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Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine
plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has
an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor
donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic
nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush
compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by
evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four
weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity.
This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary
damage and opens a new perspective for improving visual rehabilitation in humans.

1. Introduction

The visual system has a substantial plasticity and a potential
of partial spontaneous visual recovery both in animals [1–3]
and in patients with visual system damage [4–6]. Moreover,
clinical studies have shown that the residual vision subse-
quent to neural trauma or neuronal degeneration can be
improved by training [7–9]. Several approaches have tried
to enhance this visual recovery by potentiating cortical plas-
ticity and sensory functioning. In this regard, stimulating
central neuromodulatory systems that facilitate sensory
responses and cortical plasticity is an interesting avenue.

There is growing evidence that the cholinergic system is
involved in attention, cortical and synaptic plasticity, and
potentiation of the cortical responses to visual stimulation. In
rats, electrical or pharmacological stimulation of the choliner-
gic system when coupled with visual training enables long-

term enhancement of responses in the visual cortex [10–13].
Particularly, acetylcholinesterase inhibitors (AChEIs), which
prevent the degradation of the acetylcholine (ACh) and enable
the buildup ofAChat the synapse, could be used for long-term
enhancement of visual experience. AChEIs, such as donepezil
(DPZ), are used for sustaining ACh action and treating the
dementia symptoms in mild Alzheimer’s disease [14]. Studies
have shown that AChEIs enhance visual and cognitive capac-
ities in both animals and humans [11–13, 15–18]. They also
improve performance inbehavioural tasks such as radialwater
maze, spatial recognition, andcontrast sensitivitydetection for
healthy and hypocholinergic rats [18–21].Moreover, combin-
ing cholinergic enhancement via DPZ administration with
repetitive visual training increases the visual cortical respon-
siveness in healthy rats [13] and the learning in a perceptual-
cognitive task in healthy young humans [17]. Therefore,
administration ofDPZ could be an effectivemethod of cholin-
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ergic enhancement to potentiate the improvement of residual
vision in visually deficient subjects.

The present study sought to evaluate whether cholinergic
enhancement, by DPZ administration, can facilitate the res-
toration of the visual capacities following partial bilateral
optic nerve crush (ONC) surgery in rats. Partial ONC is an
effective model of diffuse axonal injury, which mimics visual
impairment due to optic neuropathy or diffuse retinopathy.
This model has been widely used to study neuronal damage,
residual tissue left undamaged after the trauma or postinjury
plasticity [22–24]. The spontaneous visual recovery after a
mild ONC in rats has been characterized in behavioural stud-
ies, in terms of rate and extent. Usually, partial recovery (up
to 20%) develops within three weeks postlesion [3, 25–28].
The visual capacity was thus measured behaviourally before
and after partial ONC using brightness discrimination task
(VIST) and physiologically by recording visual evoked
potentials (VEPs). In addition, thallium autometallography
was used to evaluate the neuronal activity via the ex-vivo
quantification of visually induced cellular potassium uptake
in the primary visual cortex (V1). The present result shows
that the administration of DPZ in visually impaired rats
induced a better recovery of brightness discrimination capac-
ity in comparison to the non-DPZ treated animals. This
result raises the possibility that DPZmay be used in processes
of restoration of visual capacities.

2. Methods

2.1. Animal Preparation. A total of 20 adult Lister hooded
rats (10 weeks of age when delivered to the animal facilities)
were maintained in a 12h light/dark cycle with ad libitum
access to food and water during the adaptation period.
Animals were handled for 10 minutes every day for 4 days
before the beginning of the experiments. The rats were water

deprived before the start of the behavioural study with lim-
ited access to water for 15 minutes per day because VIST
learning was based on water reward. The study was per-
formed over a period of 11 weeks (Figure 1). After VIST
training, the baseline brightness discrimination capacity
was acquired and the animals were randomly assigned to 3
groups: sham, n = 7 (sham-ONC and no injection), ONC/
DPZ, n = 6 (ONC and DPZ injection), and ONC/saline,
n = 7 (ONC and saline injection). Repetitive behavioural
and electrophysiological testing and thallium autometallo-
graphy were then performed. Note that some animals were
excluded from VEP or TlAMG measurements because they
did not fit the experimental criteria. All procedures were in
accordance with ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research and with the guidelines
of the Canadian Council for the Protection of Animals. All
the procedures were accepted by the Ethics Committee of
the Université de Montréal number 14-164 and of the IRB
of the Landesverwaltungsamt Sachsen-Anhalt according to
the German National Act.

2.2. Visual Stimulation Test. To quantify vision recovery,
the visual stimulation test (VIST) technique [3] was used,
where the visual performance of the rat was measured by
the capacity of discriminating targets with different levels
of brightness and the percentage of correct choices. 13
levels of brightness were displayed: 100% (white, level 1),
94%, 88%, 81%, 75%, 69%, 62%, 56%, 50%, 44%, 37%,
31%, and 25% (dark gray, level 13). Brightness discrimina-
tion was determined before ONC and after ONC during
four consecutive weeks (3 sessions per week). Briefly, the
water-deprived rats were placed in a Skinner box having
six equally sized openings in the front panel attached to
an infrared touch screen and a green light and water dis-
penser in the back panel. A trial consisted of illuminating
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Figure 1: Experimental design. The study was performed over a period of 11 weeks: 5 weeks for the learning of the behavioural task
training—VIST training, double-end arrow (a), 1 week for the baseline VEP recording (b) and the crush surgery (c), and 4 weeks for the
repetitive behavioural and electrophysiological testing (d). Thallium autometallography (TlAMG) (e) was done one week after the last
testing session. (a) The VIST test consisted of the detection of a bright stimulus (light gray square) among 6 openings (5 black and 1 gray
square) on a touch screen. (b) When all rats reached an adequate brightness discrimination performance and success rate, electrodes
(black dots) were implanted in the visual cortex (V1), the superior colliculus (SC), and in the nose bone (Ref.) in the brain/skull of the
rats, together with a headstage to fix visual stimulation goggles (gray circles). A potential evoked by flash displayed through the goggles
(VEP, red tracing) was recorded and set as a baseline. (c) Then animals were divided into three experimental groups: sham, ONC/DPZ,
and ONC/saline, and bilateral partial optic nerve crush (ONC) or sham surgery was performed. (d) DPZ (1mg/kg then 0.5mg/kg) or
saline i.p. injections were performed each day for the first 2 weeks post-ONC (black arrows) then once a week. VIST testing (3 times a
week during 4 consecutive weeks) and the VEP recording (once a week during 4 consecutive weeks, red tracing) were performed. (e) One
week after the end of the VIST testing and the jugular vein catheter implantation, the neuronal activity was measured by thallium
autometallography (TlAMG).
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one opening for 7 sec that the rat had to poke with its
nose. After each correct choice, the rat was rewarded with
a drop of water. For each trial, the target stimulus was
randomly presented at a different location so that the rat
had to track the position changes with repeated nose
pokes until 4 consecutive correct choices were made, and
then the next lower brightness level was presented. The
task always started with the level 1 target then the level
of brightness decreased. The performance was calculated
by the following formula:

%correct choices = number of correct choices
total × 100 1

2.3. VEP Recording

2.3.1. Headstage Implantation. In order to monitor VEPs at
different time points, custom-made stainless steel Teflon-
coated recording electrodes, 75μm uncoated diameter and
140μm coated with an impedance range of 100–500 kΩ
(SS-3T/HH; Science products GmbH), were chronically
implanted in V1 (AP=−7mm; ML=±3mm; DV=0mm)
and in the superficial layer of the superior colliculus (Bregma
coordinates: AP=−6.8; ML=±1mm; DV=3mm) under
75mg/kg ketamine and 0.5mg/kg medetomidine anesthesia
according to Paxinos andWatson (1998). The reference elec-
trode was implanted into the nasal bone, and an extra screw
was implanted into the parietal bone to fix the headstage.
Animals were allowed to recover during one week.

2.3.2. VEP Recording. The VEPs were recorded on awaken
rats once before the sham or ONC surgery for baseline value
and once every week after the sham or ONC surgery. Before
the first measurement and after a minimum of one-week
recovery from stereotaxic surgery, rats were habituated to
being handled and restrained in the electrophysiology
set-up with opaque goggles fixed on the headstage. The
homemade metal goggles displayed a 1300mcd homoge-
neous illumination of the visual field to each eye individu-
ally by white 2.5mm diameter light LED sources at 10mm
from the eyeball. To obtain VEP recordings, the pin
sockets of the electrodes were connected with flexible
cables to allow the rat to freely move its heads [29]. A
preamplifier was connected to the headstage. Recording
was performed in a dark room. Stimuli were delivered at
1Hz for 2.5min for one eye and then switched to the fel-
low eye after a 1min break. The trigger signal was created
using an isolated pulse stimulator (A-M Systems, USA)
and was sent to the amplifier of the acquisition system
as a marker. The signal was amplified ×20 and was
band-pass filtered between 0.1Hz–2 kHz using an 8-
channel Porti system (Twente Medical Systems International
B.V., Netherlands) and digitized with a 2 kHz sampling
rate. The VEPs were analyzed in Matlab (Mathworks,
Nattick, MA, USA) and EEGlab toolbox [30]. VEP ampli-
tudes were measured by peak-to-peak analysis subtracting
the signal of the contralateral nonstimulated eye. The final
statistical analysis was performed only with the data of the
rats that performed all the recordings during the 4-week
post-ONC; some rats removed their headstage throughout

the testing weeks and were therefore excluded from the
final analysis (sham, n = 3; ONC/DPZ, n = 3; and ONC/
saline, n = 6).

2.4. Optic Nerve Crush. A bilateral partial optic nerve crush
was performed under ketamine (50mg/kg, i.p.) and xylazine
(10mg/kg, i.p.) anesthesia [3, 22, 31]. The optic nerve was
exposed from the lateral side of the eye and then crushed with
calibrated forceps at a distance of 2-3mm from the eye for
30 sec. Retinal blood supply and dura were left intact. An
antibiotic eye ointment (Aureomycin; Lederle Arzneimittel
GmbH, Wolfratshausen, Germany) was topically applied on
both eyes after the surgery to prevent inflammation. In the
sham group, the same surgery steps were made but the optic
nerve was not crushed.

2.5. Drug Administration. DPZ (Sigma Aldrich, St-Louis,
MO, USA) was prepared freshly in a sterile 0.9% NaCl solu-
tion and administered i.p. at the end of the day to avoid
any acute effect. On the first week post-ONC, a loading
dose of DPZ (1mg/kg) was administered daily [12]. On the
second week, a lower dose of DPZ (0.5mg/kg) was admin-
istered daily [18]. We have previously shown that both
doses strongly enhance the visual cortex reactivity assessed
by VEP [13]. As DPZ is eliminated from the body by
renal excretion and as urination was reduced due to the
water restriction regime, a maintain dose was given on
weeks 3 and 4 (0.5mg/kg of DPZ, once a week). The same
volume of saline, but without DPZ, was injected in the
control animals.

2.6. Thallium Uptake. A thallium-chelate solution was
administered 1 week after the end of the behavioural study
and the implantation of the catheter, in a dark room during
visual stimulation with a visual flickering in the left eye
through the goggles to perform thallium autometallography
(TlAMG). TlAMG is based on the bioaccumulation of thal-
lium ions that substitute potassium ions and accumulate in
cells and neurites during neuronal activation through
ATPase channels. Thallium is then fixed by the perfusion of
a sodium sulfide solution and is developed with silver for
visualization under a microscope, as previously described
[32, 33]. Briefly, catheters were implanted in the jugular vein.
After 2-3 days postoperation, the catheter was connected to a
polyethylene tube and 1ml of a freshly prepared 0.05% thal-
lium diethyldithiocarbamate solution in 0.9% NaCl was
slowly injected over a period of 4min during visual stimula-
tion. After rinsing, 2ml of sodium sulfide solution (0.32%
Na2S in 100mM phosphate buffer pH7.4) and a sulfide glu-
taraldehyde solution (0.16% Na2S and 3% glutaraldehyde in
100mM phosphate buffer pH7.4) were bolus injected. The
brains were then removed and immersed overnight in acro-
lein solution for fixation and then cryoprotected for 48h in
30% sucrose in 0.1M phosphate buffer, pH7.4 at 4°C.

The brains were frozen and cut with a Leica cryostat into
25μm thick sections. Sections were air dried and treated with
0.1N HCl to remove zinc sulfide. Then, sections were stained
in a standard arabic gum developer used for autometallogra-
phy [33, 34] for 150min in the dark for the different groups
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(sham, n = 4; ONC/DPZ, n = 3; and ONC/Saline, n = 6);
some rats were excluded because they removed their head-
stage, and some died after the catheter implantation.

Sections of interest containing V1 and subcortical struc-
tures were selected according to Paxinos and Watson
(1998) and photographed with a Fuji FinePix S2 Pro digital
camera mounted on a Leica DMR microscope. Photographs
were displayed using the Adobe Photoshop software for
Macintosh. The NIH image software (ImageJ for MacOS X)
was used for the analysis of thallium uptake patterns. The
coloured photomicrographs were converted to gray scale
images using unweighted conversions in Adobe Photoshop.
Gray levels were determined for each animal at the level of
V1 and were compiled for analysis. High gray values corre-
spond to low staining intensity, that is, low neuronal activity.

2.7. Statistical Analysis. Statistical analysis was performed
using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). In order to
reveal the effect of the crush within each group, the bright-
ness discrimination thresholds and percentage of correct
choices before and after the ONC surgery were tested using
pairwise t-test. Secondly, for the behavioural data, the bright-
ness discrimination thresholds and percentage of correct
choices were compared between the ONC groups for time
and drug effects using mixed model ANOVA, with p < 0 05
being considered significant. For the VEP and optic density
analysis, and given that the rat number was small, the
between-group difference was evaluated using nonparamet-
ric Kruskal-Wallis test. This test was performed for each time
point of the VEP measurement after ONC and for the
TlAMG measurement performed at the end of the behav-
ioural experiment. The Bonferroni correction was applied
to compensate for multiple testing conditions, and post hoc
pairwise comparisons were carried out with the significance
level set at p < 0 05.

3. Results

3.1. Visual Stimulation Test. All the animals learned the
brightness discrimination task easily and reached a discrimi-
nation performance of at least 25% of brightness before the
ONC (Figure 2). The success rate (percentage of correct
choices) was over 90% for all the animals (Figure 2(a)). These
levels of discrimination performance and success rate were
maintained in the sham group after the sham-ONC surgery
and during the four weeks of VIST testing (Figures 2(b)
and 2(d)). In contrast, both brightness discrimination thresh-
old (ONC/DPZ: t 5 = −12 649, p = 0 000; ONC/saline:
t 6 = −12 871, p = 0 000) and success rate (ONC/DPZ:
t 5 = 8 447, p = 0 000; ONC/saline: t 6 = 8 578, p = 0 000)
were significantly impaired by ONC in both ONC/DPZ
and ONC/saline groups (62–67% reduction) (Figures 2(a)
and 2(c)).

AmixedmodelANOVAwas furtherused todetermine the
effect of the time and drug through the 4weeks of testing post-
ONC in the ONC groups (Figures 2(b) and 2(d)). There was a
main effect of time (brightness discrimination, F 1,11 = 5 990,
p = 0 000; success rate, F 1,11 = 3 505, p = 0 000) and of drug

(brightness discrimination, F 1,1 = 134 068, p = 0 000; suc-
cess rate, F 1,1 = 26 868, p = 0 001). However, there was no
interactionbetween timeanddrug (brightnessdiscrimination,
F 1,11 = 0 891, p = 0 551; success rate, F 1,11 = 1 138,
p = 0 341).

3.2. Electrophysiology Results. In order to evaluate whether
the cholinergic treatment had an effect on the visual cortex
and superior colliculus response after the crush, the visual
evoked potentials were compared between the 3 groups:
sham, ONC/DPZ, and ONC/saline (Figure 3). A substantial
decrease of the amplitude of the VEPs was observed after
the crush in both crush groups (ONC/DPZ V1 and
SC≈ 80mV, ONC/saline V1≈ 100mV, and SC≈ 90mV) in
contrast to the VEPs in the sham group that remained high.
VEP values were significantly decreased in the ONC
compared to the sham groups (Kruskal-Wallis, testing week
5, V1, H (2,9) = 6.385, p = 0 041 and SC, J (2,9) = 6.231,
p = 0 044). These results show that the electrophysiological
response was not restored throughout the post-ONC period.

3.3. Thallium Autometallography (TlAMG). Neuronal activ-
ity was assessed 5 weeks postcrush in V1 using TIAMG
(Figure 4). The optical density was measured on coronal sec-
tions, high gray levels corresponding to low staining inten-
sity, that is, low neuronal activity. The statistical analysis
between groups showed no significant difference of optical
density between the 3 groups at this time point (Kruskal-
Wallis, H 2,11 = 2 007, p = 0 375).

4. Discussion

We tested the effect of DPZ administration on the recovery of
brightness discrimination in rats after a bilateral partial
ONC. All ONC groups showed a significant impairment of
brightness discrimination thresholds (reduction of 60% from
initial value) after the crush, followed by a gradual restoration
of brightness discrimination (up to 40% of the initial value in
the ONC-DPZ group). The rats treated with DPZ had an
overall better performance than the rats treated with saline.
Both groups had spontaneous recovery of brightness dis-
crimination and success rate during the 4 weeks of post-
ONC testing. DPZ treatment did not improve V1 cortical
activity measured by VEP after the ONC. Together, these
results suggest that DPZ may help visual recovery by enhanc-
ing visual processing efficiency.

4.1. Optic Nerve Crush Induces an Impairment Followed by a
Gradual Recovery of the Visual Capacities. In this study, we
focused on the extent of brightness discrimination recovery
following an ONC. All ONC groups had a significant drop
of performance after the crush which was followed by a grad-
ual but partial significant function recovery throughout the
post-ONC period. Moreover, sham and both ONC groups
showed similar TI+ uptake as evaluated 5 weeks post-ONC
with optical density, indicative of a substantial neuronal
activity in V1 in both groups. These results are in agreement
with previous studies showing the same dynamics for both
the behavioural VIST measurements [3] and thallium uptake
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6weeks after ONC [35]. However, whenmeasured at different
time points thereafter, TI+ uptake is first reduced in the dorso-
lateral geniculate nucleus and cortex after ONC but a normal
cortical activity is restored 6 weeks after the crush [35].
Whether this cortical activity is related to visual function is
not known. However, the amplitude of VEP evoked by visual
stimulation is not restored at any time point after the ONC in
V1 nor in the superior colliculus. This suggests that the visual

pathways from the retina to the cortex and superior colliculus
are still damaged and that the VEP is insensitive to any
dynamic change that impacts the retina. Some recent studies
show axonal regeneration following optic nerve crush in
mice [36, 37]. However, the functional recovery in our
animals occurred as early as on week three postinjury,
which is well ahead of any possible axonal regrowth which
could add to functional improvement [3, 29, 38–40]. Thus,
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Figure 2: Brightness discrimination capacity and visual performance of the rats before and after the partial optic nerve crush or sham surgery.
The visual performance evaluated by the VIST was characterized for the 3 groups: sham (blue), ONC/DPZ (red), and ONC/saline (green).
Two parameters were calculated: the success rate (percentage of correct choices (a), (b)) and the brightness discrimination threshold (c),
(d). VIST was performed before (pre-ONC) and after the ONC for 4 weeks. (a), (c) In comparison to the pre-ONC value, the ONC/saline
and ONC/DPZ group percentage of correct choices (a) and brightness discrimination (c) showed a significant reduction after the
ONC (∗p < 0 01, ONC/saline compared to pre-ONC; #p < 0 01, ONC/saline compared to pre-ONC). (b), (d) Success rate and brightness
discrimination were partially restored after the crush in both ONC/saline and ONC/DPZ groups, but the last group was performing better
than ONC/saline group. Points in (b), (d) represent the testing session number (3 tests per week).
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on the one hand, there is a partial recovery of visual
performance of the animals and neuronal activity in V1
but, on the other hand, no visually induced responses,
suggesting that the behavioural recovery is rather due to
plastic changes within cortical circuitry.

These results are in agreement with a structural-
functional mismatch between behaviour and anatomical
changes in the damaged optic nerve [41, 42]. It is possible
that plasticity of neuronal activity takes place in V1. Several
studies in the past have used elaborated optic nerve or retinal
lesions to document cortical reorganization [43–47]. Follow-
ing the loss of visual input, recovery of visual capacities are
accompanied by plasticity of cortical circuits and cross-
modal innervation in or near the lesioned area [48]. A
strengthening of cortico-cortical connections is reported in
animal models of retinal lesions to compensate for the loss
of retinal input [49–51]. Furthermore, in humans with optic
nerve damage, a recovery of their vision is observed following
treatment with brain current stimulation, associated with a
partial restoration of the network organization [52, 53].
These studies show that following visual system damage,
both long-range lateral connections and large-scale func-
tional connectivity networks are altered. This indicates that

the remapping and the functional reorganization throughout
the brain may be involved in vision recovery. Surviving
ganglion cells, in combination with stronger cortico-cortical
connections, can be considered to provide the mechanism
of spontaneous recovery that occurs approximately within
the 3 weeks post-ONC [41].

4.2. Donepezil Improves Visual Function following Optic
Nerve Crush. Our finding that the ONC/DPZ group shows
better brightness discrimination performance compared to
the ONC/saline group gives the first evidence that the cholin-
ergic system may be critical for the recovery process.

It has already been shown that the cholinergic system is
involved in reinforcing the thalamocortical connections.
For example, presynaptic nicotinic receptors on thalamocor-
tical fibres boost thalamic input to the cortex [54] and more
generally ACh strengthens the feedforward pathway
therefore enhancing sensory performance [55–58]. Since
the visual information arriving from the thalamocortical
pathway to V1 is diminished by the ONC, the ACh should
have an enhancing effect on the remaining thalamocortical
connections, therefore facilitating the cortical responses of
the residual cells. However, the VEPs did not improve in
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Figure 3: Visual evoked potentials recording in the primary visual cortex and the superior colliculus before and after the partial optic nerve
crush. Amplitude of the VEP recorded before and once a week for four weeks after the ONC in the visual cortex (a), (c) and in the superior
colliculus (b), (d) for the 3 groups: sham (blue), ONC/DPZ (red), and ONC/saline (green). (a), (b) VEP tracing examples recorded at week 5 in
the visual cortex (a) and the superior colliculus (b). VEP amplitudes show a substantial drop in both ONC groups after the crush and a
significant reduction of the VEP amplitude compared to sham groups both in the visual cortex (c) and in the superior colliculus (d). This
indicates that cortical and subcortical visually evoked activity was not restored after the crush for any treated groups.
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the visual cortex nor in the superior colliculus for the 4 weeks
post-ONC in either group (DPZ or saline), suggesting that
either VEPs or physiological activity in the remaining retina-
visual cortex pathways is insensitive to the changes—although
afterONC, the surviving ganglion cells adapt to the need of the
visual functions and have a better activity [26, 59, 60]. In
addition, donepezil could by itself have a protective effect of
ganglion cells in the retina [61, 62] but the VEP recordings
from the present study show that the retino-cortical function
was not restored after 21 days after the crush. These results
are in line with other studies using the ONCmodel in animals
where the VEPs are deteriorated immediately after the crush
and donot show any recovery forweeks [63, 64]. Additionally,
in the case of optic disease in human,which ismimickedby the
rat ONCmodel and which leads to partial vision loss, electro-
physiology and imaging studies prove that diminished visual
brain function related to the optic neuritis eyes is correlated
with the extent of the optic nerve damage [65–67]. Since the
VEPs did not improve after ONC in the ONC/saline nor in
ONC/DPZ groups, it suggests that the expected cholinergic
enhancement of thalamocortical input is not efficient enough
to sustain the behavioural better performance of the rats.
Whether the residual thalamocortical input is tooweak to play
a role in recovery or whether cholinergic system is not able to
potentiate enough the remaining thalamic responses to induce
changes in VEP needs to be determined by future studies.

The lack of effect of the DPZ treatment on VEP response
together with the significant behavioural effect suggests a role
of the cholinergic system in cortical plasticity [68]. In healthy
rats, the role of the cholinergic system in visual enhancement
has been reported using behavioural and electrophysiological

studies [11, 13, 16, 69, 70]. Precisely, by combining visual
exposure with electrical stimulation of the cholinergic
system, rats showed an improvement of visual acuity in a
water maze and the potentiation of the visual cortical respon-
siveness. Moreover, exposing rats to 2 weeks of visual stimuli
coupled with DPZ administration enhances the visual
cortical response [13]. Additionally, administration of
cholinergic enhancers significantly improves behavioural
performance in a visual task and contrast detectability in
the healthy rats [12, 18]. In our study, DPZ induced better
performance in the behavioural task, suggesting that this
effect of cholinergic enhancement on cortical plasticity is
also observed in our model of visual impairment.

The improved recovery of visual performance in ONC/
DPZ group might also be due to the role of the cholinergic
system in attention. ACh is shown to affect the strength of
the connections in the visual cortex and enhance the relevant
stimuli by facilitating glutamatergic feedback [71]. In fact, an
enhancement of cholinergic concentration in the cortex pro-
motes attention [72–74]. Furthermore, studies show that
attentional cueing tasks improve vision restoration on
patients with visual field loss therefore facilitating the visual
perception recovery [75, 76]. Additionally, cholinergic
enhancement induces potentiation in the cortical responsive-
ness regardless of the type of stimuli [77, 78]. Previous stud-
ies in healthy animals show that cholinergic enhancement
potentiates visual cortical response and visual performance
[10, 13, 18, 21, 69, 70]. In human studies, enhancing the cho-
linergic system with AChEIs improves the performance in
visual and behavioural tasks that require attention [79–83],
suggesting an improvement of efficiency of the visual
processing. In our study, DPZ allowed better detection of
relevant stimuli after the crush, which could result from
increased attention capacity. Therefore, the implication of
the cholinergic system in attentional processes might have
affected visual recovery post-ONC.

5. Conclusion

In summary, we showed that cholinergic enhancement
induces better visual recovery following an optic nerve crush.
This agrees with the proposal that ACh enhancement can
potentiate spontaneous visual recovery by reinforcing
plasticity and attentional processes.
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