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Abstract

Hybrid multiscale agent-based models (ABMs) are unique in their ability to simulate individ-

ual cell interactions and microenvironmental dynamics. Unfortunately, the high computa-

tional cost of modeling individual cells, the inherent stochasticity of cell dynamics, and

numerous model parameters are fundamental limitations of applying such models to predict

tumor dynamics. To overcome these challenges, we have developed a coarse-grained two-

scale ABM (cgABM) with a reduced parameter space that allows for an accurate and effi-

cient calibration using a set of time-resolved microscopy measurements of cancer cells

grown with different initial conditions. The multiscale model consists of a reaction-diffusion

type model capturing the spatio-temporal evolution of glucose and growth factors in the

tumor microenvironment (at tissue scale), coupled with a lattice-free ABM to simulate indi-

vidual cell dynamics (at cellular scale). The experimental data consists of BT474 human

breast carcinoma cells initialized with different glucose concentrations and tumor cell conflu-

ences. The confluence of live and dead cells was measured every three hours over four

days. Given this model, we perform a time-dependent global sensitivity analysis to identify

the relative importance of the model parameters. The subsequent cgABM is calibrated

within a Bayesian framework to the experimental data to estimate model parameters, which

are then used to predict the temporal evolution of the living and dead cell populations. To

this end, a moment-based Bayesian inference is proposed to account for the stochasticity of

the cgABM while quantifying uncertainties due to limited temporal observational data. The

cgABM reduces the computational time of ABM simulations by 93% to 97% while staying

within a 3% difference in prediction compared to ABM. Additionally, the cgABM can reliably

predict the temporal evolution of breast cancer cells observed by the microscopy data with
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an average error and standard deviation for live and dead cells being 7.61±2.01 and 5.78

±1.13, respectively.

Author summary

The calibration of agent-based models of tumor cell growth to experimental data remains

a challenge in computational oncology. Besides the computational cost of modeling thou-

sands of agents, the model’s intrinsic stochasticity demands numerous realizations of the

simulations to accurately represent the statistical features of the model predictions. We

developed a hybrid, multiscale, coarse-grain, agent-based model that captures the growth

and decline of human breast carcinoma cells under different initial conditions. We deter-

mined the effects of coarse-graining the ABM on the multiscale model output and the

number of repetitions necessary to capture the stochastic transitions present in the model.

We identified the most influential parameters on the model prediction through a sensitiv-

ity analysis and selected which parameters can be fixed and which ones should be cali-

brated. Using Bayesian calibration, we show that the model can accurately represent the

experimental data. The validation step indicates that our model can reliably predict the in
vitro temporal data, depending on the choice of the training (calibration data) sets.

Introduction

Tumor growth and treatment response are governed by the complex interplay of numerous

phenomena occurring at various spatial and temporal scales. Hybrid multiscale models of

tumor development consist of discrete models of individual cell interactions and their pheno-

typic transitions coupled to continuum models of microenvironmental evolution. These mod-

els allow investigation of the complex mechanisms of tumor initiation and growth at the

interface of cellular, microenvironmental, and tissue scales events. More specifically, hybrid

multiscale agent-based models (ABMs) consist of a continuum model capturing the spatiotem-

poral evolution of nutrients and growth factors in the tumor microenvironment. At the cellu-

lar scale, agent-based models simulate individual cell division and growth, cell-cell and cell-

microenvironment interactions, and phenotypic switches that follow a user-defined set of

probabilistic rules. The discrete agent-based and continuum models are coupled such that cel-

lular dynamics influence the continuum model through nutrient consumption, while the con-

centration of nutrient impacts the decision-making process of the individual agents in the cell-

scale model [1–19]. Compared to models governed by differential equations (see, e.g., [20–

24]), the primary benefit of combining multiple models in ABMs is the ability to simulate cou-

pled, multiscale processes and mechanisms responsible for tumor growth and treatment

response [25]. This provides an opportunity to computationally test a range of hypotheses on

the underlying biological phenomena driving cancer development. In this regard, hybrid

ABMs have become powerful computational tools to study the complex and multiscale pro-

cesses of tumor development including, for example, proliferation [14, 26], migration [11, 27],

invasion [3, 5], angiogenesis [28, 29], treatment effects [30], along with mechanical [3, 31, 32]

and biochemical [11, 26] cues. For example, Macklin et al. [1, 26] used an agent-based model

of ductal carcinoma calibrated to patient data to estimate biophysical parameters that are chal-

lenging to observe experimentally, such as time duration of apoptosis and cell calcification.

Additionally, Rocha et al. [3] developed a hybrid three scale model consisting of a reaction-
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diffusion type continuum model of the tumor microenvironment (tissue scale), a lattice-free

ABM of cell dynamics (cellular scale), and an inter- and intracellular signaling pathways

model represented by a system of coupled nonlinear differential equations (sub-cellular scale).

The model describes the major biological feature of tumor cell dynamics, such as the prolifer-

ative, hypoxic, and necrotic regions. For a comprehensive review of discrete and hybrid tumor

growth models and their applications, the interested reader is referred to [33], and the refer-

ences cited therein.

In spite of these advances in agent-based models, they still possess fundamental limitations

that restrict their ability to accurately predict the evolution of a tumor given practical, experi-

mental scenarios—a major goal of this developing field [34, 35]. In particular, the computa-

tional cost increases rapidly with the number of simulated agents since the evolution of the

system relies upon the interactions of the individual cells with both each other and the sur-

rounding milieu. This makes ABMs extraordinarily challenging for simulating large biological

systems on practical time and length scales (see, e.g., [36, 37]). Another challenge arises when

attempting to calibrate hybrid ABMs to experimental data as the models typically require mea-

surements that span the micro- to macroscopic scales. Obtaining such measurements may be

cost-prohibitive or not technically feasible. Furthermore, the intrinsic stochasticity of ABMs

(due to the probabilistic decision criteria describing, for example, phenotypic transitions) adds

further computational complications [38, 39]. Thus, standard parameter estimation techniques

cannot adequately characterize the errors in ABM parameter calibrations [40], and new

approaches are needed. Despite these barriers, there have been several previous efforts

attempting to calibrate ABMs using experimental data. For example, Jiang et al. [5] showed

that an ABM successfully captures the growth of mouse mammary tumor spheroids observed

from in vitro measurements. Macklin et al. [26] calibrated a hybrid ABM using x-ray mammo-

graphic measurements of ductal carcinoma in situ and demonstrated the ability of the model

to depict tumor heterogeneity. However, there are pronounced uncertainties in the parameters

estimated from calibrating ABMs to experimental data, which translates into uncertainties in

model predictions.

A common approach to reducing the high computational cost associated with hybrid

ABMs is representing clusters of cells within the biological system by individual agents [31,

41–43], rather than simulating each cell with its own agent. This approach is known as

“coarse-graining” in particle simulations of chemical or physical processes whereby several

physical particles are lumped into a single simulation agent (or bead) to substantially reduce

the degrees of freedom (see, e.g., [44]). Additionally, improving the predictive utility of hybrid

ABMs in cancer requires the integration of data and models through a systematic model cali-

bration and validation scheme that rigorously handles uncertainties in data and parameter

calibration [25, 45, 46] as well as parameter inference methods that cope with the inherent sto-

chasticity of the model [47, 48].

In this contribution, we overcome these challenges by developing a reduced-order ABM

and implementing a parameter calibration method to address the stochasticity of the model.

In particular, we establish a coarse-grained, two-scale ABM (cgABM) that reduces both the

parameter space and computational cost, and can be adequately informed with a set of in vitro,

time-resolved microscopy data of human breast carcinoma cells growing from a range of ini-

tial confluences and nutrient levels. By conducting a time-dependent variance-based global

sensitivity analysis, we identify the relative importance of the parameters within the cgABM

simulations. We then perform a Bayesian calibration to infer the cgABM parameters from the

microscopy data while allowing for quantification of the uncertainties in model prediction due

to model inadequacy and data uncertainty. The calibration is performed via a moment-based

Bayesian inference that generalizes the likelihood function to account for the stochasticity of
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the cgABM in the inverse problem. Additionally, the Bayesian inferences are implemented

using parallel codes with efficient use of high-performance computing resources that enable

conducting the computationally expensive Bayesian calibration of the cgABM. Finally, the

validity of our approach is assessed by predicting a set of measurements outside the calibration

data.

Materials and methods

Experimental measurements

Cell lines and cell culture. BT474 human breast carcinoma cells were obtained from

American Type Culture Collection (ATCC, Manassas, VA). The cells were grown in Dulbec-

co’s modified eagle medium (DMEM, Thermo Fisher Scientific Inc., Waltham, MA) supple-

mented with 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO) 1% L-glutamine

(Thermo Fisher Scientific Inc.), and 1% Penicillin Streptomycin (Thermo Fisher Scientific

Inc.) in 5% CO2 and air at 37˚C.

D-(+)-glucose solution (Sigma-Aldrich) was added to glucose free DMEM to yield media

with glucose concentrations of 2, 5, and 10 mM, which was not replenished during the experi-

ments. For each glucose level there were three initial seeding densities, each with four repli-

cates. Cells were seeded at a density of 3.5 × 104, 5.0 × 104 and 6.0 × 104 cells/well on a 96-well

tissue culture plate. We note that, in the present study, all references to “nutrient” in the model

development presented above refer to glucose.

Time-resolved microscopy. Cells were incubated in the IncuCyte live-cell imaging system

(Essen BioScience, USA). Multiple images were acquired with a 4× objective and automatically

stitched together to obtain a whole well image for each well. The IncuCyte Cytotox Red reagent

(Essen BioScience, USA), a highly sensitive cyanine nucleic acid dye, was added into the

medium to quantify cell death. Once a cell’s plasma membrane begins to lose integrity, the

cytotox red enters the cell and yields a 100–1000-fold increase in fluorescence upon binding to

deoxyribonucleic acid (DNA). Phase-contrast images and fluorescent images (Red channel,

excitation wavelength: 585 nm and emission wavelength: 635 nm) were acquired every 3 hours

for 96 hours.

Image segmentation to quantify confluence over time. The BT-474 cells within the

phase-contrast images at each time point were segmented in Matlab (The Mathworks, Inc.,

Natick, MA). The first step was to define a mask corresponding to the size of a well in a

96-well-plate from the IncuCyte Software (Essen BioScience, Ann Arbor, MI). The mask was

applied such that the region of interest only included the area within each well. The masked

region was converted to grayscale and with the Matlab function “colfilt”, we calculated the

standard deviation of signal intensities within each 3-by-3 sliding block of the image to detect

the edge of cell clusters. Following that, a Gaussian filter was applied to smooth the image

which was then normalized to yield signal intensities between 0 and 1 (by dividing the value in

each pixel by the highest signal intensity from each image). Next, with the Matlab function

“imerode”, we shrank the clusters size and enlarged the holes to avoid losing open space within

clusters. The image was then binarized via the function “im2bw”, while the functions “imclose”

and “imopen” were used to fill holes in the interior of cell clusters and to smooth object con-

tours, respectively. Finally, small objects were removed from the image via the function “bwar-

eaopen”. After the image segmentation is completed, the confluence is calculated by summing

the area of all the segmented objects (i.e., the cells) and dividing it by the area of the well.

Time-resolved microscopy data. Fig 1 displays a series of images showing tumor cell con-

fluence over time in which the cells were seeded at a density of 5.0 × 104 cells/well with either 2

mM (row A) or 10 mM glucose (row B). It is observed that as time progresses, the tumor cells
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in row A rapidly consume the glucose, yielding an environment that becomes somewhat unfa-

vorable for continued expansion as manifested by the increase in dead cells (red) decays after

day 2. Conversely, the cells seeded within 10 mM of glucose (row B) are able to continue to

expand with minimal cell death. (See figure caption for more details).

Hybrid two-scales agent-based model

The model we develop is a modification of a hybrid cell-tissue ABM we previously introduced

[3] which links the tissue, cell, and sub-cell scales. Briefly, at the tissue level, the dispersion of

nutrients and growth factors in the tumor microenvironment is modeled through reaction-dif-

fusion equations. The ABM characterizes the cell level by describing normal and tumor cell

dynamics, with cancer cells differentiated into proliferative, apoptotic, hypoxic, and necrotic

states. Finally, the sub-cell scale integrates the epidermal growth factor receptor (EGFR) path-

way as modeled by a system of coupled nonlinear differential equations. As our primary inter-

est here is to calibrate this model to the time-resolved microscopy measurements of a growing

tumor mass, we neglect the sub-cellular signaling pathway model, reduce the possible cell phe-

notypical states, and coarse-grain the discrete model so that each agent represents multiple

cells with the same phenotypes. Additionally, to preserve the fidelity of the hybrid cgABM in

depicting the observational measurements, the rule-based decisions of phenotypical transi-

tions are enhanced compared to [3]. The details of the discrete cellular scale, the continuous

tissue scale, and their coupling are summarized in the next subsections.

Fig 1. Time-resolved microscopy data. Row A presents example images from one well on days 0, 1, 2, 3, and 4 post

seeding. While the whole-well image consists of 2240 × 2240 pixels, here we present a window of 400 × 400 pixels

within the same area. These are merged images of phase contrast images and fluorescent images where dead cells were

labeled in red by the Cytotox Red. Percent confluence of live and dead cells within the whole well are shown in the

upper right corner of each panel. In this well, the cells were seeded at a density of 5.0 × 104 cells/well, supplied with

culture medium containing 2 mM glucose. With these initial conditions, the available nutrient allowed the tumor cells

to increase in confluence until day 2, after which the environment cannot sustain growth, resulting in cell death. Row B

presents example images from another well on days 0, 1, 2, 3, and 4 post seeding, where cells were seeded at the same

density, supplied with culture medium containing 10 mM glucose. With these initial conditions, the available nutrient

allowed the tumor cells to increase in confluence in 4 days. Each panel in row C presents confluences as a function of

time (sampled every three hours) with the initial glucose level shown in the subtitle. In each panel, the average

confluence of live cells with low, medium, and high seeding density are shown in blue, green, and orange solid lines,

respectively, with the 95% confidence interval shown with shaded regions. The average confluence of dead cells with

low, medium, and high seeding density are shown in blue, green, and orange dashed lines, respectively, with the 95%

confidence interval shown with shaded regions.

https://doi.org/10.1371/journal.pcbi.1008845.g001
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Discrete cellular scale model. The interactions between cells are captured by a discrete,

lattice-free ABM in which the agents (i.e., a single tumor cell or a cluster of cells) are free to

move throughout the domain unrestrained by a grid. As done in [3, 26, 28, 49], we represent

the cell as a circle, and track the cell radius over time. The geometry of the ith cell, at time t and

position xi, is defined by its radius Ri, with an incompressible nucleus of radius RNi . We also

define an action radius RAi (with RNi < Ri < RAi ) to specify short-range interactions capturing

cell-cell adhesion and repulsion. In the cgABM, the cell radius, the cell nuclear radius, and the

cell action radius are scaled by multiplying the single cell values by the square root of the num-

ber of cells per agent (i.e., the coarse-grained process). Thus, the area of the agent is propor-

tional to the number of cells present. As the model does not track the shape of the cell, and

assuming that cells that deform due to cell-cell interactions keep the same area, the tumor cell

confluence is computed by summing the cell’s current area, disregarding overlap of the agents.

The cell area changes over time during cell growth. When the cell divides, it splits into two

cells, with each daughter cell having half of the area of the original cell. The radius of these cells

changes over time until each daughter cell has the same area as the original cell. After the cell is

fully grown, its area is not affected by interactions with surrounding cells. With these defini-

tions, cell movement is determined by the following three mechanisms [3, 26]:

1. The cell-cell adhesive force, Fcca, and cell-cell repulsive force, Fccr, between the ith and jth

cells are defined as,

Fijcca ¼ � ccca

Δ

φðlij;RAi þ R
A
j Þ; ð1Þ

Fijccr ¼ � cccr
Δ

cðlij;RNi þ R
N
j ;Ri þ RjÞ; ð2Þ

where lij = xj − xi is the distance between the center of the ith and jth cells, and ccca and cccr
are the cell-cell adhesion and repulsion scale parameters, respectively. The interaction

potentials for adhesion, φ, and repulsion, ψ, are given by,

Δ

φðl;RAÞ ¼

(
jlj
RA � 1
� �2 l

jlj ; 0 � jlj � RA;

0; otherwise;
ð3Þ

Δ

cðl;RN ;RÞ ¼

�
RN jlj
R2 �

2jlj
R þ 1

� �
l
jlj ; 0 � jlj � RN ;

�
jlj2

R2 �
2jlj
R þ 1

� �
l
jlj ; RN � jlj � R;

0; otherwise:

8
>>>>><

>>>>>:

ð4Þ

In Eq (3), the effects of the adhesion between the cells begins when their action radius over-

laps, with the adhesion intensity increasing as the distance between the cells decreases. This

phenomenon is balanced by the repulsion force, Eq (4), which begins to act when there is

contact between two cells (i.e., the distance between the two cells is equal the sum of their

radius). As we assume that cell nucleus is incompressible, the effects of the repulsion

increases if the nucleus of the cells overlap.
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2. The compression force, Fct, and the resistance to the compression force, Fccr, represent the

effects of the boundary on the ith cell as it grows and it is given by,

Fict ¼ � cct

Δ

φðli;RAi Þ; ð5Þ

Firct ¼ � crct

Δ

cðli;RNi ;RiÞ; ð6Þ

where li is the distance between the ith cell and the domain boundary, and cct and crct are

the cell-boundary adhesion and repulsion scale parameters, respectively. The simulation

domain represents the whole experimental well. Therefore, we consider a non-permeable

incompressible boundary, such that the tumor cells cannot leave the domain.

3. Due to the low speed of interstitial flow, the linear drag force of interstitial fluid flow, Fdrag,
is captured via,

Fidrag ¼ � nvi; ð7Þ

where vi is the velocity of the ith cell, and the constant ν characterizes the fluid viscosity.

The balance of forces acting on the ith cell of mass mi is obtained by Newton’s second law,

mi _vi ¼
XNðtÞ

j ¼ 1

j 6¼ i

ðFijcca þ FijccrÞ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
cell-cell interaction

þ ðFidrag þ Fict þ FirctÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cell-microenvironment interaction

; ð8Þ

where N(t) is the total number of cells. Disregarding the inertial effects and substituting the

drag force from Eq (7) into Eq (8) results in the velocity of the ith cell as

vi ¼
1

n

XNðtÞ

j ¼ 1

j 6¼ i

ðFijcca þ FijccrÞ þ Fict þ Firct

0

B
B
@

1

C
C
A: ð9Þ

Thus, the position of the cell at time tk+1 is given as:

xiðtkþ1Þ ¼ xiðtkÞ þ viDt; ð10Þ

where Δt = tk+1 − tk indicates the time interval.

In our model, the possible cell phenotypes are quiescent, Q, proliferative, P, and dying

cells, D. Fig 2 provides a schematic illustration of rules for transitioning between these states.

After a time τP − τG1, (i.e., the differences between the duration of the cell cycle, τP, and the

duration of the growth phase, τG1) the cell undergoes mitosis in which two daughter cells, each

with half the area of the parent cell, are created in a deterministic process. The daughter cells

grow until they reach the area of the parent cell, and enter the quiescent state after time, τG1.

The transitions from the quiescent, Q, to the proliferative, P, and death, D, phenotypes are

stochastic processes [3, 26, 49] and governed by the following probabilities:

PðDjQÞ ¼ 1 � expð� aDðsÞDtÞ; ð11Þ

PðPjQÞ ¼ 1 � expð� aPðsÞDtÞ: ð12Þ

In Eqs (11) and (12), the intensity factors αD and αP are functions of the nutrient
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concentration σ:

aDðsÞ ¼ �aD þ gD
1

1þ expð� 2kðsH � sÞÞ
; ð13Þ

aPðsÞ ¼ max �aP
s � sH
1 � sH

; 0

� �

; ð14Þ

where �aD is the apoptosis rate, γD controls the increase in cell death due to the lack of nutri-

ents, σH is the glucose threshold, and �aP is the proliferation rate. The second term on the

right-hand side in Eq (13) is a smooth approximation to the step function, such that a larger

value of k leads to a sharper transition at σ = σH. This term is incorporated to capture

dynamics due to limited glucose availability, while its parameters can be well informed by

the in vitro measurements of dead cell confluence. Eq (14) simulates the regulatory effect of

the nutrient on cell proliferation up to the threshold σH, below which the cell does not have

enough nutrient to undergo mitosis. In this model, we assume that the oxygen levels are suf-

ficient everywhere, so that glucose is the only limiting factor. In Fig 3, we present the effects

Fig 2. Schematic illustration of phenotypic transitions and geometric cell description. In the ABM, the geometry of

the cell is approximated by a circle, where each agent stores the position of the cell (x), nucleus radius (RN), cell radius

(R), and action radius RA. The cell radius is selected such that the area of the agent (A) is the same as the average cell

area. The transitions between cell phenotypes can be deterministic (black arrows) or stochastic (red arrows). The

transitions from quiescent cells (Q) are controlled by the intensity functions αP and αD, which govern the transition to

proliferative (P) and dead (D) cells, respectively. These transitions probabilities are proportional to the glucose

concentration, σ. After a quiescent cell transition to the proliferative phenotype, the cells split into two cells with half of

the original area after time interval τP − τG1, where τP is the duration of the cell cycle, and τG1 is the duration of the

growth phase G1. This time interval includes the S and G2 phases of cell cycle. The adhesion and repulsion forces act

on these new cells (blue arrows) to maintain the distance between them. The new cells enter the growth phase,

reaching the same area as the original cell, and then return to the quiescent state.

https://doi.org/10.1371/journal.pcbi.1008845.g002
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of the glucose threshold in Eqs (13) and (14). While σH can be interpreted as the glucose

threshold, the parameter actually represents the threshold beyond which there is an increase

cell death due to an unfavorable environment. This value can change for different experi-

mental scenarios as other factors might play a role in increasing cell death (e.g., cell crowd-

ing, death of surrounding cells, and other mechanical and chemical interactions). The

phenotypic transition could be further extended to include, for example, the transition from

proliferative to quiescent cells due to spatial constraints. However, we decided to simplify

our model (and the subsequent required measurements) by considering the death of the

cells due to unfavorable conditions (in this case, the lack of glucose) would partially capture

this behavior.

Continuum tissue scale model. The nutrient dynamics (i.e., the temporal change in glu-

cose concentration) is modeled at the tissue scale in which the nutrient is assumed diffuse in

the microenvironment and taken up by living cells. Nutrient concentration, σ, is governed by a

mass conservation condition based on reaction-diffusion equations. Let O be the domain with

a smooth boundary δO in which the development of living cells takes place due to the presence

of nutrient, the governing equations at the macroscale is [3, 26, 49]:

@s

@t
¼

Δ

� ðD

Δ

sÞ � Lðx; tÞs; in O; ð15Þ

n �

Δ

s ¼ 0; on @O; ð16Þ

where D is the nutrient diffusion, n is a unit normal vector to @O, and Λ(x, t) is a function

describing the nutrient uptake rate. This function couples the discrete model with the contin-

uum model (the cellular and tissue scales, respectively), and it is given as

Lðx; tÞ ¼ lrt; ð17Þ

where λ is the nutrient consumption rate by living cells (i.e., quiescent plus proliferative cells),

and ρt is the volume fraction occupied by live cells. The nutrient uptake rate function averages

the microscale (cellular) events.

Numerical solution of the hybrid ABM. The ABM is implemented in C++ using an

object-oriented approach to model each cell in an object that stores the position (x, used in Eq

(10)), velocity (v, computed in Eq (9)), and the forces acting on each cell (Eqs (1), (2), (5) and

(6)). Additionally, the nuclear radius, cell radius, and the action radius are all saved to track

Fig 3. Transition probabilities of quiescent cells. Panels A) and B) present the dynamics of Eqs (13) and (14),

respectively. We assume �aD ¼ 1, γD = 1, �aP ¼ 1, and k = 50. In panel A), the apoptosis probability has two constants

values, below and above the glucose threshold, while k controls how smooth the transition is between these two

constants. The apoptosis probability when σ> σH is proportional to �aD, and proportional to �aD þ gD when σ< σH. In

panel B), if the glucose concentration, σ, is below σH, the proliferation probability is equal to zero. However, if σ> σH,

the probability increases as the glucose concentration increases.

https://doi.org/10.1371/journal.pcbi.1008845.g003
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each cell’s growth and compute the forces acting on the cells. The continuum reaction-diffu-

sion model is solved using the C++ finite-element library libMesh [50]. The code itself, as a

well as a description of how to use it, is provided at https://doi.org/10.6084/m9.figshare.

15109209.v1. In summary, the solution steps of the hybrid ABM are:

1. Initialize the nutrient field uniformly according to the value used in the in vitro experimental

condition (we normalized the initial condition by the highest value used experimentally).

2. Initialize the discrete model by seeding the tumor agents positions randomly in the domain

such as the model confluences match the experimental live and dead cells tumor conflu-

ences. The fraction of proliferative cells among the live cells at the initial condition is

between 0 and 1 (and determined by Eq (14)), and while the remaining live cells are

quiescent.

3. Solve the reaction-diffusion equation (Eq (15)) and update the microenviroment

conditions.

4. Update the phenotypic states based on the nutrient concentration.

5. Compute the balance of the forces acting on each cell (Eq (9)), and update cell positions

(Eq (10)).

6. Return to step 3 and solve the model until the desired length of simulation is reached.

Variance-based global sensitivity analysis

Global sensitivity analysis allows understanding and quantifying the impact of model parame-

ters on the variation of the model outputs [51–53]. In time-dependent biological processes,

such as those simulated by multiscale ABMs, sensitivity analysis determines the relative impor-

tance of each model parameter on the system responses during its evolution. In this regard,

conducting sensitivity analysis aids in understanding the biological mechanisms that govern

the system behavior. At the same time, it can guide the model calibration process by refining

the estimations of the most effective parameters.

We employ a variance-based global sensitivity analysis method (also known as the Sobol’

Indices), in which the sensitivity of the model output to input parameters is computed by the

quantity of (conditional) variance in the output caused by that specific input [54–56]. This

method allows analyzing numerous model parameters simultaneously as well as being suffi-

ciently general to handle complex multiscale problems. We now summarize the application of

this method to our problem.

In a non-additive model, such as an ABM with K uncertain parameters (input factors)

fykg
K
k¼1

, the model output d(θ) = d(θ1, θ2, � � �, θK) depends on the interactions among the

parameters. The model output variance, VðdÞ, can be decomposed by conditioning with

respect to all inputs except θk [57, 58],

VðdÞ ¼ Vθ�k
ðEykðdjθ�kÞÞ þ Eθ�kðVykðdjθ�kÞÞ; ð18Þ

where θk is the k-th input factor, where θ�k indicates the matrix of all factors except θk, and

Eθ�kð�Þ and Vθ�k
ð�Þ represents the mean and variance, respectively, taken over all possible val-

ues of θ�k while θk is fixed. Eq (18) results in a sensitivity measure; the so-called total effect
index [57, 58],

STk ¼ 1 �
Vθ�k
ðEykðdjθ�kÞÞ
VðdÞ

: ð19Þ
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In Eq (19), Vθ�k
ðEykðdjθ�kÞÞ denotes the expected reduction in variance if all values other than

θk are fixed. Thus, the total effect, STk , measures the contribution of the input θk to the model

output variation. A “small” total effect index indicates that fixing θk at any value within the

range of its uncertainty will not affect the model output significantly.

Monte-Carlo estimation of total effect sensitivity index. To compute the sensitivity

index, we employ an efficient sampling method and an estimator proposed by Saltelli [52, 57,

59, 60]. Estimating STk using this method consists of constructing two N × Kmatrices, A and

B, in which N random samples are drawn from a uniform distribution corresponding to the

range of each parameters’ uncertainty. Additionally, Kmatrices AðkÞB ; k ¼ 1; 2; . . . ;K, are

defined where all columns are from A except the kth column, which comes from B. The model

outputs are then evaluated for each row of the matrices A and AðkÞB and the outputs are stored

in the vectors YA and YðkÞAB. The total-effect index for each parameter, fSTkg
K
k¼1

, can be approxi-

mated using the following estimator [60],

STk �
1

2N

XN

j¼1

ðYAÞj � ðY
ðkÞ
ABÞj

� �2

: ð20Þ

This algorithm reduces the computational cost of estimating multi-dimensional integrals to

N(K + 1) model evaluations. For a time-dependent process, the above steps can be repeated for

each time instance to represent the temporally-varying importance of each model parameter.

We present the time evolution of STk for multiple ABM outputs (e.g., live and dead tumor cells

with different nutrient and confluence initial conditions) in the Results section.

Model calibration under uncertainty

Predictive modeling of biophysical systems requires characterizing the uncertainties in both

the model parameters (due to simplifying assumptions made to develop the model) and the

experimental data (due to noise and variability in measurements), as well as the uncertainty in

the Quantity of Interest (QoI; i.e., the target of the prediction). Bayesian approaches to prob-

lems of statistical inference provide general frameworks for identifying the essential features of

a predictive model, while also providing means to characterize uncertainty. The main feature

of these approaches is that the model parameters, θ, and the observational data, D, are random

variables represented by probability density functions (PDFs), π(θ) and π(D), respectively. In

this section, we first summarize a Bayesian calibration and validation process, and then discuss

the form of the likelihood function for Bayesian inference of our stochastic ABM along with

the numerical solution using a multi-level sampling algorithm.

Bayesian statistical inference. To represent the uncertainties in both the data and the

model parameters, we make use of a statistical inference method in which the probability den-

sity functions (PDF) of the calibrated parameters are given by Bayes’ formula [61]:

ppostðθjDÞ ¼
plikeðDjθÞ � ppriorðθÞ

pevidðDÞ
: ð21Þ

In Eq (21), πpost(θ|D) is the posterior PDF defining the Bayesian update of the prior informa-

tion represented by πprior(θ), πlike(D|θ) is the likelihood PDF, and πevid(D) is the evidence seen

as a normalization factor (since
R
πpost = 1),

pevidðDÞ ¼
Z

plikeðDjθÞ � ppriorðθÞ dθ: ð22Þ
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One can use the principle of maximum entropy to construct the prior of the model parameters

[62] based on their known features (e.g., bounds, mean, and variance). In the case that only

the parameters’ bounds are available, then a uniform distribution is used as a prior θ. Finally,

to explain the posterior PDF, πpost(θ|D), with a point estimate, one can use a Maximum A Pos-

teriori (MAP) defined as,

θMAP
¼ argmax

θ
ppostðθjDÞ: ð23Þ

Likelihood function for stochastic forward models. The form of the likelihood function

reflects the way the discrepancy between the model output and the data are modeled. To

account for uncertainties in computational models (i.e., model inadequacy) and measurement

data (i.e., data noise), likelihood functions can be constructed by assigning a probability distri-

bution, p�, to the error representing the difference between the observational data, D, and the

model output, d. The hybrid, agent-based model involves inherent randomness due to the sto-

chastic processes defining the transition between the quiescent (Q), proliferative (P), and

dead (D) states. Thus, the same set of parameter values, boundary conditions, and initial con-

ditions will result in an ensemble of different outputs. The model output for the case of the sto-

chastic model is represented by d(θ, ω), where ω 2 O with O the set of possible outcomes.

Under the additive noise assumption (see, e.g., [63–66]), the total error is described as ϵ = η +

ξ = D − d(θ, ω), in which η and ξ indicate data noise and model inadequacy, respectively.

Then the likelihood function is the probability density function describing the total error and

is written as

plikeðDjθÞ ¼ p�ðD � dðθ;oÞÞ; ð24Þ

where p� is a probability distribution. Here we assume that the error in the data and the model

are Gaussian random variables with zero mean,

Z � N ð0;Γ� 1

dataÞ; x � N ð0;Γ� 1

modelÞ; ð25Þ

where Γdata and Γmodel are the covariance matrices.

To develop the likelihood for stochastic models, at each time step, i = 1, � � �, Nt, we denote a

data point DðjÞi as a sample from a distribution, DðjÞi � pðDÞ with j = 1, � � �, ND. Similarly, to

represent the randomness in the stochastic model, we consider diðθ;ojÞ ¼ dðjÞi as j = 1, � � �, Nr
independent identically distributed realizations of the model output at fojg

Nr
j¼1

as samples

from a distribution dðjÞi � pðdjθÞ. To represent the distance between the observational data

D and the model output d in the likelihood function, we take the first moments of p(D) and

p(d|θ). The sample estimates of the mean of the data and model are, respectively,

mdi ðθÞ ¼
1

Nr

XNr

j¼1

dðjÞi ðθÞ; ð26Þ

mDi ¼
1

ND

XND

j¼1

DðjÞi : ð27Þ

We note that using sample-based estimates of the statistical moments with a finite number of

model evaluations introduces statistical uncertainties in computing the means. While one can

account for such uncertainties by approximating the variances of the moment estimators using
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methods of moment-based inference [67, 68], we consider sufficiently large Nr to minimize the

statistical error as shown in the Results section. The assumptions in Eq (25) result in p� being a

normal distribution ϵ � N ð0;Γ� 1

noiseÞ, where Γnoise is the covariance matrix representing the

data noise and model error. Assuming Γdata ¼ ðs
D
i Þ

2I and Γgreysmodel ¼ ðsdi ðθÞÞ
2I in Eq (25),

one can write

Γnoise ¼ ðsiÞ
2I; ðsiÞ

2
¼ ðsDi Þ

2
þ ðsdi ðθÞÞ

2
; i ¼ 1; 2; � � � ;Nt: ð28Þ

Following the above considerations, the proposed likelihood function for the stochastic ABM

can be written explicitly as

lnðplikeðDjθÞÞ ¼
XNt

i¼1

1

2
lnð2pÞ � lnðsiÞ �

1

2

mdi ðθÞ � m
D
i

si

� �2
 !

: ð29Þ

Sampling method for Bayesian inference. To conduct Bayesian inference, one needs to

compute the posterior density πpost(θ|D) as the solution of the statistical inverse problem. Typ-

ically, Markov Chain Monte Carlo (MCMC) sampling methods are employed to characterize

the posterior distribution as they guarantee asymptotically exact recovery of the posterior dis-

tribution as the number of samples increases (see, e.g., [69, 70]). The solution of the Bayesian

problem is computationally expensive as the posterior distribution may be a complex object

requiring a large number of model evaluations. For the Bayesian calibration and validation of

the ABM, we make use of a parallel, adaptive, multilevel MCMC algorithm [71]. In this work,

we employ the adaptive multilevel MCMC implemented in the C++ library QUESO (Quantifi-

cation of Uncertainty for Estimation, Simulation, and Optimization) [72] and refer the inter-

ested reader to [71] for details on the computational implementation of this method.

Error metric and model validation. To access the quality of the calibrated model in

matching experimental data, we propose a metric using the cumulative probability distribution

functions in L1ðRÞ. Let ϕα be the cell confluence with α = L or D (i.e., live or dead confluences,

respectively). Also, Pd(ϕα) and PD(ϕα) are the cumulative distribution functions for the

model output and the measured data, respectively. The error metric is then given as

M ¼
R1
� 1
jPdð�aÞ � P

Dð�aÞj d�a
F

; ð30Þ

whereF is the mean total confluence obtained from the experimental data. Eq (30) can be con-

sidered as the relative error; however, here we take into account the uncertainties of data and

model prediction. Such error measure can be used to check whether a computational model is

valid for predicting the quantities of interest. To this end, one must specify a tolerance

(accepted) error for the model prediction εtol. If the prediction error is below such tolerance,

say,

1

Nt

XNt

i¼1

Mt � εtol; ð31Þ

then the model is deemed to be valid and can be used for making predictions in scenarios well

characterized by the calibration/validation data.
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Results

In all simulations, a circular domain of radius 3192 μm is used, which corresponds to the in
vitro experimental domain. The computational domain, for the continuum model, is discre-

tized by 2413 triangular elements with no flux permitted through the boundary. This boundary

condition mimics the tumor and glucose being contained by the walls of the culture plate’s

well. The timestep for the glucose and phenotypic transition is one hour, but, during this hour,

the movement of the cells and the balance of the force is computed every minute (or until the

cells reach equilibrium; whichever happens first).

Developing a coarse-grained ABM

The effects of the coarse-graining on the ABM simulations are restrained by the amount of rel-

ative error between the ABM and cgABM. Fig 4 shows the mean relative error and the 95%

credible interval of live (Fig 4A) and dead (Fig 4B) cells confluence for different degrees of

coarsening compared to the single-cell per agent. The simulations are conducted for 5 mM

glucose concentration with the initial confluences of dead and live cells of 0.5 and 0.3, respec-

tively. In the in vitro experiments, the average initial dead cell confluence (i.e., the fraction of

the domain occupied by dead cells) is 0.029 ± 0.005, and the average percentage of dead cells at

day = 0 is 6.5 ± 0.7% [73]. (We note that the cell viability in a healthy cell culture should be 80–

95%; thus, the percentage of dead cells in our experiments is aligned with expectations [74].)

However, we selected a high initial confluence of dead cells (0.3) so that we can observe the

effects of the parameters on the confluence of dead cells from the beginning of the simulations.

The values of the parameters used in these numerical experiments are defined in Table 1, and

the tolerance for the desired mean relative absolute error is set at 5%. This threshold can be

reduced based on the scenario being studied or the acceptable error in the model prediction.

The highest degree of coarsening that satisfies this tolerance, both for live and dead cells, is the

100 cells/agent. It is readily apparent that increasing the degree of coarse-graining results in a

higher error and, more importantly, higher variance in the cgABM simulations. Based on

these results, all subsequent analyses are presented with a coarse-graining of 100 cells/agent.

In the coarse-grained process, the cell radius (R), the cell nuclear radius (RN), and the cell

action radius (RA) are scaled by multiplying the values in Table 1 by the square root of the

number of cells per agent. In both ABM and cgABM, the movement of the agents is propor-

tional to the forces acting on the cells (Eqs (1), (2), (5) and (6)), which are calculated using the

distance between agents and their radii. In the coarse graining scenario, changing R, RN, and

RA is enough to keep the equilibrium distance between agents (i.e., the distance where the sum

Fig 4. Effects of the coarse-graining on the ABM. Mean relative absolute error between the ABM and the cgABM,

and its 95% credible interval (which is the Bayesian equivalent of the confidence interval), of live (A) and dead (B) cells.

The simulations are executed for 16, 36, 64, 100, 144, 196, and 256 cells/agent. The horizontal dashed line indicates our

5% tolerance for the mean relative absolute error indicating that 100 cells/agent is the appropriate scenario for all

subsequent analyses. The mean error and 95% credible interval between the coarse-grained model and the ABM, for

the 100 cells/agent scenario, are 4.64 ± 1.64% and 4.80 ± 1.96% for live and dead cells, respectively.

https://doi.org/10.1371/journal.pcbi.1008845.g004
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of the forces acting on the cell is zero) proportional to the distance of single-cell agents. Thus,

there is no need to change any other values of the model parameters to keep the same move-

ment dynamics in the cgABM as in the ABM. As an example, if we assume ccca = 1 μm/min,

cccr = 0.5 μm/min, RN = 5 μm, R = 10 μm, and RA = 12 μm and insert these values into Eqs (3)

and (4), the equilibrium distance between the agents (i.e., the distance where −(ccca

Δφ + cccr

Δ

ψ) = 0) is set to 7.13 μm from the center of the agent. However, if we scale the radius by 9 (i.e.,

RN = 45 μm, R = 90 μm, and RA = 108 μm), the equilibrium distance is now at 64.17 μm from

the center of the new agent which is also 9× bigger than the previous example. Fig 5 shows the

effects of the coarse-graining method on the spatial dynamics of the tumor and the mean rela-

tive absolute error of 15 coarse-graining scenarios compared to the single cell agent. This

experiment indicates that, even though the error in the tumor confluence is below 5% for the

100 cells/agent, its error in the cluster’s radius is 16.15 ± 8.29%. As our quantity of interest is

the tumor confluence (which disregards the spatial distribution of the cells), we continue the

experiments with a coarse-graining of 100 cells/agent.

Global sensitivity analysis

Variance-based global sensitivity analysis is conducted on the cgABM system to determine

how each parameter contributes to the model outputs (i.e., the live and dead cell confluences).

We perform the analysis for three different initial tumor confluences with the densities of

3.5 × 104 (low), 5.0 × 104 (medium), and 6.0 × 104 (high) cells/well, as well as three initial glu-

cose concentrations (2, 5, and 10 mM), and for seven parameters (K = 7) that we posit control

the cell population (�aP, �aD, D, λ, γD, k, and σH). The other model parameters (i.e., R, RN, RA,

cccr, ccca, τP, τG1, and τA) are kept constant to the values reported in [26] (see Table 1). Due to

the inherent stochasticity of the cgABM, the sensitivity analysis is performed on the sample

estimate of the mean of the model output; i.e., substituting d in Eq (19) with μd from Eq (26),

Table 1. Model parameters.

Parameter Physical meaning Deterministic values

coarse-graining studies

Distributions/Priors

sensitivity analyses/calibration

How assigned

�aP Q! P transition rate 0.0493 h−1 Uð0; 1Þ h� 1 Calibrated

�aD Q! D transition rate 0.000408 h−1 Uð0; 0:02Þ h� 1 Calibrated

D glucose diffusion coefficient 50 μm2/h Uð0; 100Þ mm2=h Fixed

λ glucose uptake rate 0.0483 h−1 Uð0; 1Þ h� 1 Calibrated

γD death rate increase 0.0245 h−1 Uð0; 0:05Þ h� 1 Calibrated

k smooth transition constant 50 Uð0; 100Þ Fixed

σH glucose threshold 0.0538 Uð0; 1Þ Calibrated

R cell radius 9.953 μm Ref. [26]

RN cell nuclear radius 5.295 μm Ref. [26]

RA action radius 1.214R Ref. [26]

cccr cell-cell repulsion coefficient 10 μm/min Ref. [26]

ccca cell-cell adhesion coefficient 0.0489 μm/min Ref. [26]

τP cell cycle time 18 h Ref. [26]

τG1 G1 cell cycle phase time 9 h Ref. [26]

τA apoptosis time 8.6 h Ref. [26]

Deterministic values of parameters used in the coarse-graining studies, parameter distributions for the sensitivity analyses, and priors for the Bayesian model calibration.

The Uð�; �Þ indicates the uniform probability distribution. The results of the sensitivity analysis indicate that k and D do not have a significant effect on live and dead cell

confluences during the 96 hours simulated. Thus, these parameters are assumed to be constant during the model calibration.

https://doi.org/10.1371/journal.pcbi.1008845.t001
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leading to a computational cost of Nc = NrN(K + 1). For estimating the total-effect index for

each parameter in Eq (20), N = 1000 samples are drawn from the uniform distributions given

in Table 1 with Nr = 16 model realizations per sample; therefore, the number of model evalua-

tion required to obtain the total effect index (Eq (20)) is Nc = 128000 (for each initial condi-

tion). The convergence studies show that, when coarsening 100 cells/agent, Nr = 16 model

realizations are able to represent the stochastic model accurately (i.e., with less than 0.2% mean

relative absolute error when compared to the solution with Nr = 10000). Fig 6 shows the total

effect index for each parameter over time, for live (Fig 6A–6C) and dead (Fig 6D–6F) cell con-

fluences for the cases initially seeded with medium confluence (i.e., 5.0 × 104 cells). The simu-

lation starts with the fraction of proliferative cells (P) among the live cells at the initial

condition being given by Eq (14), while the remaining live cells are quiescent (Q). The results

of the sensitivity analyses in this figure indicate that the parameter γD (red line), which controls

the rate of cell death due to lack of glucose, is the most critical parameter affecting the accumu-

lation of dead cells during the simulation. Note that this parameter is also central to determin-

ing the time course of living cell confluence when the concentration of glucose is low.

However, it is the nutrient threshold, σH (black line), that is the most important parameter for

the live cell confluence when the initial nutrient concentration is 5 mM. The proliferation rate

(�aP, purple line) is the most influential parameter for the temporal development of live cells up

to 36 hours, from 36 to 66 hours it is the glucose uptake rate (λ, blue line), while it is γD (red

line) that is the most influential parameter at longer times (for the 10 mM initial glucose con-

centration). In Fig 6, the total effect indices of parameters k (orange line) and D (teal line) are

consistently close to zero and never exceed 0.2. These results indicate that k and D do not have

a significant effect on live and dead cell confluences during the 96 hours simulated. Thus,

these parameters are assumed to be constant (i.e., the fixed values in Table 1) in the calibra-

tions described in the next section. We note that these results are specific to the same scenarios

Fig 5. Error of the coarse-graining on the tumor radius. In panels A and B, snapshots of one realization of the ABM

simulation at hours 0 and 96, respectively, conducted for 10 mM glucose concentration with an initial condition of

10000 cells. In panels A and B, the quiescent tumor cells are blue, dead cells are red, proliferative cells are green, the

daughter cells are in yellow, and the orange line indicates the tumor radius. In panel C, we show the mean relative

absolute error of 200 simulations with 15 different coarsening factor, and its standard deviation. For the 100 cells/

agent, the error of the tumor radius is 16.15 ± 8.29%.

https://doi.org/10.1371/journal.pcbi.1008845.g005
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as the in vitro experiments, and to the same quantities of interest (i.e., live and dead cells con-

fluence), but are not general conclusions about the hybrid two-scale ABMs and the nutrient

diffusion. In the scenarios tested here, the model could be further simplified by removing the

spatial component of the nutrient equation. However, we decided to keep the term to have a

general model which can incorporate spatial data in future studies. The sensitivity analysis for

low and high initial confluences are shown in S1 and S2 Figs, respectively, and corroborate the

conclusions obtained for the medium initial confluence. From Fig 6, S1 and S2 Figs, we con-

clude that the total effect indices of the parameters do not change for dead cells when the initial

tumor confluence changes. However, for the live cells, these indices are affected by the initial

tumor confluence. As the initial confluence increases, the importance of the nutrient uptake

(λ) decreases, and the death rate due to lack of nutrients (γD) increases. As an example, the

total effect index of λ reaches 0.6 for the live cells with 10 mM glucose and low initial conflu-

ence, and it drops to 0.2 as the initial confluence increases to high (i.e., 6.0 × 104 cells/well).

The opposite behavior is observed for the γD total effect index, increasing from 0.2 to 0.6 as the

initial confluence increases.

In Fig 7, a parameter sweep shows the effect of the parameters on the live and dead cell con-

fluence. The base value of the parameters are the ones shown in Table 1 (from the determin-

istic values column). We changed one parameter at a time by 15% (reducing or increasing up

to 30%). The live cells are seeded with 0.5 confluence, and the dead cells with 0.3 confluence.

The tumor dynamics is measured during 96 hours. The results indicate that with an increased

proliferation rate (�ap; panel A), the confluence of both dead and live cells increase (Fig 7A).

However, as we increase the death rate (�aD; Fig 7B), glucose uptake rate (λ; Fig 7C), death rate

increase (γD; Fig 7D), and glucose threshold (σH; Fig 7E) the live cell confluence decreases,

while the dead cell confluence increases.

Scenario-specific calibrations

Guided by the results from the sensitivity analysis, we proceed with the Bayesian calibration

of the cgABM, using the in vitro experimental data. In particular, we will calibrate the prolifer-

ation rate, death rate, glucose uptake rate, death rate increase, and glucose threshold,

Fig 6. Medium confluence sensitivity analysis. Sensitivity analysis of proliferation rate (�aP), death rate (�aD), glucose

diffusion (D), glucose uptake (λ), death rate increase due to lack of glucose (γD), smooth transition constant (k), and

glucose threshold (σH) for live (top row) and dead (bottom row) cell phenotypes seeded with medium confluence.

Panels A-F show the total effect index over time with Panels A, B, and C depicting live tumor cells, while Panels D, E,

and F depict the dead tumor cells. The importance of the parameters is studied for three initial glucose concentrations:

2 mM (Panels A and D), 5 mM (Panels B and E), and 10 mM (Panels C and F). The glucose diffusion and the smooth

transition constant have limited influence on the quantities of interest during the complete simulation (i.e., large

changes in these parameters would yield small changes in tumor composition). Apart from these two parameters, the

total effect index for every parameter is greater than 0.2 during the 96 hours simulated.

https://doi.org/10.1371/journal.pcbi.1008845.g006
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θ ¼ ð�aP; �aD; l; gD; sHÞ, while holding the remaining parameters constant. Before calibrating

the model with measurements, a parameter identifiability analysis of the cgABM (see S1

Appendix) was conducted to ensure the parameters can be inferred with high accuracy from

perfect data. The priors for the parameters to be calibrated and the fixed values for the constant

parameters are defined in Table 1. The uniform priors were selected such that the bounds on

the distribution include the ranges in [3, 26, 28], and live and dead cell confluences were able

to reach 1.0 (i.e., the whole well covered by live and/or dead cells) within 96 hours. As indi-

cated above, the calibration data D consists of the time evolution of live and dead cell conflu-

ences for nine scenarios, comprised of three different initial glucose concentrations (2 mM, 5

mM, and 10 mM) and three different initial tumor confluences with the densities of 3.5 × 104

(low), 5.0 × 104 (medium), and 6.0 × 104 (high) cells/well. As shown in Table 2, we utilize an

abbreviation to refer to each scenario. For example, 2-M represent the scenario with 2 mM of

initial glucose concentration and medium initial tumor cell confluence.

In this section, we present the “scenario-specific calibration” process, in which the cgABM

is calibrated for each of the nine measurement scenarios individually, resulting in nine sets of

calibration posteriors of the model parameters (see S2 Appendix for the computational details

of the Bayesian implementation). Such a calibration process is performed to ensure the devel-

oped cgABM can simulate the experimentally observed responses of cell evolutions and to

investigate the effect of the initial glucose concentrations and tumor confluences on the esti-

mated parameters. The cgABM calibrations using multiple experimental scenarios are pre-

sented in the following section.

Fig 8 compares the calibrated cgABM results with the in vitro data for 2 mM, 5 mM, and 10

mM initial glucose concentrations. The error bars show the data uncertainty due to the four

replicates of the experimental measurements. The prediction results in this figure are obtained

from 200 parameter samples drawn from the calibration posteriors and computing the mean

of the cgABM simulations (solid line) and 95% credible interval (the green and red areas for

live and dead cells respectively). Thus, the uncertainty in the model predictions is due to the

Fig 7. Parameter sweep. Effect of proliferation rate (�aP; panel A), death rate (�aD; panel B), glucose uptake (λ; panel C),

death rate increase due to lack of glucose (γD; panel D), and glucose threshold (σH; panel E) for live and dead cell

phenotypes. The live cells are seeded with 0.5 confluence, and the dead cells with 0.3 confluence. The base value of the

parameters are the ones shown in Table 1 (from the deterministic values column). We changed one parameter at a

time by 15% (reducing or increasing up to 30%). According to Panel A, the live and dead cell confluences are directly

proportional to the proliferation rate. In Panels B, C, D, and E (i.e., for the death rate, glucose uptake, death rate

increase due to lack of glucose, and glucose threshold, respectively), the live cell confluence is inversely proportional to

the parameters being tested, while the dead cell confluence is directly proportional.

https://doi.org/10.1371/journal.pcbi.1008845.g007
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stochasticity of the cgABM as well as the parameter uncertainty. Table 2 presents the error

between the model outputs and the experimental measurements according to Eq (30), and

includes means and the 95% credible interval. Due to insufficient glucose for the higher tumor

cell numbers, the scenarios 2-M, 2-H, and 5-H exhibit an increase of dead cells over time. As

Table 2. Mean error and standard deviation.

Tumor initial condition Glucose Scenario name Scenario-specific Multi-scenario Leave-one-out (Prediction)

Error live Error dead Error live Error dead Error live Error dead

High 10 mM 10-H 1.79 ± 0.24 0.67 ± 0.08 11.10 ± 1.68 6.69 ± 1.50 6.22 ± 1.34 5.53 ± 1.60

High 5 mM 5-H 4.44 ± 0.68 1.73 ± 0.77 6.32 ± 1.12 2.46 ± 0.47 7.28 ± 1.89 4.74 ± 2.27

High 2 mM 2-H 6.43 ± 1.01 3.45 ± 1.15 6.00 ± 1.02 5.93 ± 1.70 13.97 ± 3.69 15.80 ± 5.59

Medium 10 mM 10-M 5.90 ± 0.43 1.71 ± 0.15 8.14 ± 0.72 6.45 ± 1.37 13.93 ± 2.77 7.32 ± 1.55

Medium 5 mM 5-M 4.96 ± 0.37 0.94 ± 0.15 5.09 ± 0.85 5.83 ± 1.40 15.20 ± 3.06 7.30 ± 1.67

Medium 2 mM 2-M 6.97 ± 1.24 2.11 ± 0.64 10.29 ± 1.83 5.09 ± 0.84 20.56 ± 2.85 12.86 ± 1.74

Low 10 mM 10-L 3.68 ± 0.52 1.84 ± 0.20 10.01 ± 1.26 6.44 ± 1.25 7.61 ± 2.01 5.78 ± 1.13

Low 5 mM 5-L 3.41 ± 0.33 1.98 ± 0.33 7.28 ± 1.75 7.27 ± 1.38 9.08 ± 2.00 4.99 ± 0.93

Low 2 mM 2-L 2.18 ± 0.31 2.10 ± 0.18 18.04 ± 3.47 9.37 ± 2.10 21.49 ± 4.27 9.56 ± 2.39

Mean average error 4.42 ± 1.72 1.84 ± 0.74 9.14 ± 3.71 6.17 ± 1.73 12.82 ± 5.36 8.21 ± 3.62

Computed error for the scenario-specific and multi-scenario calibration, and for the leave-one-out prediction. The nomenclature of the scenarios refers to the glucose

concentration (2 mM, 5 mM, and 10 mM) followed by the initial tumor confluence (low—L, medium—M, and high—H). The last row indicates the mean average error

over the nine experiments in each scenario.

https://doi.org/10.1371/journal.pcbi.1008845.t002

Fig 8. Calibration of scenarios with 2, 5, and 10 mM initial glucose concentration. Scenario-specific calibration of

the cgABM to the time-resolved microscopy data for scenarios 2-L (panel A), 2-M (panel B), 2-H (panel C), 5-L (panel

D), 5-M (panel E), 5-H (panel F), 10-L (panel G), 10-M (panel H), and 10-H (panel I). The data mean and 95% credible

interval for the live and dead cells are shown in blue and black, respectively. The mean of the simulation is represented

as a solid line, and the area is the 95% credible interval for the live (green) and dead (red) cells. The low initial

confluence in scenario 2-L assures that the initial glucose concentration can sustain tumor growth during the 96 hours.

The high initial confluence in scenario 5-H is the only one in the experiments with 5 mM initial glucose concentration

for which the initial glucose concentration cannot sustain tumor growth during the 96 hours, leading to an increase in

the dead cell confluence. The 10 mM glucose condition is sufficient to sustain tumor growth during the 96 hours for all

seeding density tested.

https://doi.org/10.1371/journal.pcbi.1008845.g008
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expected, the confluence of dead cells does not significantly increase with time in the scenarios

with higher glucose concentration and lower initial tumor cell confluence. The scenario-spe-

cific calibration errors shown in Table 2 indicate that the model is able to capture the evolution

of live and dead cells with an average error below 7%. Moreover, the model can successfully

predict the increase of dead cells when glucose is consumed, as in scenarios 2-M, 2-H, and

5-H. The maximum discrepancy between data and model occurs in the 2-H scenario and the

smallest mean error for the case of 5-H.

Fig 9 presents the kernel density estimation of the Bayesian calibration posteriors for all

nine scenarios. Each panel summarizes scenarios with the same initial glucose concentration

with low, medium, and high initial tumor confluences. For quantitative comparisons of the

calibrated parameters in each scenario, we estimate the Maximum A Posteriori (MAP) points

(see Eq (23)) for the MCMC samples of the posterior. We next summarize observations from

the posteriors of the parameters in the scenario-specific calibration process: the proliferation

Fig 9. Posterior kernel density estimation (KDE) of scenarios with 2, 5, and 10 mM initial glucose concentration.

The KDE obtained during the scenario-specific calibration of the 2, 5, and 10 mM initial glucose concentration

(subscripts 2, 5, and 10, respectively) and low (red), medium (black), and high (blue) tumor initial condition for the

following parameters: �aP (proliferation rate—panel A), �aD (death rate—panel B), λ (glucose uptake rate—panel C), γD
(death rate increase—panel D), and σH (glucose threshold—panel E). For the 2 mM initial glucose concentration, the

parameter γD does not influence the dynamics of the model and cannot be calibrated in the 2-L scenario as the glucose

concentration is enough to sustain tumor growth and avoid the increase of the confluence of dead cells. For the 5 mM

initial glucose concentration, the parameters �aD and γD are different than zero just in the 5-H scenario. In this initial

condition, the high initial confluence demands more glucose than it is available, leading to an increase of the dead cells

confluence. This dynamic does not happen in scenarios 5-L and 5-M, where the initial glucose concentration is enough

to sustain tumor growth. The 10 mM initial glucose concentration is enough to sustain tumor growth to all initial

tumor confluences, such as that no increase in the confluence of dead cells is noticed. Due to the lack of the dead cells,

and the fact that the glucose uptake rate is low, the glucose concentration never drops below σH, and the parameter γD
does not play a role on the tumor dynamics.

https://doi.org/10.1371/journal.pcbi.1008845.g009
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rate (�aP—Fig 9A), death rate (�aD—Fig 9B), glucose uptake rate (λ—Fig 9C), death rate increase

(γD—Fig 9D), and glucose threshold (σH—Fig 9E).

As the initial glucose concentrations increase from 2 mM to 10 mM, the MAP of the prolif-

eration rate (�aP) decreases. In particular, from 2 mM to 5 mM the average MAP of �aP decreases

68%, and from 5 mM to 10 mM it decreases 58%. This trend is consistent with the function

describing the proliferation rate, which is a function of �aP, σH (Eq (14)) and the current glucose

concentration. The average MAP and standard deviation from 2 mM, 5 mM, and 10 mM are

6.74 × 10−2 ± 1.13 × 10−2 h-1, 2.16 × 10−2 ± 0.61 × 10−2 h-1, and 0.91 × 10−2 ± 0.35 × 10−2 h-1,

respectively. Note how the variance of �aP is smaller for the scenario with an initial glucose con-

centration of 10 mM (Fig 9). Once sufficient glucose is available for all proliferating cells (i.e.,

the 10 mM case), the proliferation rate is relatively constant with changes in initial tumor cell

confluence. Additionally, the calibrated proliferation rate in Fig 9 varies non-monotonically

in the 2-H, 2-M, and 2-L scenarios (Fig 9A2). In the 2-H scenario, this behavior is due to com-

petition between cell proliferation (�aP) and cell death (�aD). The higher variance observed in

the posterior of �aP and �aD for the 2-H scenario is a result of the higher number of dead cells

(twice the number of dead cells than the scenario with the second highest value) observed in

Fig 8C.

As the confluence of the dead cells is evident only in three scenarios, 2-M, 2-H, and 5-H

(Fig 8), the average MAP and standard deviation of the death rate, �aD, is 2.32 × 10−5 ±
1.47 × 10−5 h-1 when disregarding these scenarios. For scenarios 2-M, 2-H, and 5-H, the MAP

point is 1.53 × 10−4 h-1, 6.52 × 10−4 h-1, and 5.07 × 10−4 h-1, respectively. The higher MAP val-

ues of �aD are due to the limited availability of glucose for these three cases, in which a greater

number of proliferative cells cause a faster consumption of the glucose and subsequent

increase of dead cells due to glucose depletion. Additionally, for the scenarios with 10 mM of

initial glucose, �aD remains the same with respect to the initial tumor confluences shown in Fig

9. The constant values of �aD are because the tumor cells are in favorable glucose environments

in scenarios 10-L, 10-M, and 10-H, and no increase in dead cells is observed (see Fig 8). Fur-

thermore, similar to the �aP, the 2-H scenario represents the largest variance in the �aD posterior,

due to the distinct increase of dead cells in the observational data of Fig 8.

The glucose uptake rate (λ), death rate increase (γD), and glucose threshold (σH) parameter

are strongly correlated due to their indirect relations to the glucose field. The parameter λ in

the continuum model (see Eq (17)) controls how fast the glucose concentration decreases. The

parameter γD controls the increase in cell death due to the lack of nutrients. Finally, σH is the

glucose threshold below which cells do not have enough glucose to undergo mitosis (see Eq

(14)). Due to these relations, a change in one parameter affects the value of the others. For

example, if the cells have a higher uptake rate, that would lead to a lower glucose concentration

and therefore lead to lower values of death rate increase and glucose threshold required to

keep a similar number of dead cells. In all scenarios, the glucose uptake rate λ is proportional

to the initial tumor cell confluence, in which a higher number of tumor cells leads to an

increase in glucose consumption rate. The average MAP value of λ decreases as the glucose

concentration increases, with a 20% decrease in the average MAP from 2 mM to 5 mM, and

32% from 5 mM to 10 mM. Only in the scenarios 2-M, 2-H, and 5-H, do the glucose levels

drop below the threshold σH, leading to activation of the cell death mechanism due to the lack

of nutrients (the second term on the right-hand side of Eq (13)). This observation indicates

that γD does not affect the evolution of the tumor cells in the other six scenarios (i.e., 2-L, 5-L,

5-M, 10-L, 10-M, and 10-H).

Fig 10 shows snapshots of one realization of the cgABM simulation for the 2-H scenario

(i.e., high initial tumor confluence and 2 mM of initial glucose concentration). For this

simulation, we use the MAP estimates of the parameter posteriors from scenario 2-H (Fig 9),
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which are �aMAP
P ¼ 5:50� 10� 3 h� 1, �aMAP

D ¼ 6:52� 10� 4 h� 1, λMAP = 6.37 × 10−3 h−1,

gMAP
D ¼ 2:18� 10� 3 h� 1, and sMAP

H ¼ 3:63� 10� 3. The cgABM simulation in Fig 10 begins

with confluences of 0.56 and 0.02 for the quiescent and dead cells, respectively, and a uniform

glucose distribution of 2 mM. With the available glucose, the tumor cells proliferate, leading to

the presence of growing daughter cells on day 1. The combination of an initial low glucose

concentration, and high tumor confluence, yield a rapid decrease of glucose below the level

required to maintain cell viability. By day 2, dying cells appear in the cgABM simulation, in

agreement with the increase in dying cells observed in the experimental data (Fig 8).

Fig 11 shows snapshots of one realization of the cgABM simulation for the 10-L scenario

(i.e., low initial tumor confluence and 10 mM of initial glucose concentration). For this

simulation, we use the MAP estimates of the parameter posteriors from scenario 10-L

(Fig 9), which are �aMAP
P ¼ 7:31� 10� 3 h� 1, �aMAP

D ¼ 1:73� 10� 4 h� 1, λMAP = 3.44 × 10−3 h−1,

gMAP
D ¼ 8:45� 10� 3 h� 1, and sMAP

H ¼ 1:94� 10� 1. The cgABM simulation in Fig 11 begins

with confluences of 0.23 and 0.01 for the quiescent and dead cells, respectively, and a uniform

Fig 10. cgABM simulation for the scenario 2-H. Snapshots of one realization of the cgABM simulation for the

scenario with high initial tumor cell confluence and 2 mM initial glucose (2-H). The whole-well images from three

days of data (panels A, B, and C) show the merged images of phase contrast images and fluorescent images where dead

cells were labeled in red by the Cytotox Red. The data present here is one of the four replicates of this scenario. In

panels A, B, and C, the confluence of live and dead cells is presented. Spatial-temporal simulations of tumor cells

(panels D, E, and F) and glucose concentration (G, H, and I) over three days. Panels A, D, and G display the initial

conditions, while panels B, E, and H present the data and model at day 1, and panels C, F, and I display the data and

model at day 2. The numerical simulation was performed using the MAP points of the calibrated parameters from the

2-H scenario (�aMAP
P ¼ 5:50� 10� 3 h� 1, �aMAP

D ¼ 6:52� 10� 4 h� 1, λMAP = 6.37 × 10−3 h−1, gMAP
D ¼ 2:18� 10� 3 h� 1,

and sMAP
H ¼ 3:63� 10� 3). In panels D, E, and F, the quiescent tumor cells are blue, dead cells are red, proliferative cells

are green, and the daughter cells are in yellow. As glucose is consumed by the tumor cells, its concentration drops

below the threshold needed for proliferation, leading to an increase in dead cells by day 2, which is consistent with the

data present in panel C. The results presented here are generated from one simulation using the MAP points. Due to

the stochastic nature of the model, each run of the model produces a different result. The average error of the live and

dead cells are 6.43 ± 1.01 and 3.45 ± 1.15, respectively.

https://doi.org/10.1371/journal.pcbi.1008845.g010
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glucose distribution of 10 mM. The final confluence for the quiescent and dead cells, for this

realization of this stochastic simulation, is 0.28 and 0.01, respectively. With this low tumor cell

confluence, the glucose never drops below σH, such that there is no increase in cell death due

to the lack of glucose.

Fig 12 compares the calibrated cgABM, and the ABM using the calibrated parameter values

from the cgABM, with the experimental data for two representative cases of the experimental

data: 1) the 2 mM initial glucose concentration and high initial tumor cell confluence (Fig

12A), and 2) the 10 mM initial glucose concentration and low initial tumor cell confluence

(Fig 12B). The errors from the cgABM and the ABM have the same order of magnitude. The

average error and standard deviation for live and dead cells, in the cgABM, in scenario 2-H are

6.43 ± 1.01% and 3.45 ± 1.15%, respectively. While that for the ABM using the parameter val-

ues of the cgABM are 8.19 ± 1.19% and 4.80 ± 1.50%, respectively. The average error and stan-

dard deviation for live and dead cells, in the cgABM, in scenario 10-L are 3.68 ± 0.52% and

1.84 ± 0.20%, respectively. While that for the ABM using the parameter values of the cgABM

are 5.12 ± 0.63% and 1.96 ± 0.23%, respectively. Importantly, the main difference between the

cgABM and the ABM is the computational cost. While a single run of the cgABM for the 2-H

Fig 11. cgABM simulation for the scenario 10-L. Snapshots of one realization of the cgABM simulation for the

scenario with low initial tumor cell confluence and 10 mM initial glucose (10-L). The whole-well images from three

days of data (panels A, B, and C) show the merged images of phase contrast images and fluorescent images where dead

cells were labeled in red by the Cytotox Red. The data present here is one of the four replicates of this scenario. In

panels A, B, and C, the confluence of live and dead cells is presented. Spatial-temporal simulations of tumor cells

(panels D, E, and F) and glucose concentration (G, H, and I) over three days. Panels A, D, and G display the initial

conditions, while panels B, E, and H present the data and model at day 1, and panels C, F, and I display the data and

model at day 2. The numerical simulation was performed using the MAP points of the calibrated parameters from the

10-L scenario (�aMAP
P ¼ 7:31� 10� 3 h� 1, �aMAP

D ¼ 1:73� 10� 4 h� 1, λMAP = 3.44 × 10−3 h−1, gMAP
D ¼ 8:45� 10� 3 h� 1,

and sMAP
H ¼ 1:94� 10� 1). In panels D, E, and F, the quiescent tumor cells are blue, dead cells are red, proliferative cells

are green, and the daughter cells are in yellow. The low tumor cell confluence does not reduce the glucose to values

below σH. Thus, the number of dead cells does not increase due to the lack of glucose. The average error of the live and

dead cells are 3.68 ± 0.52 and 1.84 ± 0.20, respectively.

https://doi.org/10.1371/journal.pcbi.1008845.g011
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and 10-L scenarios takes approximately 7 and 6 seconds, respectively; the ABM takes approxi-

mately 193 and 78 seconds, respectively. In the ABM, for scenarios 2-H and 10-L, we have

59535 and 24862 agents/cells, respectively. In our cgABM calibration, the computational time

was between 3 to 12 hours, with 2-H and 10-L taking 4 hours 47 minutes and 31 seconds and 3

hours 57 minutes and 30 seconds, respectively. If we assume that the ABM calibration time

would be proportional to the difference between a single run of the cgABM and the ABM, the

ABM calibration of scenarios 2-H and 10-L would take 5 days 12 hours 7 minutes and 14 sec-

onds and 2 days 3 hours 27 minutes and 30 seconds, respectively. Thus, while the forward

model itself is fast even for the full ABM (less than 4 minutes), the coarse-grain version of the

model is required to make calibration practical as it requires many forward runs of the model.

Multi-scenario calibration and prediction

In the previous section, we made use of the scenario-specific calibration to investigate the

capability of the cgABM to capture the experimentally observed evolutions of live and dead

cells. In this section, we study the ability of the calibrated model to predict the evolution of live

and dead cells in a range of initial conditions. To this end, we implement two parameter iden-

tification strategies; namely, the “multi-scenario calibration” and “leave-one-out calibration”.

The purpose of multi-scenario calibration is to make use of Bayesian inference to determine

one set of cgABM parameters that represent live and dead cell evolution of all scenarios with

different initial tumor confluences and glucose concentrations. For the multi-scenario calibra-

tion, the reported error is the comparison among the cgABM output and each experimental

scenario. In the leave-one-out approach we calibrate the cgABM parameters using the data of

eight scenarios, excluding one data set (prediction scenario) from the calibration process. We

then compare the calibrated cgABM simulation with measured data in the prediction scenario

to investigate the model’s ability to forecast tumor responses in scenarios not included in the

calibration data. Table 2 shows the error between the model output and the experimental mea-

surements according to Eq (30). For the leave-one-out, the reported means and the 95% credi-

ble intervals in Table 2 show the discrepancies between model and data in the prediction

scenarios; i.e., the data sets left out of the calibration data.

Fig 12. Comparison between the single-agent ABM using the parameter values from the cgABM, and the

experimental data of scenarios 2-H and 10-L. Scenario-specific calibration of the cgABM to the time-resolved

microscopy data for the 2 mM initial glucose concentration and high initial tumor cell confluence (panel A), and for

the 10 mM initial glucose concentration and low initial tumor cell confluence (panel B). The data mean and 95%

credible interval for the live and dead cells are shown in blue and black, respectively. The mean of the cgABM

simulation is represented as a solid line, and the area is the 95% credible interval for the live (green) and dead (red)

cells. The mean of the ABM simulation is represented as a solid line, and the area is the 95% credible interval for the

live (magenta) and dead (orange) cells. The average error and standard deviation for live and dead cells, in the cgABM,

in scenario 2-H are 6.43 ± 1.01% and 3.45 ± 1.15%, respectively. While that for the ABM using the parameter values of

the cgABM are 8.19 ± 1.19% and 4.80 ± 1.50%, respectively. The average error and standard deviation for live and dead

cells, in the cgABM, in scenario 10-L are 3.68 ± 0.52% and 1.84 ± 0.20%, respectively. While that for the ABM using the

parameter values of the cgABM are 5.12 ± 0.63% and 1.96 ± 0.23%, respectively.

https://doi.org/10.1371/journal.pcbi.1008845.g012
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Fig 13 compares the computational prediction of cgABM with the unseen experimental

data for two representative cases of the leave-one-out calibration. In Fig 13A, we illustrate pre-

dicting scenario 2-H when the cgABM is calibrated with the other eight scenarios. The 2-H

(high initial tumor confluence and 2 mM initial glucose) scenario was not included in the cali-

bration process, and is the one with the highest dead cell confluence (see Fig 8) among the

nine scenarios. The prediction errors of the leave-one-out calibration in Table 2 demonstrate

the influence of using observational data of the 2-H scenario in informing the model parame-

ters. That is, by excluding 2-H from the calibration data, the cgABM is unable to precisely

capture the dynamics of the dead cells. Thus, this case results in an invalid cgABM for predict-

ing the in vitro tumor cell behavior (if we consider the tolerance of the average error, εtol,

being 10%).

Fig 13B shows predicting scenario 10-L when the cgABM is calibrated with the other eight

scenarios. The 10-L (low initial tumor confluence and 10 mM initial glucose) scenario, the

confluence of the dead cells is constant over time, and the growth rate of the tumor cells is neg-

ligible (see Fig 8). From the prediction errors in Table 2, one can conclude that the 10-L sce-

nario does not provide new information related to the tumor cells dynamics for calibrating the

model parameters. That is, the other eight scenarios are sufficient to inform the dynamics of

live and dead cells, resulting in a valid cgABM for computational prediction of the tumor cell

behavior in a wide range of initial conditions.

Fig 14 shows the kernel density estimate (KDE) of the parameter posteriors obtained from

the multi-scenario calibration process. This figure also shows the parameter posteriors for

the two representative results of the leave-one-out calibrations from the calibration data (i.e.,

those presented in Fig 13). Rigorous parameter estimation using different measurements must

account for the data uncertainty in each training set. Characterization of the degree of confi-

dence in the estimated parameter is critical in assessing the reliability of model prediction. The

Bayesian method used in this work provides a suitable framework for quantifying the uncer-

tainty in each measurement scenario. Comparing the parameter posteriors in Fig 14 with

those obtained from scenario-specific calibration (Fig 9) indicate the posterior distributions of

the multi-scenario are affected more by the data with lower uncertainty (see error bars in Fig

8). That is, poor characterization of measurement error during calibration leads to bias in

model prediction.

Fig 13. Model predictions of scenarios 2-H and 10-L. Leave-one-out prediction of scenarios 2-H (A) and 10-L (B).

The cgABM was calibrated using the time-resolved microscopy data for all scenarios, excluding 2-H (panel A) and

10-L (panel B). The data mean and 95% credible interval for the live and dead cells are shown in blue and black,

respectively. The mean of the simulation is represented as a solid line, and the area is the 95% credible interval for the

live (green) and dead (red) cells. The average error and standard deviation for live and dead cells in scenario 2-H are

13.97 ± 3.69% and 15.80 ± 5.59%, respectively. While that for scenario 10-M are 7.61 ± 2.01% and 5.78 ± 1.13%,

respectively.

https://doi.org/10.1371/journal.pcbi.1008845.g013
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Table 3 presents the MAP estimated of the posterior distributions from Fig 14. The MAP

estimates of Table 3 demonstrate that the difference between the parameters of the calibration

excluding 10-L data and the ones obtained when calibrating the nine scenarios together is

smaller than the discrepancy between the posteriors of the multi-scenario πpost(θ|D) and the

calibration excluding 2-H πpost(θ|D�2H). These remarks confirm the importance of including

the 2-H experimental data into the calibration process to adequately inform the model param-

eters and enhance the predictive capability of the cgABM.

Discussion

We have presented a hybrid stochastic agent-based model to simulate the interaction among

tumor cells and glucose consumption. In this model, the tumor cell movement, growth, and

phenotypic transitions are represented by a discrete cellular-scale model, while a continuum

tissue-scale model governs the glucose evolution. In our model, tumor cell proliferation and

Fig 14. Posterior kernel density estimation (KDE) of the multi-scenario and the leave-one-out experiments. The

KDE obtained during the calibration of the multi-scenario calibration πpost(θ|D) (black), the high tumor initial

condition and 2 mM glucose condition left out πpost(θ|D�2H) (red), and the low tumor initial condition and 10 mM

glucose condition left out πpost(θ|D�10L) (blue) for the following parameters: �aP (proliferation rate—panel A), �aD
(death rate—panel B), λ (glucose uptake rate—panel C), γD (death rate increase—panel D), and σH (glucose threshold

—panel E). Leaving scenario 2-H out of the calibration causes a stronger shift in the parameter distributions than

leaving out scenario 10-L. This indicates that 2-H is a scenario that cannot be represented adequately by the other

experiments.

https://doi.org/10.1371/journal.pcbi.1008845.g014

Table 3. Maximum A Posteriori (MAP) estimates.

Parameter Maximum A Posteriori (MAP)

Multi-scenario πpost(θ|D) Leave-one-out πpost(θ|D�2H) Leave-one-out, πpost(θ|D�10L)

Proliferation rate (h-1) 2.65 × 10−2 1.03 × 10−1 9.05 × 10−2

Death rate (h-1) 2.47 × 10−3 6.29 × 10−4 1.77 × 10−3

Glucose uptake rate (h-1) 3.88 × 10−2 6.90 × 10−1 5.92 × 10−2

Death rate increase (h-1) 2.09 × 10−2 1.34 × 10−4 2.35 × 10−2

Glucose threshold 4.68 × 10−2 2.04 × 10−2 2.00 × 10−2

MAP estimates of the parameter posteriors for the multi-scenario calibration and the two cases (excluding scenarios 2-H and 10-L) of the leave-one-out calibration (see

Fig 14).

https://doi.org/10.1371/journal.pcbi.1008845.t003
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death are stochastic events proportional to the available glucose. The tumor cell proliferation

reduces as the glucose decreases, and the chances of cell death increase if the glucose is below a

threshold.

We investigated the validity of the hybrid multiscale ABM in predicting in vitro experimen-

tal data of human breast carcinoma cells in nine scenarios, with combinations of different ini-

tial glucose concentrations and tumor confluence. To this end, we addressed several challenges

in model calibration and predictive hybrid multiscale ABMs. To overcome the high computa-

tional cost of the ABM, we coarse-grained the discrete model such that one agent represents a

cluster of cells. By controlling the coarse-graining error below 5%, the developed cgABM

enables simulating the entire domain of the in vitro experiment plate in a realistic time scale.

The higher variations of the hybrid cgABM with a higher coarse-graining degree indicate that

although coarse-graining of ABMs leads to a computationally tractable model, parameter

inference of cgABMs demands methods that cope with significant stochasticity of the model.

We also note that studying the predictive capabilities of cgABMs is critically needed for unre-

stricted use of these models in the cancer community, given the current limitations of comput-

ing power.

The time-dependent variance-based sensitivity analysis method was employed to identify

how each parameter contributes to the model outputs (live and dead cell confluences) during

the system development. The results of the sensitivity analysis showed that the most influential

parameter in the multiscale cgABM is the death rate increase due to the lack of glucose (γD),

followed by the glucose threshold (σH), and the glucose consumption rate (λ). The total effect

sensitivity indices of the proliferation and death intensity reach values above 0.2 during the

tumor development. The sensitivity analysis results allow us to determine which parameters

must be accurately calibrated to represent the data. This analysis also helps design future

experiments that can help to improve the calibration of model parameters. Two examples of

experimental measurements that would significantly improve the cgABM calibration and its

computational prediction are 1) temporal measurement of glucose concentration; 2) the use of

hypoxia markers to track hypoxic cell confluence. Such experimental measurements would

enable a more rigorous investigation of the glucose consumption rate (λ) and the glucose

threshold (σH) that increases death and affects proliferation.

Directed by the sensitivity analysis, a series of statistical calibrations of the cgABM using the

in vitro experimental data were conducted. Although the data employed for calibration is lim-

ited to the temporal domain (i.e., we do not make use of the spatial information), the new

cgABM parameters can be well-informed if the uncertainty is precisely characterized during

the calibration process. A generalized likelihood function was proposed within the Bayesian

inference to account for the intrinsic stochasticity of the cgABM in the statistical inverse prob-

lem. To perform the computationally expensive sampling algorithms for the Bayesian infer-

ences of the stochastic cgABM, we implemented a computational infrastructure with efficient

use of high-performance computing resources. We presented three model identification strate-

gies. First, the results of scenario-specific calibration of cgABM to the time-resolved micros-

copy measurements indicate that the developed hybrid multiscale model can predict the

experimentally observed responses of human breast carcinoma cells in a wide range of initial

glucose concentrations and tumor confluences. Comparing the calibrated parameters for all

nine scenarios shows that the cgABM can recapitulate the main features and the underlying

tumor cell development mechanisms, with an average error of less than 8%. These processes

include cell proliferation and mitosis in favorable glucose environments, as well as cell death

due to lack of glucose and through apoptosis. Furthermore, the Bayesian inference method

used for parameter calibration allows for assessing the associated uncertainties in model

parameters while handling the inherent stochasticity of the cgABM. Second, a multi-scenario
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calibration was performed to identify the cgABM parameters from the in vitro data of all nine

experimental data sets. The model calibration using multiple data sets with different data noise

levels indicates the requirement of rigorous characterization of uncertainty in model parame-

ters. Thus, employing Bayesian inference for statistical calibration of the ABMs is essential for

characterizing the level of confidence in their computational prediction. Third, we designed

an extensive calibration process, based on the leave-one-out approach, to challenge the

cgABM by testing its validity in predicting unseen data. To this end, the cgABM is calibrated

using the data of eight scenarios, excluding one data set (prediction scenario) from the calibra-

tion process. The results of leave-one-out calibration indicate the developed cgABM can pre-

dict the in vitro experiments with an error ranging from 5% to 21%. In particular, if the

calibration data include the scenarios with distinct dead cell dynamics, the calibrated cgABM

can precisely capture the accumulation of the dead cells, and it is a valid model for predicting

the in vitro tumor cell behavior according to our validation criteria.

Recently, there are similar efforts in the literature on the calibration of agent-based models

to tumor cells [26, 75, 76]. Jagiella et al. [75] calibrated a single cell-based mathematical model

for multi-cellular tumor spheroids using non-small cell lung cancer (NSCLC) data. Similar to

our model, the phenotypic states in their model allowed for proliferative, quiescent, and dead

agents. However, the main difference between their model and the one presented here, besides

their model being 3D and lattice-based, is the number of environmental factors considered in

their model. In [75], the glucose, oxygen, lactate, extracellular matrix, and waste material

released by dying cells are also modeled. According to the authors, this was the simplest model

to capture their data, consisting of the growth kinetics and the corresponding spatial staining

patterns for nuclei, different cell states, and cell environments. Although our model is simpler

compared to [75], it is able to simulate our experimental observations accurately. A similar

result between our model and the on in [75] is that apoptosis does not play an essential role in

dead cell dynamics. As demonstrated by our sensitivity analysis, the effects of limited glucose,

which translates into an increase in cell mortality (γD), is the most important factor to deter-

mine the dynamics of dead cells. In [76], a hybrid ABM is developed to model the growth of

multi-cellular tumor spheroids. The possible cell phenotypes are quiescent, proliferative, hyp-

oxic, dead, and necrotic (dead cells undergoing cytolysis). The environmental factors modeled

are oxygen, glucose, and the concentration of a hypoxia-activated prodrug (SN30000). To cap-

ture the radiation’s effects, the linear-quadratic model was employed by [77]. The data used

for the calibration comes from in vitro experiments with human colon cancer cells treated

with radiation, in a range of dose rates (0.2–1 Gy/min) and SN30000. Among the measure-

ments used are the temporal changes of the spheroid diameter, number of cells, cell viability,

hypoxic fraction, and S-phase cell fraction. In their model, apoptosis is not considered, with

the death of the tumor cells being due to oxygen or glucose deprivation and the treatment

effects. This assumption is aligned with the results found in our calibration, where γD is at least

ten times higher than apoptosis in every scenario. One main difference between our model

and the ones in [75, 76], is that we developed a lattice-free model, which is generally more

computationally expensive (considering the same number of model constituents). The meth-

odology employed here for model coarsening allows us to perform statistical calibration con-

sidering the model stochasticity.

While the proposed hybrid two-scale ABM can represent the tumor cell responses observed

in the experimental measurements, there remain several areas that can be further developed in

future studies. In the current effort, the spatial distribution of the tumor cells was not taken

into account during the model calibration (i.e., only the confluence data was used in the model

calibration). Thus, we are not considering the mobility of the tumor, as previously done in [3].

This effect would be necessary to characterize, for example, angiogenesis [28]. The position of
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the tumor cells influences the growth pattern of the new vasculature. Another direction for

investigation is to calibrate the ABM using 3D tumor platforms [78–81]. However, a limiting

factor in our 3D simulations would be the computational cost characteristic of discrete models

with multiple agents. The 2D cgABM simulation simulates the observational data within a 5%

error compared to the one cell per agent ABM. However, we expect the coarse-graining error

would be more substantial in 3D simulations. Also, we showed that the cgABM was able to

capture the evolution of human breast carcinoma cells, in three different initial confluences

and three different glucose availability, with an average error of less than 8%. One aspect that

could improve the simulation is a better characterization of the initial distribution of the cell

cycle within the tumor cells. The current model considers all cells initially in a quiescent state.

Additionally, labeling the cell phenotypes in the in vitro experiments, see, e.g., [82] could pro-

vide better observational data to portray the initial conditions. Currently, our proliferation

dynamics (as determined by Eq (14)) are only able to capture the tumor dynamics in glucose

concentrations below 10 mM (as the 1 in Eq (14) represents the maximum, normalized, glu-

cose concentration used experimentally). These scenarios with 2 and 5 mM initial glucose are

compared to the scenario 10 mM.

In our current modeling approach, the goal is to develop the most parsimonious model

that is capable of describing the data with the least number of free parameters. Thus, we

assume that glucose is the only factor that affects cell death and proliferation (the stochastic

events guided by Eqs (11) and (12), respectively). However, other mechanisms such as

mechanical and chemical interactions between cells and the extracellular environment also

(of course) have an essential role in cellular dynamics. The variation in parameters can imply

that there can be other factors governing the dynamics that are not captured by these param-

eters (due to the modeling assumptions and simplifications) and therefore affecting their

values. If we were to extend the model to account for these phenomena, we would almost cer-

tainly require more measurements of different processes to be able to calibrate the model

accurately. For example, in the current model, high initial glucose concentration is not nec-

essarily reflected by a higher proliferation rate. This result implies that there are other factors

that can limit the proliferation rate besides the availability of glucose—factors that are cur-

rently not accounted for in our model. Regarding the glucose uptake rate, the value decreases

as the glucose concentration increases due to the lack of dead cells in scenarios with high ini-

tial glucose concentration. In our model, the death probability is inversely proportional to

the glucose concentration (i.e., in an environment with high glucose concentration, the cells

have a low death probability of death). Thus, to avoid the increase in the number of dead

cells, the model calibration converges to a lower glucose uptake rate to keep the glucose con-

centration high. We believe that there could be an alternative relationship between the death

rate and glucose concentration. However, no data on glucose concentration as a function of

time were collected during the experiment. Thus, with the currently available data, we were

not able to constrain the values of the glucose over time. However, the pattern/relationship

found in our model parameters, such as the variation in proliferation rate as the initial condi-

tions change, can be used to develop a “look-up” table. Such an approach helps to “personal-

ize” each prediction as these model parameters are determined by the initial condition of

each individual experiment. Furthermore, the initial conditions are (by definition) fre-

quently known (or, at least, bounded) at the beginning of the experiment, providing a

practical way to constrain model predictions. Finally, only temporal observational data is

employed in this study for model calibration as a first step in developing predictive ABMs

with quantified uncertainty. Future efforts will investigate the simultaneous integration of

spatial and temporal experimental data within the cgABM framework to enable the practical

application of hybrid multiscale models in cancer.
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Conclusions

We have developed a new hybrid, two-scale, stochastic agent-based model of tumor cell

dynamics and investigated the model’s ability to simulate and predict in vitro experimental

observations of live and dead cell numbers over time, given the initial conditions. The first

major contribution of this work is the development of a coarse-grained ABM (cgABM) with a

reduced parameter space and significantly lower computational costs. The second major con-

tribution is the rigorous characterization of uncertainty in the prediction provided by the

cgABM using time-dependent sensitivity analysis and Bayesian inference that handles the sto-

chasticity of the model. The cgABM we developed reduces the computational time of ABM

simulations by factors of 13 to 28 with less than 3% average error compared to the ABM. This

study also indicates that our multiscale ABM can reliably predict the temporal evolution of

cancer cells subjected to a wide range of initial conditions. The advances made in this manu-

script to develop a reduced-order ABM while addressing model stochasticity via Bayesian

parameter inference represents a significant step towards applying predictive, spatially, and

temporally resolved ABMs in cancer a practical reality.

Supporting information

S1 Fig. Low confluence sensitivity analysis. Sensitivity analysis of the proliferation rate (�aP),

death rate (�aD), glucose diffusion (D), glucose uptake (λ), death rate increase due to lack of glu-

cose (γD), transition contrast (k), and glucose threshold (σH) for live (top row) and dead (bot-

tom row) cell phenotypes seeded with low confluence. Panels A-F show the total effect index

over time with Panels A, B, and C depicting live tumor cells, while Panels D, E, and F depict

the dead tumor cells. The importance of the parameters is studied for three initial glucose con-

centrations: 2 mM (Panels A and D), 5 mM (Panels B and E), and 10 mM (Panels C and F).

The glucose diffusion and the smooth transition constant have limited influence on the quanti-

ties of interest during the complete simulation (i.e., large changes in these parameters would

yield small changes in tumor composition). Apart from these two parameters, the total effect

index for every parameter is greater than 0.2 during the 96 hours simulated.

(TIF)

S2 Fig. High confluence sensitivity analysis. Sensitivity analysis of the proliferation rate (�aP),

death rate (�aD), glucose diffusion (D), glucose uptake (λ), death rate increase due to lack of glu-

cose (γD), transition contrast (k), and glucose threshold (σH) for live (top row) and dead (bot-

tom row) cell phenotypes seeded with high confluence. Panels A-F show the total effect index

over time with Panels A, B, and C depicting live tumor cells, while Panels D, E, and F depict

the dead tumor cells. The importance of the parameters is studied for three initial glucose con-

centrations: 2 mM (Panels A and D), 5 mM (Panels B and E), and 10 mM (Panels C and F).

The glucose diffusion and the smooth transition constant have limited influence on the quanti-

ties of interest during the complete simulation (i.e., large changes in these parameters would

yield small changes in tumor composition). Apart from these two parameters, the total effect

index for every parameter is greater than 0.2 during the 96 hours simulated.

(TIF)

S1 Appendix. Parameter identifiability analysis. Before conducting the Bayesian calibration

of the cgABM against the in vitro experimental data, we perform a parameter identifiability

analyses. To this end, we make use of the cgABM with a set of “true’’ parameter values to gen-

erate in silico data. We then calibrate the cgABM parameters against the in silico data using

Bayesian inference. To check the parameter identifiability, we compare the true parameter
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values with the MAP estimates of the calibration posteriors.

(PDF)

S2 Appendix. Bayesian calibration computation. For all calibrations, the Bayesian inference

is conducted using 16 chains within the adaptive multi-level Monte Carlo algorithm, along

with computing the means of Nr = 17 realizations of the model per sample. As each forward

model is computed in serial, the total number of processors per simulation is the number of

chains times the number of realizations (i.e., 272 processors in the scenario-specific calibra-

tion). For the multi-scenario and the leave-one-out calibration, we multiply this number of

processors by the number of scenarios used in the calibration. In this appendix, we present the

computational time for all the calibration experiments presented in this work.

(PDF)
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