using symbolic differentiation (https://pypi.org/project/pydsi). Interior point opti-

mization reformulates inequality constraints as logarithmic barriers whose height is reduced

iteratively as the parameter search approaches the global minimum of the optimization surface

[29]. Minimization was implemented iteratively using a Newton-type algorithm until first-

order optimality conditions on the Lagrangian function L(x) are met.

The equality constraints Eqs 10 and 11 were then discretized to connect the state variables

evaluated at mesh points across the assimilation window. For this purpose mesh points were

dynamically grouped according to the order of the interpolation formula and the variable step

size, which we implemented to improve accuracy on parameter solutions. We linearized Eqs

10 and 11 according to Boole’s interpolation which is accurate to OðDt7Þ [67] in contrast to

Simpson rule’s OðDt4Þ [31]:

xlðtiþ4Þ ¼ xlðtiÞ þ 2Dt
7

25
FlðxðtiÞÞ þ

32

45
Flðxðtiþ1ÞÞ þ

12

45
Flðxðtiþ2ÞÞ

�

þ
32

45
Flðxðtiþ3ÞÞ þ

7

45
Flðxðtiþ4ÞÞ

�

:

ð15Þ

Data points were grouped in sets of 5: {ti, . . ., ti+4}. The state variable at ti+4 was interpolated

from evaluations of Fl() at the 5 evenly spaced points separated by Δt. When the step size is

constant, state variables are thus evaluated every 4Δt.
We introduce an adaptive step size that samples sub-threshold oscillations with a lower res-

olution than action potentials. We therefore consider sub-threshold step sizes of pΔt where

p = 2, 4. . .. Our group of 5 points then spans a duration of 4pΔt within the adaptive step frame-

work. The last point of one group is the same as the first point of the succeeding group. To

warrant an integer number of groupings in the assimilation window, we chose n to be an inte-

ger multiple of 4p.

As Eq 16 constrains only one of the four points in the group, this condition alone does not

force the solution to pass through the other 3 data points. The use of Eq 16 alone may support

rapid oscillatory solutions which are undesirable [32]. In order to constrain the other 3 other

points of the group, one needs to introduce additional Hermite conditions [31, 68]:

xlðtiþ1Þ ¼
1

2
½xlðtiÞ þ xlðtiþ2Þ� þ

Dt
8
½FlðtiÞ � Flðtiþ2Þ�; ð16Þ
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xlðtiþ2Þ ¼
1

2
½xlðtiþ1Þ þ xlðtiþ3Þ� þ

Dt
8
½Flðtiþ1Þ � Flðtiþ3Þ�; ð17Þ

xlðtiþ3Þ ¼
1

2
½xlðtiþ2Þ þ xlðtiþ4Þ� þ

Dt
8
½Flðtiþ2Þ � Flðtiþ4Þ�: ð18Þ

In practice, we find it is sufficient to evaluate only 2 out of 3 Hermite constraints to obtain

smooth and accurate solutions. This reduces the computational effort without compromising

accuracy on solutions.

The control variable u and its time derivative du/dt were bounded by 0 ⩽ u ⩽ 1mV and

−1mV.ms−1 < du/dt< + 1mV.ms−1. The u(ti) were computed as an additional state variable

across the assimilation window. To regularize convergence, we smoothed the fast oscillations

of u by applying the above Hermite conditions (Eq 18).

The adaptive step size was implemented automatically assigning step size Δt during action

potentials when Vexp > −65mV, and pΔt (p = 2 or 4) otherwise.

Assuming G to be the number of data point groupings across the assimilation window, the

problem overall had L × G constraints due to Boole’s rule and 2(L + 1) × G constraints from

Hermite’s conditions.

Supporting information

S1 Fig. Dependence of parameter identifiability on the complexity of the current injec-

tion protocol. (a) Dispersion of extracted parameters of the RVLM neuron model in

response to a complex current stimulation protocol (grey line). (b) Same as (a) for a simpler

current protocol (blue line). (c) Complex (grey) and simple (blue) current protocols used

to stimulate the neuron and to constraint the parameters obtained in (a) and (b). (d) Size-

ranked eigenvalue spectra of the covariance matrices Ŝ of parameters estimated using the

two current protocols in (c).

(TIF)
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