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ABSTRACT: Xylochemistry presents a sustainable solution to the depletion of petroleum
resources, contributing to the success of the circulatory economy. The development of
reusable carbonaceous materials as heterogeneous acid catalysts has garnered significant
attention in both research community and industry. Catalysis research has an intrinsic
connection with low-cost synthetic routes, sustainable raw materials, and chemical and
thermal stability. We designed and made a solid acid catalyst that can be used more than
once from cheap, naturally occurring, crude cashew nut shell liquid (CNSL). Identification
of practical applications for waste biomass is a component of the objectives of sustainable
development. We treated the black-colored crude CNSL with varying amounts of
formaldehyde and further sulfonated the resulting crude resins with chlorosulfonic acid. The
solid with the most sulfonic acid groups was used as a Bronsted acid catalyst (CNSLF-
SO3H) for the Friedel−Craft reactions of indoles and furfuraldehydes. We synthesized 15
novel di[bis(indolyl)methane] derivatives from secondary xylochemical 2,5-diformylfuran
(DFF) and 15 bis(indolyl)methanes from 5-hydroxymethylfurfural (5-HMF).

1. INTRODUCTION
Sustainability and circular economy are buzzwords of the
modern world. The growing need for dwindling fossil fuels, as
well as the environmental repercussions of their use, has
compelled people to develop greener technology and ‘clean’
chemicals. Mother Nature, which turns harmful CO2 into
biomass, is the best source of inspiration for future generations.
In this setting, the utilization of renewable biomass feedstocks
has gained prominence. Lignocellulosic biomass, food waste,
municipal solid waste, and so on can be valuable resources for
creating alternative technologies to manufacture the chemicals
that humans require.1

The industrial sector demands sustainable and efficient routes
for important acid-catalyzed reactions such as esterification,
transesterification, etherification, hydrolysis, Friedel−Craft, etc.
Researchers in the field of catalysis are particularly interested in
developing efficient heterogeneous catalysts. For practical
applications, the preference for using a heterogeneous catalyst
over a homogeneous one arises from its lower level of
sophistication. Other factors that support this are easy catalyst
recovery, potential reuse, and easy disposal, resulting in less
pollution.2

One of the most important aspects of green chemistry is the
synthesis of a catalyst that is both environmentally friendly and
sustainable. To develop an acidic heterogeneous catalyst, it is
necessary to introduce an acidic functionality onto the surface of
a robust material. Such material could be an organic or inorganic
polymer.3 We need these polymeric support materials to be

environmentally sustainable, benign, and robust. The addition of
an acidic functionality, such as the SO3H group, to the surface of
such a support material can impart acidity, thereby transforming
it into a heterogeneous acid catalyst. Organic sulfonated
polymers are a promising heterogeneous acid catalyst that has
been documented in the literature.4 Production of sulfonated
chars and their propensity to act as acidic catalysts is also a topic
of interest among the researchers working in the field of
sustainable chemistry.5 However, there are very few reports of
sulfonated biomass, or sulfonated polymer of biomass, being
used as a Bronsted acid catalyst.6

Cashew nut shell (CNS) and its pericarp fluid CNS liquid
(CNSL) are agricultural wastes with promising prospects due to
their distinctive structural characteristics as raw materials for the
development of valuable chemicals and goods.7 There are four
main parts that make up CNSL: cardanol, anacardic acid, cardol,
and 2-methylcardol. The alkyl chain is also 1−3° unsaturated.
The extraction procedure allows for the highest concentration of
the two critical components, namely, anacardic acid and
cardanol. The phrases “natural CNSL” and “technical CNSL”
denote the presence of major constituents anacardic acid and
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cardanol, respectively.8 Extensive studies are reported on the
“technical CNSL”, which primarily consists of cardanol and
lacks any anacardic acid. Considerable study has been carried
out on cardanol−formaldehyde resin, derived from the original
concept of phenol−formaldehyde resin.9 These biomass-
derived cardanol−formaldehyde polymeric materials are studied
in the material sector. Researchers have also subjected the
cardanol to other chemical modifications for further polymer-
ization. The obtained resins demonstrate a wide range of
applications, including flame retardant,10 surface coating and
painting,11 adhesives,12 antiaging/anticorrosive agents,13 plasti-
cizers,14 and surfactants.15 Research also demonstrates the
potential of cardanol as a substitute for petroleum-based
industrial raw materials. There are also few reports of the use
of anacardic acid in natural product synthesis. While the
phenol−formaldehyde polymer has already found applications
as a support material for heterogeneous catalysts,16 there have
been no reports yet on the use of CNSL-based materials for this
purpose. Further to our knowledge, there are no useful reports
on the polymerization of natural or crude CNSL, which is rich in
anacardic acid.
As Goa is a cashew hub, we conceived the idea of utilizing this

economically viable and renewable resource as a basis for
developing a solid acid catalyst and demonstrating its utility in
organic transformations. Most small-scale industries follow the
roasting process for processing cashew nuts. This technique
produces a dark CNSL oil rich in anacardic acid. Traditionally,
people painted wooden boats with this oil to prolong their shelf
life. Nowadays, people either use this oil as fuel during the
roasting process or sell it to CNSL enterprises for a throwaway
price. Therefore, we contemplated utilizing this crude material
directly to synthesize a polymer akin to phenol−formaldehyde
resin, which can be sulfonated to obtain a solid acid catalyst.
Further, our interest was to retain the carboxylic acid group of
the anacardic acid, which is a major constituent of the crude
CNSL. This method of making a solid acid catalyst not only
ensures sustainability but also reduces CO2 emissions in the
environment by preventing the decarboxylation of CNSL, a
process that produces cardanol. Such a catalyst (Figure 1) has
the potential to substitute for numerous organic transformations
that use inorganic or organic acids as catalysts.

The investigation of novel compounds incorporating
physiologically active indoles and their derivatives has garnered
significant interest across various academic fields, particularly
within the realm of medicinal chemistry.17 Di[bis(indolyl)-
methane] [DBIM]-based compounds, also known as tetra-
(indolyl)methane compounds, have received a lot of attention

from medicinal chemists. The compound 1,4-di[bis(3-indolyl)-
methyl]benzene has shown promise in the treatment of
fibromyalgia, chronic tiredness, and irritable bowel syndrome.18

Figure 2 illustrates the varied DBIM compounds synthesized
from different dialdehyde scaffolds with the aim of discovering
improved pharmaceutical compounds for a range of biological
functions and different applications. According to these
investigations’ findings, DBIM derivatives have the potential
to be effective anticancer agents.19 These structures display
various aromatic or heterocyclic rings embedded between two
bis(indolyl)methanes. A review of the literature showed that
these DBIM compounds do not have a furan ring. Instead, they
do have the important five-membered heterocycles, pyrrole and
thiophene. This made us think of introducing a furan core
between the two bis(indolyl)methanes. We envisaged that the
furan ring, due to the presence of ethereal oxygen, could be
beneficial for the potential interactions with the target proteins
studied for cancer studies. Furthermore, the easy availability of
the xylochemical 5-hydroxymethylfurfural (5-HMF) makes it
easy to procure the required diformylfuran (DFF) (Figure 3).
The use of xylochemicals such as furan, 5-HMF, ferulic acid,
veratrole, and so on to synthesize value-added products is
important from a sustainability perspective. 5-HMF has gained
attention as a future sustainable replacement for many
petroleum-derived chemicals.20

The synthesis of bis(indolyl)methane involves the fusion of
reagents in a 1:2 equiv ratio, consisting of either cyclic or acyclic
aldehyde/ketone and indole in the presence of an acidic
medium. In a similar vein, the conventional method for
synthesizing di[bis(indolyl)methane] compounds involve the
condensation of one equivalent of cyclic or acyclic dialdehyde or
diketone with four equivalents of indole (Scheme 1).

2. RESULTS AND DISCUSSION
2.1. Catalyst Synthesis and Characterization. The

required CNSL/formaldehyde resin was synthesized by employ-
ing sulfuric acid.21 Altering the mole ratio of crude CNSL to
formaldehyde, eight CNSL/formaldehyde resin samples were
prepared. It was observed that the amount of resin production
increased linearly with the formaldehyde concentration. The
preparation of the resin of crude CNSL was carried out at 80 °C
to avoid decarboxylation and retain the carboxylic acid group of
anacardic acid. Low-temperature heating had no effect on the
resin’s propensity to form. In order to facilitate substitution with
SO3H groups over the heterogeneous polymer, an excess of
chlorosulfonic acid was added. It was found that the yield of the
sulfonation product linearly increased to a specific formaldehyde
to CNSL (1:1) ratio and then eventually declined as the
formaldehyde content increased. A higher proportion of
formaldehyde causes extensive cross-linkage in the polymer,
which affects substitution with SO3H groups. A plausible
polymeric structure of the catalyst is given in Scheme 2 below.
The catalyst obtained frommixing 1:1 formaldehyde/CNSLwas
chosen for further study as it showed a maximum increase in
weight after sulfonation. Furthermore, this composition also
showed a maximum sulfur content in elemental analysis (Table
S1).
All of the synthesized CNSL/formaldehyde polymers and

CNSL/formaldehyde-SO3H (CNSLF-SO3H) catalysts were
structurally characterized by the Shimadzu Fourier transform
infrared (FTIR) Prestige-21 spectrophotometer. The samples
were ground with KBr and then filled in a sample cell. All of the
samples were scanned from 4000 to 400 cm−1. The broad band

Figure 1. Representation of the prepared CNSL/formaldehyde-SO3H
catalyst.
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at 3485 cm−1 depicts the presence of phenolic and carboxylic
acid OH groups and bands at 2906 and 2864 cm−1 account for
the presence of −CH2 linkage in the CNSL/formaldehyde
polymer. The presence of the C�O asymmetric stretching peak
at 1726 cm−1 indicates the retention of the carboxylic group.
Furthermore, the FTIR spectrum of CNSLF-SO3H shows
characteristic IR bands of the polymer and the inserted SO3H
group. The broad band at 3000−3500 cm−1 shows the presence

of OH in the carboxylic acid and sulfonic acid. The strong band
at 3629 cm−1 confirms the presence of the phenol functionality.
The band at 1695 cm−1 depicts the carbonyl group of the
COOH groups in the polymer. The bands at 1168 and 1040
cm−1 depict SO3H stretching, as well as SO stretching at 682
cm−1 (Figure 4). Figure 4b displays all of the visible bands from
Figure 4a, demonstrating the retention of catalytic sites
following three reuses of the catalyst.

Figure 2. Different scaffolds employed in the formation of di[bis(indolyl)methane] derivatives for various applications.

Figure 3. DBIM to be derived from xylochemical DFF.

Scheme 1. General Scheme for the Synthesis of Bis(indolyl)methane and Di[bis(indolyl)methane] Compounds
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Scheme 2. Plausible Polymeric Reaction and Structure of Expected Mixture of Polymers

Figure 4. IR-spectrum polymer: (a) CNSLF-SO3H and (b) recycled CNSLF-SO3H.
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The chemical compositions of CNSLF-SO3H were deter-
mined by elemental analysis using an Elementar Vario Micro
Cube CHNS Analyzer (Table 1, Supporting Information). The

data reveal a significant sulfur percentage, which directly
correlates with the number of acidic groups. The selected
composition (1:1) had the highest sulfur percentile, 9.50, out of
all of the compositions. After the third cycle, the recovered
catalyst showed 8.54% sulfur, indicating the retention of the
sulfonic acid group. We further investigated the acidity of the
sulfonic acid-functionalized samples by FTIR, using pyridine as
a probemolecule. The bands between 1400 cm−1 and 1700 cm−1

are known for the Bronsted acidity.22 Sharp bands at 1439, 1482,
and 1581 cm−1 are seen, indicating strong interaction of pyridine
with the Bronsted acid sites of the catalyst resulting from
pyridinium ions [Figure 5a]. The availability of a high catalytic
surface area has a significant impact on the catalyst’s activity in a
specific reaction. Giving importance to the same, we evaluated
its surface area through the BET surface Quantachrome
Autosorb IQ system and the Autosorb IQ QUA 211011
analyzer by gas adsorption. It is found to have 7.93 m2/g surface
area for the catalyst. In addition, the structural characteristics of
the CNSLF-SO3H catalyst was analyzed by p-XRD on the
Rigaku SmartLab instrument. Figure 5b shows a broad Bragg
reflection suggesting the amorphous nature of the polymer
without any crystallinity.
We also checked the acidity of the synthesized CNSLF-SO3H

solid acid catalyst by using the inverse titration method. This
method is highly beneficial for examining the surface acidic
groups of carbonaceous material,23 as it involves titrating with

Boehm-suggested bases that have different basicities, such as
NaOH and NaHCO3. We obtained a pH value of 1.38 when we
used NaOH as a base and 2.68 when we used NaHCO3. The
presence of the phenolic hydroxyl group on the catalyst could be
the cause of the difference in pH for the different bases.
The temperature-programmed desorption studies with

ammonia (NH3-TPD) were obtained for the CNSLF/SO3H
sample of 1:1 composition with the Quantachrome Autosorb IQ
system model. On comparing the simulated TPD profiles, three
peaks are obtained at 186 °C, 533 °C, and 744 °C. The
significant peaks at lower temperatures, 186 °C, and higher
temperatures, 533 and 744 °C, indicate mild to strong acid sites
(Table 1). The introduction of the SO3H functionality on the
aromatic ring containing phenolic hydroxy and carboxylic acid
groups makes these groups more acidic, which in turn also
makes the SO3H functionality more acidic. This is reflected in
the peak of phenolic functionality appearing at 186 °C, the
COOH functionality at 533 °C, and the−SO3H functionality at
744 °C. This is also reflected in pyridine desorption studies in
IR, where pyridinium ion formation due to the phenolic OH is
seen at 1439 cm−1, the COOH is seen at 1482 cm−1, and the
SO3H is seen at 1581 cm−1. All of these studies suggest the
significant presence of strong acid functionality SO3H on the
catalyst surface.
The SEM image provided information about the micro-

structure and morphology of the CNSLF-SO3H catalyst [Figure
6a]. The image was recorded with a Carl-Zeiss scanning electron
microscope. It indicated that the catalyst is amorphous and
loose. Figure 6b presents the EDS survey of CNSLF-SO3H. The
clear and strongest peak of the S-element in EDS showed that
the SO3H group had been successfully attached to the polymer.
The thermogravimetric analysis evaluated the thermal

stability of the prepared polymeric CNSLF-SO3H materials.
We used a TG-DTA thermal analyzer of the NETZSCH STA
409PC (LUXX) to study the thermogravity (TGA) of the
polymer at a heating rate of 10 °C/min in zero air between 30
and 800 °C. Figure 7 shows that the TGA curve of the solid acid

Table 1. QCfit Peak Analysis Distribution Functions through
NH3-TPD

peak height (mV) area (sig*t) time (sec) temp (°C) % total area

1 28972.00 76451711.71 329 186.36 66.84
2 8042.31 7893033.40 1713 533.41 6.90
3 22718.90 30035931.55 2509 743.78 26.26

Figure 5. (a) FTIR spectra of the CNSLF-SO3H catalyst (red) and pyridine-absorbed CNSLF-SO3H catalyst (pink). (b) p-XRD pattern of the
sulfonated catalyst (CNSLF-SO3H).
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polymer CNSLF-SO3H sample with a 1:1 mix revealed three
weight losses in different areas. The first loss of∼5% is due to the
desorption of water molecules from the hydrophilic surface of
the SO3H-functionalized polymer surface. A weight loss of
∼24% was observed at >160 °C to ∼300 °C, which may
correspond to loss of the carboxylic acid group and partly SO3H
group. More than 51% weight loss above 300 °C indicates that
the SO3H groups on the polymer surface and the alkyl side chain
are completely broken down. These studies suggest that the

prepared solid acid can serve as a convenient catalyst for
reactions of up to 160 °C, beyond which it begins to degrade.
2.2. Catalyst Application.We focused our initial studies on

synthesizing di[bis(indolyl)methane] compounds from various
indoles and DFF because these compounds were unknown.
Researchers have reported numerous methods for the synthesis
of bis(indolyl)methanes, and they have also extended some of
these methods to the synthesis of di[bis(indolyl)methyl]-
benzene from terephthaldehyde. The methods include micro-
wave synthesis, mechanochemical synthesis, conventional

Figure 6. “a” depicts the SEM image of CNSLF-SO3H and “b” depicts EDS data.

Figure 7. Thermal stability studies of the CNSLF-SO3H acid polymer.
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heating, photoredox, and solventless, among others. Researchers
have developed and employed a diverse array of catalysts to
enhance product yield and minimize reaction time.23−31

Our first attempts to make di[bis(indolyl)methane] (Scheme
3) using our previous solventless and mechanochemical
methods did not go well (condition 3, Table 2).32 As a result,

we constructed the present novel CNSLF-SO3H catalyst from
natural waste material. Table 2 displays the CNSLF-SO3H
catalyst’s application results. Initially, we studied the effects of
different solvents by varying them. We studied the solvents
dichloromethane (DCM), 1,4-dioxane, ethanol, ethyl acetate
(EA), methanol, tetrahydrofuran (THF), toluene, and water,
using a 1:4 mol ratio of the reactants and a 20 weight % catalyst.
We studied the reactions at room temperature and under
refluxing conditions (conditions 1 and 2, Table 2).
Among the solvents studied, protic solvents, such as methanol

and ethanol, yielded the highest yield. Methanol required less
time than ethanol, possibly due to its ability to polarize. Water, a
benign green solvent, was not helpful, because of the low
solubility of the reactants. We chose ethanol for further studies
because it is more environmentally friendly than methanol. The
catalyst concentration was varied from 10 wt % to 60 wt % to
explore the optimal conditions (Table 3). Interestingly, the
product yield remained relatively constant, ranging from 76% to
81%, even as the reaction time varied. The increase in the
concentration varied inversely with time. We chose conditions

with 20 wt % of the catalyst as the optimal conditions for further
applications.
Table 4 depicts the various novel di[bis(indolyl)methane]

compounds 8a−o synthesized using the optimized protocol.
The electron-rich indoles reacted faster than the electron-
deficient ones, as expected in electrophilic substitution
reactions. Also, sterically crowded indoles reacted at a slightly
lower rate. Following the successful synthesis of di[bis(indolyl)-
methane] derivatives, the successful synthesis of 15 derivatives
of bis(indolyl)methanes 10a−o further demonstrated the utility
of catalyst CNSLF-SO3H (Table 5).
The reusability of the CNSLF-SO3H catalyst was another

important aspect to study. To evaluate reusability, we performed
Scheme 3 for 8 cycles. The activity remained almost unchanged
for three cycles, and for the fourth cycle, a slight drop (∼4%) was
observed (Figure 8). We evaluated four additional cycles and
observed a yield drop of 18%. This showed that after the fourth
cycle, the catalyst lost catalytic activity by∼4−5% in every cycle.
These observations suggested that the novel CNSLF-SO3H
catalyst has high activity and good stability up to the fifth cycle.
Therefore, the CNSLF-SO3H catalyst holds significant potential
as a sulfuric acid substitute in various industrial processes. The
decrease in activity could be attributed to the loss of some
catalyst during the filtration process.
Proposed Mechanism for the Synthesis of 5-HMF-

Bis(indolyl)methane 16a and 5-HMF-Di[bis(indolyl)-
methane] 15a. An acid-catalyzed electrophilic substitution
reaction mechanism (Figure 9) explains the synthesis of
bis(indolyl)methane and di[bis(indolyl)methane]. In the first
step, an acid-catalyzed attack of the aldehyde on the indole
occurs. The loss of water leads to the formation of azafulvaline-
type intermediates 34 and 35. The second indole molecule
reacts in aMichael fashion, resulting in the formation of 5-HMF-
bis(indolyl)methane 33a from intermediate 34. In the case of
DFF, it results in the formation of aldehyde 36, which reacts with
two more molecules of indoles via azafulvaline-type inter-
mediate 37 to yield di[bis(indolyl)methane] product 32a.
We also tested the CNSLF-SO3H catalyst to synthesize

di[bis(indolyl)methyl]benzene from terephthaldehyde, com-
paring it with some of the green reagents documented in the
literature, as shown in Table 6. From Table 6, it is clear that,

Scheme 3. Optimization of Reaction Parameters for 15a

Table 2. Optimization of Scheme 3 by Solvent and
Mechanochemical Condition Using CNSLF-SO3H Acid
Catalyst

condition 1a condition 2a

solvent temp (°C)
time
(h) % yield

temp
(°C)

time
(h) % yield

toluene room
temperature

24 5 110 >24 25

1,4-dioxane NPF 101 14 71
ethanol 8 78 8 77
ethyl acetate NPF 77 28 69
THF NPF 66 16 74
methanol 16 65 5 77
DCM 6 40 10 66
water 5 100 24 42

condition 3b

sr. no catalyst (mole %) time % yield

1 24 24
2 50 16 48

aCondition 1 and 2: indole (0.5 mmol), DFF (2 mmol), and CNSLF-
SO3H catalyst (20 wt %).

bCondition 3: entry 1:1 g silica, ball milling
at 400 rpm, entry 2:1 g silica, 50 mol % sulfamic acid ball milling at
400 rpm; NPF: no product formed; Temp: temperature.

Table 3. Optimization of Catalyst Concentration

conc. of catalyst (wt %) time (h) % yield

10 11 76
20 8 77
30 6 80
40 4 80
50 4 81
60 3 81
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compared to terephthaldehyde, HMF and DFF are less

electrophilic.

3. CONCLUSIONS
In conclusion, we have successfully developed a new sustainable
heterogeneous polymeric solid catalyst with sulfonic-carboxylic
acid functionalities from the crude CNSL. We prepared CNSL
formaldehyde polymers with varying formaldehyde proportions

Table 4. Substrate Scope of Di[bis(indolyl)methane] Derivativesa

aAll reactions were carried out by refluxing DFF 7a (0.48 mmol), indole 3a−o (1.92 mmol), and 20 wt % of the CNSLF-SO3H catalyst (w.r.t DFF)
in 5 mL of ethanol for appropriate time. The reaction mixture was filtered and washed with ethanol. The filtrate was concentrated and then
subjected to flash column chromatography using the EA-pet ether eluent system to get 16a−o.
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Table 5. Substrate Scope of Bis[di(indolyl)methane] Derivatives (BIMs)b

bAll reactions were carried out by refluxing 5-HMF 9a (1 mmol), indole 3a−o (2 mmol), and 20 wt % of the CNSLF-SO3H catalyst (w.r.t 5-HMF)
in 5 mL of ethanol for appropriate time. The reaction mixture was filtered and washed with ethanol.
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and sulfonated them with chlorosulfonic acid. Among them, the
composition prepared from 1:1 had the maximum number of
sulfonic acid groups. Back titration and elemental analysis
confirmed this. Pyridine absorption studies and NH3-TPD
further confirmed the Bronsted acidity of the CNSLF-SO3H
catalyst. TG studied the catalyst’s thermal stability and found it
to be stable up to 160 °C. The synthesis of a library of DBIMs
from secondary xylochemical DFF successfully demonstrated
the effectiveness of the prepared CNSLF-SO3H catalyst. The

utility of the catalyst was further demonstrated by the efficient
synthesis of a library of BIMs known for their biological activities
from xylochemical 5-HMF. The catalyst also demonstrated
excellent recyclability for three cycles. The catalyst and
molecular scaffolds synthesized exhibit typical attributes
associated with sustainability and the implementation of
Green Chemistry principles. Future studies will aim to
determine strategies to improve the catalyst’s thermal stability
and the biological activities of synthesized DBIMs.

4. EXPERIMENTAL SECTION
4.1. Materials. The crude black CNSL was procured from a

local industry. Indole derivatives were purchased from TCI
(India) Pvt., Ltd., and Spectrochem Pvt., Ltd. Conc. H2SO4,
formaldehyde (40% solution), and other solvents were
purchased from Thermo Fisher Scientific India Pvt., Ltd.
Silica-coated alumina TLC plates were purchased from Merk
Pvt., Ltd.
4.2. Procedure for Catalyst Preparation. CNSL/form-

aldehyde polymer preparation: Crude CNSL (2 g) was weighed
in a round-bottom flask fitted with a Liebig condenser.
Formaldehyde (40% solution, 0.44 mL) was added, followed
by conc. H2SO4 (1.2 mL). The reaction mixture was then heated
to 80 °C for 2 h. After cooling to room temperature, ice cold
water (10 mL) was added followed by EA (10 mL). The organic

Figure 8. Recyclability chart of the CNSLF-SO3H catalyst.

Figure 9. Proposed mechanism for bis(indolyl)methane and di[bis(indolyl)methane] compound using the CNSLF-SO3H catalyst.
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layer was separated and then washed with water (2 × 10 mL).
The organic layer was dried (anhydrous Na2SO4) and
concentrated under vacuum to obtain a thick liquid (2.38 g).
CNSLF-SO3H acid polymer catalyst: To the above thick

liquid, 25 mL of DCM was added. The solution was then
ultrasonicated for 30 min. The flask was then kept in an ice-cold
bath. An excess of ClSO3H (3 mL) was added with constant
stirring at 800 rpm. Stirring continued on the magnetic stirrer
until fumes disappeared. The DCM was removed by
evaporation, and the solid obtained was washed with a 50%
ethanol solution, dried in an oven at 80 °C, and stored in a closed
container in the desiccator (3.41 g).
4.3. AcidityMeasurements.Measurements of acidic active

sites (−SO3H): Acid−base titration was conducted to
determine the acid strength of the fresh catalyst in two different
ways.
4.3.1. Titration of HCl vs NaOH. 0.05 g of the catalyst was

stirred in 10 mL of 0.1 N NaOH solution at room temperature
for 1 h. Then, the obtained aqueous solution was separated from
the mixture, and the solution was titrated with a 0.1 N HCl
solution with phenolphthalein as an indicator. The procedure
was repeated three times (Table S1).33

4.3.2. Titration of HCl vs NaHCO3. 0.05 g portion of the
catalyst was stirred in 10 mL of 3 N NaHCO3 solution at room
temperature for 1 h. Then, the obtained aqueous solution was
separated from themixture and solution was titrated with a 0.1 N
HCl solution with methyl orange as an indicator. The procedure
was repeated in triplicates.
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