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PUBLIC SUMMARY
= Understanding the biological basis of consciousness is an outstanding intellectual challenge

= The neural signatures underlying the emergence of visual consciousness were characterized
= A novel approach employing machine learning was used to analyze the massive iEEG data

= These findings extend the current understanding of the neural correlates of consciousness
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Consciousness lies at the heart of our existence and experience. To probe
how perceptual consciousness emerges in the brain, we recorded brain-
wide intracranial electroencephalography signals from human patients while
their perceptual consciousness was effectively manipulated using the contin-
uous flash suppression paradigm. We observed substantial differences in
brain activities when visual information gradually enters consciousness.
Specifically, the functional connectivity first increases and then decreases,
oscillations in the low-frequency band reduce in power, and those in the
high-frequency band remain unchanged. We employed random forest-based
classification to characterize the transitions from no perception to subcon-
sciousness and then to consciousness, which showed an increase in signal
variance at the second transition rather than the first. Further, the frontal-pa-
rietal junction dominates the first transition, whereas the temporal-frontal
lobes dominate the second transition. Finally, we identified the most relevant
neuronal features associated with consciousness. Altogether, these findings
shed fresh light on the emergence of visual consciousness.

INTRODUCTION

Understanding the biological basis of consciousness has been identified as an
outstanding intellectual challenge across muiltiple disciplines including neurosci-
ence, medicine, psychology, philosophy, and artificial intelligence.’ Despite the
distinct definitions of consciousness in different research fields, two main-
streams are evolving to tackle the neural correlates of consciousness. One direc-
tion is to find out the neural basis of a subject’s overall conscious states such as
being awake, coma, or vegetative. The other direction goes to understand how
conscious percepts are generated, which is a major focus of cognitive neurosci-
ence.? Even though our understanding of the nature of consciousness has been
substantially improved in the past few decades, still many questions remain to be
addressed. Among them, how perceptual consciousness emerges in the brain is
arguably the most fundamental and intriguing one.

To unravel such a mystery, proper experimental paradigms and techniques are
required. Previous studies have demonstrated that conscious perception can be
effectively manipulated through a so-called continuous flash suppression
(CFS)** paradigm. By presenting two different images to the two eyes and mak-
ing one of the two competing stimuli dynamic and much stronger than the other,
one can make the dynamic image dominant in perception and the other
completely suppressed, thus generating the consciously invisible perception.
The CFS paradigm together with the modified version—breaking-CFS (b-CFS)—
offers a controllable and reliable means to manipulate visual consciousness,
ranging from the subconscious to conscious perception, thus making it an ideal
paradigm in studying consciousness.””

On the other hand, a variety of experimental techniques have been used to
investigate the relationships between brain activity and the state of perceptual
consciousness, most of which are noninvasive approaches including EEG,
MEG, and fMRI in humans.2'° Given different techniques have different spatial
and temporal resolutions, and the emergence of consciousness could transiently
engage multiple cortical regions, the chance that these noninvasive approaches
could precisely capture the emergence of consciousness would be low.

Researchers also tried to get clues from single-unit, multi-unit, and local field po-
tential recordings in monkeys,'" ' yet it is almost impossible to simultaneously
record from the whole brain in awake monkeys. Therefore, an invasive brain-
wide recording technique with a high temporal and spatial resolution is needed.
Intracranial electroencephalography (iIEEG) using multiple electrodes placed in-
side the brain of patients with epilepsy offers a unique opportunity to record a
large scale of signals simultaneously from a wide range of regions.’*'® By
combining recording sites from muiltiple subjects, it is possible to reconstitute
a brain-wide mapping of the emergence of perceptual consciousness.

Such brain-wide recording raises a new challenge for data processing. The rise
of machine learning meets the challenge as it can efficiently characterize the high
dimensionality and multivariate nature of iEEG data in a way that is less affected
by potential hypotheses.'”" In particular, the random forest (RF) classification, a
bagging decision-tree-based model, is advantageous in decoding iEEG signals
because of its less sensitivity to the multicollinearity and nonlinearity of electro-
physiological data as well as its high interpretability.”’ The RF model has been
widely applied in the pattern recognition of neural signals.”"**

In the current study, we aim to characterize the neural signatures of brain-wide
electrophysiological signals during the emergence of perceptual consciousness
by combining iEEG recording from human participants, the b-CFS paradigm,
and a supervised machine learning algorithm (RF classification). Here we not
only describe the brain-wide dynamics of electrophysiological activity and
functional connectivity along with the transitions of the conscious states but
also try to allocate the neural substrates responsible for the emergence of
consciousness.

RESULTS
iEEG recording from humans with b-CFS paradigm

Seven participants (two females, mean age 24.0 + 4.12) with electrodes im-
planted in the left hemisphere were involved in the current study. All subjects
were instructed to perform a b-CFS task (Figure TA), in which the suppressing
stimuli (rapidly changing Mondrian patterns) were flashed on the left eye and
the images to be perceived were presented on the right eye. During the experi-
ment, the beginning period of each trial with no visual stimulus presented to
the right eye served as the No Stimulus (NS) condition. Then a low-contrastimage
appeared as a subconscious stimulus (SubCon) with its contrast slowly
increased. Participants were instructed to press a key immediately when they
were aware of the image, and the image would dismiss instantly. Following a cor-
rect oral report of the perceived image, the test image was re-displayed in high
contrast and acted as the conscious stimulus (Con). Luminance-balanced im-
ages of different categories (face/object/scene) and different valences (happy/
neutral/fearful) were applied in the b-CFS task, and the data were pooled across
different categories to tackle the emergence of perceptual consciousness in
general.

Bipolar-referenced iEEG data were recorded from the implanted multi-lead
electrodes while participants were performing the b-CFS task. Behavioral analysis
indicated that the average reaction time (from image onset to keypress) of all par-
ticipants was around 2.5-4.5 s (Figure 1B). To make use of most trials and avoid
motor-related interference, signals from —2 to —0.5 s before the keypress were
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Figure 1. Experimental paradigm and iEEG recording (A) lllustration of the b-CFS paradigm. The suppressing stimuli (rapidly changing Mondrian patterns) were flashed to the left eye,
and the images to be perceived were presented to the right eye. The No Stimulus (NS), Subconscious (SubCon), and Conscious (Con) states were indicated by blue, green, and yellow
rectangles. The iEEG signals were extracted at epochs (1,500 ms long) corresponding to these three states. (B) Violin plots of the reaction time for all seven participants. Dashed lines
indicated the mean and quartile. (C) Overview distribution of the recording sites for all seven participants in the left hemisphere. Orange shaded area indicates region STG. The color bar

indicates different subjects.

extracted as 1.5-s-long iIEEG segments to represent the subconscious state
(SubCon). Accordingly, the same length of signals was extracted for the NS state
and the Con state in each trial.

The location of each recording site was identified by co-registering post-im-
plantation Computed Tomography (CT) to pre-implantation MRI scans with the
guide of a high-resolution anatomical atlas (Brainnetome Atlas, see Supplemental
materials).?® After removing sites that located in white matter and sites that could
not be registered to a brain region, a total of 662 recording sites covering most
areas (20 out of 24 gyri; see detailed information in Table ST) of the left hemi-
sphere were obtained. There were at least three recording sites from at least
two participants in each brain region. An overview distribution of the recording
sites for all seven participants is shown in Figure 1C (also see Figure ST).

Characteristics of iEEG signals during the emergence of consciousness
All iEEG signals were then run through pre-processing including band-pass fil-
ter (1-150 Hz), notch filter (50/100/150 Hz), and downsample (500 Hz) using
EEGLAB toolkit** Time-frequency representations (TFRs) of power were
computed for every 1.5-s iEEG epoch of NS, SubCon, and Con states for each

recording site. The raw outputs from the same brain region were averaged across
recording sites and baseline corrected against the NS distributions at the individ-
ual level. Baseline-corrected TFRs of three states from the same brain region
were averaged across participants to assess the neural dynamics during the
emergence of consciousness. As an example, the averaged TFRs of region
STG (superior temporal gyrus, orange shaded area in Figure 1C, see Table ST
for the full name list of brain regions) are shown in Figure 2A (see Figure S2
for the TFRs of the other 19 regions).

We noticed that in many brain regions there was a general trend of decrease in
low-frequency power (e.g., theta, alpha) associated with the emergence of con-
sciousness. To quantify such dynamics, we examined how the power spectral
density (PSD) of the iEEG signals varied across NS, SubCon, and Con states. Fig-
ure 2B shows the values of PSD of all the 20 brain regions in the three states for
each frequency band (theta: 4-8 hz; alpha: 813 hz; beta: 13—-30 hz; low-gamma:
30-60 hz; medium-gamma: 60—100 hz; high-gamma: 100-150 Hz). The results
showed that while the PSD of gamma band signals remained mostly constant,
the PSD of theta, alpha, and beta bands decreased from NS to Con states (Fig-
ure 2B). A non-parametric test (Friedman test) was applied to assess the PSD
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Figure 2. iEEG signal dynamics during the emer-
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differences between different conscious states for each frequency band and
found significant differences in theta (p < 0.001), alpha (p < 0.001), and beta
(p < 0.001) bands. Post-hoc analysis using Nemenyi test confirmed the signifi-
cant differences between these pairs in theta band (NS versus SubCon: p =
0.02; SubCon versus Con: p = 0.004; NS versus Con: p = 0.001, multiple compar-
ison with Bonferroni correction), alpha band (NS versus SubCon: p = 0.004; NS
versus Con: p = 0.001), and beta band (NS versus SubCon: p = 0.007; NS versus
Con: p =0.001). Such dynamic PSD patterns of iEEG signals can serve as markers
to identify the conscious level.

Dynamics of brain-wide functional connectivity

To reveal the brain-wide modulations in different conscious states, we con-
structed the functional connectivity (FC) maps for each consciousness state us-
ing the phase-locking value (PLV), which was used to assess whether there was a
consistent phase difference between a pair of regions.>?° We computed the PLV
of each pair for all 20 regions during the NS, SubCon, and Con states and show
them in the circular graphs (Figures 3A-3C, see Table S1 for the full name list of
brain region), which are organized according to the cortical lobes and separated
by color as indicated in the flange (green for parietal lobe; yellow for frontal lobe;
purple for temporal lobe; dark blue for occipital lobe; light blue for the limbic sys-
tem). The results indicated a brain-wide increase of FC in the SubCon state (Fig-
ure 3B), then a systematic decrease in the Con state (Figure 3C, also see Fig-
ure 3F). We then constructed two adjacency matrices to represent the
differences of FC between different conscious states in Figures 3D and 3E. An
overall increase of FC (warm color representing positive value) could be observed
during the transition from NS to SubCon state (Figure 3D) and an overall decrease
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(cold color representing negative value) could be
seen during the transition from SubCon to Con
state (Figure 3E). In particular, some regions of
the temporal lobe (e.g., STS) showed large fluctu-
ations during the emergence of consciousness
compared with other parts (also see Figure S3
for the cortical lobe-based adjacency matrices).
The mean PLVs for all frequency bands
also showed a similar changing pattern in NS,
SubCon, and Con states (Figure 3F). We used
linear mixed-effects models with two phase-
and six subband-fixed effects, and seven partici-
pant-random effects to assess the differences
between conscious states and found significant
differences between each pair (NS versus Sub-
Con: p = 0.002; SubCon versus Con: p = 0.000;
NS versus Con: p = 0.032, Bonferroni corrected).
In brief, our results revealed that the brain-wide
FC increased during the subconscious state
but then decreased after consciousness was
achieved.
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Random forest classification of iEEG signals
for different conscious states

To further delineate the differences between
different conscious states, an RF classification-
based machine learning approach?’ was
applied to characterize the high dimensionality
and multivariate iEEG signals. Figure 4A shows
the pipeline of such a data-driven approach.
Firstly, each of the 1.5-s pre-processed iEEG signals was re-segmented into
three 0.5-s non-overlapping epochs. All EEG epochs were decomposed into
six frequency bands including theta (4-8 Hz), alpha (8-13 Hz), beta (13—
30 Hz), low-gamma (30-60 Hz), medium-gamma (60-100 Hz), and high-
gamma (100-150 Hz). Seven Features from time-, frequency-, and nonlinear
dynamical-domains were extracted for each frequency band, yielding a total
of 42 features for each iEEG epoch. For each recording site, two RF classifiers
were trained to classify iEEG signals of the three conscious states, aiming to
capture the difference during the transitions from NS to SubCon state (transi-
tion 1: NS versus SubCon) and from SubCon to Con state (transition 2:
SubCon versus Con). The classification ability of iEEG signals at each recording
site was measured via the area under the receiver operating characteristic
curve (AUC).?Y A higher AUC indicates better performance in discriminating
different conscious states. A permutation-based statistic was used to deter-
mine the significance of the AUC in each transition for all recording sites by
randomly permuting the phase labels and repeating the procedure 500 times,
which produced a null AUC distribution that was used to obtain a p value for
each actual AUC. We found that the AUCs calculated from all 662 recording
sites in both transitions (NS versus SubCon and SubCon versus Con) were
significantly greater than that for the null distribution (p < 0.05, permutation-
based statistics with Bonferroni correction). As shown in Figure 4B, the AUCs
for transitions 1 (NS versus SubCon, royal blue) and 2 (SubCon versus Con,
coral) were distributed largely to the right of random level (red dash line at
0.5), especially that the second transition yielded higher AUCs. The mean
AUCs across all recording sites for each participant are shown in the inset of
Figure 4B, which indicated significant higher AUCs for transition 2 (SubCon
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Figure 3. The dynamics of brain-wide functional connectivity (A—-C) The phase-locking value (PLV) of each pair for all 20 regions during the NS (A), SubCon (B), and Con (C) states.
The colors in the flange represent different cortical lobes. (D and E) The adjacency matrix for 20 regions represents the differences in FC between SubCon and NS (D), and
Con and SubCon (E). The color bar indicates the PLV value. The solid lines divide different cortical lobes. (F) The mean PLVs for each frequency band in the NS, SubCon, and Con

states. * indicates Bonferroni-corrected p < 0.05, **p < 0.01, and ***p < 0.001.

versus Con) than for 1 (NS versus SubCon), suggesting a higher discriminative
capability for iEEG signals in the conscious state (p = 0.033, paired t test).

To further clarify the iEEG signal dynamics across different brain regions, the
AUCs for all recording sites were plotted in Figure 4C, and the corresponding brain
regions were coded by color. The x axis and y axis indicated transition 1 (NS
versus SubCon) and transition 2 (SubCon versus Con), respectively. Consistent
with Figure 4B, more points fell above the diagonal, indicating more sites had
higher AUCs for transition 2. We then averaged the AUCs within the same regions
and plotted them in Figure 4D, which also showed a significantly higher mean for
transition 2 (p = 0.001, paired t test). As higher AUCs indicated stronger variation
in neural activity, our results suggested that the variation of neural activity during
consciousness was stronger than that during subconsciousness.

Region contribution to the emergence of consciousness

To clarify the contribution of different brain regions to different transitions dur-
ing consciousness emergence, we then looked into the variation of regional AUCs
for transitions 1 (NS versus SubCon) and 2 (SubCon versus Con). The regional
AUC for each participant was calculated by averaging the data from all recording
sites in the given region. To minimize the difference across individuals, the AUCs
were Z scored before averaging across participants; then the mean regional
AUCs were obtained for the 20 regions and displayed in the polar coordinate (Fig-
ure 5A for NS versus SubCon and Figure 5B for SubCon versus Con). We found
that, during transition 1, regions around the junction of the parietal/frontal lobe
(e.g,, PrG) and the temporal/occipital lobe (e.g., LOcC) showed greater AUCs.

However, during transition 2, the AUCs increased in most of the frontal and tem-
poral lobes (e.g., OrG, STS). The differences in AUCs between these two transi-
tions are shown in Figure 5C, which again pointed out the prominence of some
regions in the temporal lobe (e.g., STS). Figures 5D-5I further show the Z scored
AUCs and AUC differences for all recording sites in these two transitions
(Figures 5D=5F, inner view; Figures 5D—5I, side view; see Videos S1-S3 for 3D
animation), of which one dot indicated one recording site and darker red and
larger size indicated greater AUCs. The linear mixed-effect models with classifica-
tion-fixed effects and participants-random effects confirmed the significant dif-
ferences between these two states in nine regions, which are shown in Cohen’s
d-based rendered images in Figures 5J and 5K and marked with asterisks in Fig-
ure 5C (see detailed statistics results in Table S1). It is worth noting that, although
the distribution of these nine regions included the temporal lobe, parietal lobe, and
limbic system, they established a cluster structure that was centered at STG/STS,
suggesting that the STG/STS-centered regions played an essential role during the
transition from subconsciousness to consciousness.

Feature importance that underpins consciousness

Finally, to uncover the influencing factors and the driving mechanism underly-
ing the neural processing of consciousness emergence, the feature importance®’
was extracted from the RF framework, which quantified the contribution of each
iEEG feature to the classification performance, allowing us to identify the most
relevant neuronal features associated with consciousness emergence. Figure 6A
showed the values of feature importance in the two transitions for all 42 features
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Figure 4. The data-driven machine learning approach and the classification ability of iEEG signals (A) The pipeline of the data-driven machine learning approach based on the
random forest (RF) framework. (B) The distributions of AUCs for all 662 recording sites from transition 1 (NS versus SubCon, royal blue) and transition 2 (SubCon versus Con, coral).
The red dashed line at 0.5 indicates the null distribution. The inset shows the mean AUCs for two transitions across all recording sites for each participant. (C) The scatterplot of AUCs
for all recording sites. The x axis and y axis indicate the AUCs for NS versus SubCon, and SubCon versus Con, respectively. Sites from different regions are color-coded as indicated in
(D). (D) The averaged AUCs within the same regions for NS versus SubCon and SubCon versus Con. The regions are color-coded and shown on the right. The royal blue and coral

columns indicate the mean AUCs for all regions with the error bar indicating SE.

(six frequency bands x seven feature types, royal blue for NS versus SubCon,
coral for SubCon versus Con). In general, we found that power ratio (i.e, the rela-
tive spectral power) and variance (i.e., squared deviation) were the two most
important features across all six frequency bands and two transitions.

Then we examine the dynamics of the feature importance for the power ratio
and the variance across different brain regions. The regional feature importance
values were obtained by averaging within the same regions, which are shown in
Figures 6B and 6C and organized according to the cortical lobes. Although the
feature importance of the power ratio and the variance showed complex patterns
across regions, there are some characteristics worth noticing. For example, the
contribution of the power ratio to RF classifications mainly came from the frontal
lobe in the gamma band, of which several regions (SFG, MFG, IFG, and OrG)
showed similar patterns in both transitions (Figure 6B). The power ratio from
two regions of the temporal lobe (STG, STS) also contributed a lot during transi-
tion 2 (Figure 6B). On the contrary, the variance of the medium-gamma band from
multiple regions in the temporal lobe (ITG, FuG), occipital lobe (MVOcC), and
limbic system (Amyg, PhG) contributed a lot to both transitions (Figure 6C).

As the diversity of feature importance implied functional differentiation among
regions during the emergence of consciousness, we next sought to uncover the
hidden functional structure of these regions by taking advantage of the similarity
of feature importance. We used a hierarchical clustering algorithm, which belongs
to the data-driven unsupervised machine learning approach,®” to cluster these 20
regions by their feature importance values. We found these regions were auto-
matically clustered into three groups in both transitions (Figure 6D for NS versus
SubCon and Figure 6E for SubCon versus Con). It is worth noting that regions
from the frontal lobe (OrG, PrG, SFG, MFG, IFG, but not PCL) were always clus-
tered into one independent group in both transitions (orange in Figures 6D and

6E), suggesting that these regions were functionally close in the stage of con-
sciousness emergence. In addition, although PCL was traditionally classified to
the frontal lobe in the standard brain atlas, the cluster results indicated that its
functional pattern was different from other regions in the frontal lobe but was
similar to regions in the parietal/occipital lobe (Figures 6D and 6E), suggesting
that PCL should be considered as a parietal region.

DISCUSSION

In this study, we combined the large-scale iEEG and the machine learning-
based analysis to unravel the neural substrates and the functional dynamics of
consciousness emergence in the human brain. Our results provided a compre-
hensive characterization of the activity of most brain regions during the emer-
gence of visual consciousness in the human brain. We showed the dynamics
of the FC and the oscillations in signal power during the transitions from no
perception to subconsciousness and then to consciousness, and we further
showed the functional dominance of the frontal-parietal junction in the first tran-
sition and the temporal-frontal lobes in the second transitions. Given these results
were obtained in an unbiased data-driven approach, we believe these findings
substantially add to and extend our understanding of the neural correlates of con-
sciousness emergence.

The neural correlates of consciousness emergence

One of the fundamental questions in understanding consciousness is to clarify
the neural correlates of consciousness.”**** Consistent with the Global Neuronal
Workspace Theory (GNWT),*® we found that a broad range of cortical regions
was involved in the generation of perceptual consciousness rather than a local-
ized nucleus serving as the hub. During such a process, the brain-wide FC was
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Figure 5. Regional contribution to the emergence of consciousness (A and B) The polar plots of the Z scored AUCs for the 20 regions for NS versus SubCon (A) and SubCon versus
Con (B). The colors in the flange indicate different cortical lobes as in Figure 3A. (C) The differences in the Z scored AUCs between the two transitions in (A) and (B) . Asterisks indicate
significant differences. The error bar indicates SE (see Table S1 for more statistical details). (D-1) Z scored AUCs and AUC differences for all recording sites in the two transitions. (D—F)
inner view; (G-1) side view. The AUC of each site is coded by both color and size. The color bar indicates Z scored AUC. (J and K) The rendered images are based on Cohen’s d denoting

the differences between transitions 1 and 2. (J) side view; (K) inner view.

enhanced in the subconscious state and then faded in the conscious state, indi-  dynamics, it is not yet clear whether a synchronization threshold is required for
cating that stronger synchronization is required for the brain to achieve percep-  the whole brain or within a portion of the brain to achieve consciousness. Of in-
tual consciousness. Once the consciousness is achieved, the synchronization re-  terest, the temporal lobe showed larger FC fluctuation than the frontal lobe (Fig-
turns to a lower level. Such synchronization is a temporary state that dismisses  ure S3), suggesting that the functions of these temporal regions in the emergence
soon after the consciousness is achieved and maintained. Regardless of the FC  of consciousness have been largely underestimated by previous studies.
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Figure 6. Feature extraction and the regional contribution of feature importance (A) The values of feature importance were extracted for all 42 features (six frequency bands x seven
feature types) from the fitted RF models in the two transitions. Royal blue represents NS versus SubCon; coral represents SubCon versus Con. (B) The averaged values of feature
importance for feature “Power Ratio” were plotted against the recording regions in polar coordinates for NS versus SubCon (left) and SubCon versus Con (right). The colors of the
central curves represent different frequency bands as indicated on the bottom. The colors in the flange indicate different cortical lobes as in Figure 3. (C) The averaged values of
feature importance for feature “Variance” were plotted against the recording regions in polar coordinates. The definitions are the same as in (B). (D and E) The results of the hierarchical
cluster for the 20 regions were based on feature importance values. (D) NS versus SubCon; (E) SubCon versus Con.
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Consistently, the RF classification revealed that while the frontal and the occipital
lobes showed higher ability in classifying the NS versus SubCon states, the tem-
poral lobe showed the highest ability in classifying the SubCon versus Con states
(Figure 5). Altogether, our study points out the significance of the STG/STS-
centered regions in the emergence of consciousness.

The temporal lobe has been studied using a similar CFS paradigm while
recording electrocorticographic (ECoG) signals, which also supported that STS
is responsible for conscious perception.® However, ECoG can only record surface
signals from a limited area. Our study employed depth electrodes and recorded
signals from the brain-wide scale, thus providing additional information regarding
the functions of other areas. For example, we found that the occipital lobe was
more dominant during transition 1 than in transition 2 (Figures 5A and 5B), which
seems in line with that the primary visual area (V1) is important for nonconscious
perception but not essential for conscious perception. A controversial theory pro-
posed that the dorsal and ventral visual streams are associated with noncon-
scious and conscious perception, respectively.®® Our result does support that
the frontal-parietal junction plays an important role in subconscious processing
and that the temporal lobe dominates conscious perception. On the other
hand, the finding that the frontal lobe is also essential for conscious perception
lends support to the notion that the subconscious and the conscious processes
may work as the two sides of the same coin to guide human behaviors.

Overall, regarding the two popular theories of consciousness, our results seem
to be more in line with the GNWT rather than Integrated Information Theory
(IIM),%” as we did find increased activation in frontal-parietal areas as predicted
by GNWT yet did not find sustained activity in the posterior zones that are pre-
dicted by the IIT*®

The physiological markers for consciousness

Being able to monitor the conscious state of humans would be particularly use-
ful for clinical diagnosis and treatment. Therefore, identifying reliable physiolog-
ical markers of the conscious states turns out to be essential. Previously some
studies suggested that long-distance gamma synchrony may correlate with vi-
sual consciousness,***° yet later studies indicated that gamma band oscillations
were not necessary for visual perception as gamma synchrony can be present in
the subconsciousness state.*"* In our study, we found the power of iIEEG signals
in the time-frequency domain could serve as physiological markers as they
showed unique changing patterns across different conscious states. Specifically,
as the consciousness of visual stimulation emerged, the power of the theta/
alpha/beta bands decreased, while the gamma band remained almost constant.
Notably, the power increase around 60 Hz could be seen in multiple regions
including Pcun, PoG, PrG, PCL, and MFG during the subconscious state (Fig-
ure S2). It is not yet clear whether such a frequency band has any special role
in consciousness emergence. Overall, the changing trend of the power in the
low- and high-frequency band was even obvious for regions in the frontal, parietal,
and occipital lobes (e.g., PrG, PCL) (Figure S2). Given the neural activity in these
lobes can also be captured by EEG recording, it is possible to use EEG signals as
the data source and develop noninvasive devices to monitor the conscious state.

MATERIALS AND METHODS
Detailed description of the materials and methods can be found online at https://doi.org/
10.1016/j.xinn.2022.100243.
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