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Abstract: Kidney diseases pose a significant global health issue, frequently resulting in the gradual
decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism
and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases.
Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results
in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of
kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the
Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function.
Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory
proteins and altering the expression and activity of key iron transport and storage proteins. This
creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other,
ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and
oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and
nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and
mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between
these two factors in the context of kidney diseases. Understanding the underlying mechanisms
should help to identify potential therapeutic targets and develop novel and effective therapeutic
strategies to combat the burden of kidney diseases.
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1. Introduction

Kidney disease, another name for renal diseases, is a condition in which the kidney
is injured and unable to function correctly. The kidneys function by filtering waste and
excess fluids from the blood to form urine. When the kidneys are not functioning properly,
waste products will accumulate in our body and cause various health problems [1]. There
are different types of kidney diseases, including acute kidney injury (AKI) and chronic
kidney disease (CKD) and diabetic kidney disease (DKD). AKI occurs suddenly and is
often reversible with prompt treatment, while CKD develops over time and can lead to
permanent kidney damage [2,3]. DKD is a kidney damage caused by diabetes, and is a
specific type of CKD and one of the prevalent etiologies of CKD [4]. Diabetic patients
develop DKD due to the effects of long-term high blood sugar and suffer from impaired
kidney function. IgA nephropathy is also a type of CKD characterized by immune-mediated
deposition of immune complexes in the mesangial cells of the kidneys, leading to chronic
inflammation and kidney damage [5].

CKD and AKI are prevalent conditions with significant implications for public health
worldwide. The intricate interplay of iron metabolism and oxidative stress is gaining
significance in elucidating the pathophysiology and advancement of these renal diseases.
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Iron, a crucial micronutrient involved in numerous cellular functions, is tightly regulated
in the body to maintain homeostasis [6]. A deviation from this fine equilibrium may result
in abnormal iron levels, which can aggravate and accelerate CKD and AKI.

In CKD, the dysregulation of iron metabolism can have profound effects on renal
function [7]. Iron overload, often observed in CKD patients undergoing hemodialysis, can
promote oxidative stress via the overproduction of ROS [8]. ROS, in turn, can induce renal
fibrosis and dysfunction, exacerbating the progression of CKD. Conversely, iron deficiency
in CKD patients can impair erythropoiesis and exacerbate anemia, further complicating
disease management [9].

Iron metabolism and oxidative stress also play a critical role in the pathophysiology
of AKI. For example, ischemic AKI, a common form of AKI, is characterized by renal
hypoxia and reperfusion injury, also resulting in the overproduction of ROS and oxidative
stress [10]. The interaction of iron metabolism and oxidative stress in AKI can exacerbate re-
nal injury and impair recovery, emphasizing the necessity of understanding the underlying
mechanisms of acute kidney damage.

In this review, we discuss the roles and molecular mechanisms underlying iron dys-
regulation and oxidative stress in AKI, CKD and DKD. We also discuss the intricate rela-
tionship between iron metabolism and oxidative stress in kidney diseases. Understanding
the molecular mechanisms underlying iron dysregulation and oxidative stress can aid in
the identification of the prospective treatment targets and novel therapeutic techniques to
mitigate renal damage and the process of kidney diseases.

2. The Regulation of Iron Metabolism
2.1. Iron Absorption from Guts to Plasma

After birth, human iron intake depends entirely on dietary iron, which consists
mainly of heme iron and non-heme iron [11]. Of these, heme iron is mainly derived
from hemoglobin and myoglobin contained in meat and fish. Non-heme iron comes mainly
from vegetables and cereals [12]. Heme iron and non-heme iron are absorbed at different
rates: heme iron has an absorption rate of approximately 20%, while non-heme iron typi-
cally has a lower absorption rate ranging from 2% to 5% [12]. Despite slight variations in
the site of absorption, overall, dietary iron is absorbed in the small intestine [13]. Divalent
metal transporter 1 (DMT1), located in the apical membrane of enterocytes, is capable
of transporting non-heme iron from the intestinal lumen into the enterocyte via proton
coupling [14]. However, DMT1 is only responsible for the transport of divalent metal ions;
most of the iron in food is in the form of ferric ion. Thus, ferric iron must first be converted
into ferrous iron at the brush border of the endocytes by a ferric reductase, duodenal
cytochrome b (DCYTB) [15]. Iron is typically stored in ferritin within enterocytes [16].
Animal experiments indicate that in cases of iron deficiency, this iron is released into the
plasma through ferroportin (FPN) with the assistance of hephaestin [17,18]. For heme iron,
Majid Shayeghi et al. found that a membrane protein named heme carrier protein 1 (HCP1)
is capable of its transportation into enterocytes [19].

2.2. Plasma Iron Transportation and Uptake by Other Cells

The transportation of iron throughout the body is facilitated by transferrin (TF), a pro-
tein that binds to iron tightly, allowing for uptake by all types of cells. This process requires
recognition by transferrin receptor protein 1 (TFR1) [20], a type II dimeric transmembrane
receptor [21]. TFR1 is located on all cell membranes and serves as the main receptor for iron
entry into most cells. Human transferrin (hTF), a bilobal glycoprotein that is secreted from
the liver into the bloodstream, has a high affinity for reversible binding of ferric irons [22].
It has been indicated that a deficiency in TF could lead to the development of anemia, iron
overload in specific tissues, and potentially fatal outcomes [23]. TFR1 forms a 2:2 equimolar
complex with hTF, with each TFR1 monomer binding to one molecule of hTF [24]. Then,
the TF-TFR1 complex is internalized into cells through clathrin-mediated endocytosis [25].
Upon endosomal entry into the cell and subsequent removal of the clathrin proteins, pro-
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tons flow inward into the endosome, which leads to the acidification of the endosomal
environment. This, in turn, induces conformational changes in the complex to mediate the
release of ferric iron [26]. The released ferric iron is subsequently reduced to ferrous iron
by the six transmembrane epithelial antigen of the prostate family of reductases (STEAP)
or by lysosomal cytochrome B (LCYTB), and transported to the cytoplasm by intracellular
ferrous iron transporters including DMT1 and zinc transporter (Zip14) [27,28] in in vitro
experiments. After releasing the iron, apo-TF/TFR1 complex (without TF-bound iron)
returns to the cell surface and dissociates.

TF-bound iron is generally considered as the main source of iron for most cells, whereas
it has been reported that mice embryos lacking TF or TFR can still develop normally [29],
suggesting that the alternative pathways for iron acquisition may exist. For example, ferritin
not only functions during iron storage, but can also be secreted outside the cell to function as
an iron donor [30]. During mouse embryonic kidney development, scavenger receptor class
A member 5 (SCARA5) interacts with ferritin and promotes its endocytosis [31]. In human
cells, TFR1 also interacts with ferritin and promotes its endocytosis [32,33]. In addition,
it has been found that Zip14 is also responsible for the transportation of non-transferrin-
bound iron (NTBI) into mouse hepatocytes and pancreatic cells [34]. A homologue of ZIP14,
ZIP8, functions as an NTBI transporter in human proximal renal epithelial cells [35]. In
sum, cellular iron uptake is a complex process and requires multiple molecular synergies.
Therefore, further in-depth studies are essential for exploring the mechanism of iron uptake.

2.3. Cellular Iron Transfer to Mitochondria and Its Utilization

Upon entering the cytoplasm, ferrous iron is directed towards the labile iron pool
(LIP) [36], which is predominantly utilized by the mitochondria for the synthesis of Fe-S
cluster proteins and hemoglobin. To avoid the redox toxicity of LIP, the remaining iron
combines with iron chaperones after being released from endosomes via DMT1 [37], and
then transfers to ferritin for storage (see below). For example, Vyoral et al. identified a
high-molecular-weight intermediate in K562 cells incubated with TF, which appeared to
transfer iron from chaperones to ferritin [38]. Furthermore, Shi et al. have shown that
poly rC binding protein 1 (PCBP1) also acts as an iron molecular chaperone in yeast cells
and Huh7 cells, donating iron to ferritin [39]. Recently, Wang et al. observed a decrease
in iron and ferritin levels in the intestinal epithelium of PCBP1-deficient mice, indicating
that PCBP1 is also crucial in regulating intestinal iron absorption and maintaining iron
homeostasis in the body [40]. Except for transporting iron from the LIP to mitochondria,
endosomes containing TF can also directly and temporarily attach to mitochondria to
transport iron into them, bypassing the LIP [36]. This idea has been further developed
into the “kiss and run” hypothesis [41,42]. Studies have demonstrated that myosin Vb [43],
the cytoskeletal regulatory molecule MRCKα [44], and vesicle docking [45,46] all play a
role in “kiss and run” hypothesis in in vivo and in vitro experiments. However, the exact
mechanism of endosomal and mitochondrial contact is currently unknown. As iron enters
the mitochondria, both outer and inner membranes must be crossed to reach the matrix for
Fe-S cluster assembly and heme biosynthesis. DMT1 may be involved in iron crossing the
outer mitochondrial membrane [47], whereas in vitro experiments clarified that iron flux
through the inner mitochondrial membrane is dependent on mitoferrins 1 and 2 (MFRN1
and MFRN2) [48]. MFRN1 and MFRN2 are differentially expressed in tissues. MFRN1 is
only highly expressed in erythrocytes whereas MFRN2 is widely expressed in mammalian
tissues [49,50].

Within the mitochondria, iron normally has three destinations: the synthesis of
hemoglobin [51], the synthesis of Fe-S clusters [52], and storage in mitochondrial fer-
ritin [53]. The multiple steps of heme and Fe-S cluster synthesis occur in mitochondria
and cytoplasm. In addition, there is a crosstalk between Fe-S clusters and heme. For
example, a Fe-S cluster protein, ferrochelatase (FECH) catalyzes ferrous iron insertion into
protoporphyrin (PPIX) macrocycles, which is the last step of heme synthesis [54].
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2.4. Cellular Iron Storage

Iron that is temporarily unavailable to cells is stored in ferritin in cytoplasm and
mitochondria. The ferritin molecule is composed of a spherical protein shell and an
iron-containing core [55]. The protein shell consists of 24 polypeptide chains of different
ratios of H and L subunits and its inner surface forms multiple contact cores with up
to 4500 ferric iron [56]. The H subunit has redox activity and can catalyze ferrous iron
oxidation to storable ferric iron [57], while the L subunits stabilizes the ferritin structure
and store ferric iron by mineralization [58]. The ratio of H and L subunits can be varied in
different cells, which determines the rate of metal mineralization [59,60]. When required,
iron-containing ferritin is degraded by nuclear receptor coactivator 4 (NCOA4)-dependent
autophagy (ferritin autophagy), allowing iron to flow back into the LIP [61]. Iron is stored in
mitochondrial ferritin in mitochondria. Mitochondrial ferritin, like ferritin in the cytoplasm,
has redox activity [53]. However, unlike cytoplasm ferritin, the expression of mitochondrial
ferritin varies in different tissues. This suggests that the function of mitochondrial ferritin
may be distinct from that of ferritin in cytoplasm.

2.5. Cellular Iron Export

Cellular iron export is a tightly regulated process that maintains intra- and extracellular
iron homeostasis. Iron export is mainly divided into two pathways: FPN-dependent and
independent pathways. FPN is characterized by two 6-membrane-helix bundles to form
a channel for iron exportation [62,63]. Upon acceptance of Fe(II) carried by PCBP2, FPN
undergoes a conformational change, leading to a channel opening to delivery of iron
outside the cell [64]. To determine the critical role of FPN in iron absorption, it has been
found that selective deletion of FPN from intestinal cells results in anemia in mice. In
addition, knockout of FPN in macrophages and hepatocytes also developed anemia in mice
fed with a low-iron diet but the mice fed with a normal diet had normal erythropoiesis.
This result suggests that normal iron absorption can compensate for impaired iron recycling
and iron release from storage tissues [65,66]. Aside from transferring iron to plasma, a
study in a mouse model showed that FPN is also capable of releasing labile toxic iron from
hemoglobin molecules that have been damaged [67].

Although FPN is the main factor for cellular iron export, other factors are also involved
in this process. As mentioned above, in addition to functioning as an important molecule
for iron storage, FPN also exists in the extracellular space as a carrier of iron ions [68].
Iron-containing ferritin can be secreted by ferritinophagy [30,69] or endosomal microau-
tophagy [70,71] by membrane fusion. Ferritin secretion in exosomes can be stimulated
by ferroptosis, iron overload and high lipid activity [68,70,72]. Iron can also be excreted
from cells as heme iron. Feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) on
the cell membrane is responsible for heme transport [73], and mediates mouse erythroid
differentiation [74]. The mutations of FLVCR1 cause abnormal oxidative stress responses in
sensory neurons, resulting in sensory nerve-related diseases [75].

2.6. The Regulatory Mechanisms of Iron Hemostasis
2.6.1. The Iron-Regulatory Protein (IRP) and Iron-Responsive Element (IRE) Regulatory
System

Iron hemostasis can be regulated post-transcription. Iron-regulatory protein 1/2
(IRP1/2) can bind with cis-regulatory iron-responsive elements (IREs), which are specific
stem-loop structures within the untranslated regions (UTRs) of the messenger RNAs
(mRNAs) that encodes a variety of iron-related proteins [76]. The combination of IRP1 and
IREs is regulated by the concentration and cellular need of iron. When iron concentration
is low, IRP1 can bind with the 5′ UTR of the ferritin and FPN mRNAs to block their
translation and bind with the 3′ UTR of the TFR1 mRNA to protect it from degradation
by endoribonuclease regnases [77–79]. Conversely, when cellular iron concentration is
high, IRP1 disassociates from IREs, thereby allowing ferritin and FPN for translation and
exposing the TFR1 mRNA to degradation. Thus, the activation of the IRP-IRE system allows
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cells to have lower iron storage and export, but higher iron absorption. IRP2 regulation is
crucial for embryonic development and hematopoiesis [80]. In addition to ferritin, FPN and
TFR, the mRNAs of other iron-related proteins, such as DMT1 and HIF-2α, also contain IRE
structures [76]. The IRP-IRE system is important for embryonic development, intestinal
and liver function, immune function of macrophages and T-cells, erythropoiesis and iron
management, and the development of neurological disorders [81–86].

2.6.2. The Hypoxia-Inducible Factor (HIF) Regulatory System

HIF plays a crucial role in intestinal iron absorption. HIF is a heterodimeric nuclear
transcription factor for many iron metabolism-related genes, such as TFRC (encoding
TFR), SLC11A2 (encoding DMT1), etc. HIF consists of an oxygen-sensitive α subunit
(HIF-1α/HIF-2α) and a common expressed β subunit (HIF-1β) [87–89]. Under normal
oxygen conditions, two proline residues on HIF-1α and HIF-2α are hydroxylated by iron-
dependent prolyl hydroxylase (PHD) and then recognized and degraded by the ubiquitin-
proteasome system [90]. The functional integrity of PHD requires the cofactors ferrous
iron and oxygen. Hence, under hypoxic or iron-deficiency conditions, the inactivation of
PHD causes HIF-1/2α stabilization and combination with HIF-1β. Then, the complex is
translocated into the nucleus, in which the complex binds to hypoxia response elements
(HREs) to promote the transcription of hypoxia-inducible genes, including EPO, VEGF and
GAPDH, to enhance angiogenesis and glycolysis process [91–93]. Of note, although HIF-2
overlaps with HIF-1 in some functions (e.g., regulating VEGF and EPO expression), HIF-2
plays a bigger role in iron metabolism. HIF-2 can directly bind to the promoter regions of
the TFR, DCYTB and DMT1 genes, thereby promoting their transcription under hypoxic
or iron-deficient conditions [94,95]. In addition, there is feedback between HIF-2 and the
IRP-IRE regulatory pathway, in that the IRE region of HIF-2α can be bound by IRP to
inhibit HIF-2α expression [96,97].

2.6.3. Hepcidin–Ferroportin Regulatory System

It is now known that FPN is highly expressed on the membrane surface of macrophages,
enterocytes and hepatocytes, all of which are involved in increased iron fluxes. In contrast,
the key iron-regulating hormone hepcidin (HAMP or HEPC), produced by hepatocytes,
negatively feedback-regulates plasma membrane FPN levels [98,99]. Hepcidin modifies
FPN through post-translational modification, leading to its ubiquitination, endocytosis
and degradation by lysosomes [100,101]. Elevated iron levels in the circulation stimulate
hepcidin expression, which is mediated by iron-sensing proteins (e.g., HFE, TFR2, HJV
and BMP6) that sense changes in iron levels and promote the transcription of the hepcidin
gene (HAMP) through the SMAD pathway [102–104]. The regulation between systemic
iron circulation and cellular iron metabolism is shown in Figure 1.
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Figure 1. The regulation and the association between systemic iron circulation and cellular iron
metabolism. Systemic and cellular iron are tightly regulated. Dietary iron is the only source of
exogenous iron used to replace iron lost through iron excretion or bleeding. Dietary iron is absorbed
into the bloodstream by enterocytes and exists in the circulation mainly as TFBI, which is recognized
and taken up for use by cells of various tissues via TFR1. The liver is primarily responsible for
systemic iron storage and regulates systemic iron homeostasis by synthesizing hepcidin. In the
plasma, macrophages phagocytose senescent erythrocytes, releasing iron from hemoglobin and
re-entering the circulation. Intracellularly, iron in the LIP is available for the synthesis of substances,
such as the synthesis of heme by red lineage cells and the synthesis of Fe-S clusters by cells of
various tissues, while excess iron is stored in ferritin. Ferritin can release the stored iron into
the LIP via ferritinophagy, and intracellular iron can also be excreted directly from the cell via
the FPN or by secretion of ferritin. When the intracellular iron regulation mechanism fails or the
cellular iron is overloaded, the iron in LIP can generate toxic ROS through the Fenton reaction,
leading to oxidative stress and cellular damage. Abbreviation: TFBI: transferrin bound iron, FPN:
ferroportin, LIP: labile iron pool, HIF: hypoxia-inducible factor, IRP-IRE: iron-regulatory protein and
iron-responsive element.

3. Renal Iron Homeostasis and Cellular Dysfunction in Kidney Diseases
3.1. Renal Iron Homeostasis

In addition to the universal iron transport proteins and regulatory pathways described
above, there are kidney-specific iron uptake mechanisms. Due to different expressions of
iron transport-related proteins, the ability to process iron varies greatly between different
renal segments [105,106]. Under physiological conditions, proximal tubule epithelial
cells can take up transferrin-bound iron (TFBI) from the apical membrane via TFR1, or
via megalin-dependent and cubilin-mediated endocytosis [107,108]. The expression of
TFR1 and megalin–cubilin complex is negatively associated in proximal tubules. Under
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the iron overloaded condition, the expression of TFR1 is decreased by the IRP-IRE in
the kidney, whereas the expression of megalin receptor complex is increased in mouse
proximal tubules [109]. In contrast, under iron deficient conditions, such as iron chelation,
the expression of TFR1 is increased and the expression of the megalin–cubilin complex is
decreased [110]. These results suggest a possibly converse effect between TFR1 and megalin–
cubulin. Hemolytic conditions cause the mammalian proximal tubule to overburden with
hemoglobin, resulting in the participation of both megalin and the neutrophil gelatinase-
associated lipocalin receptor (NGALR) in the uptake of the filtered hemoglobin [111,112].
The level of ferritin and the abundance and activity of IRP1 are also higher in proximal
tubules than in distal tubules, indicating that proximal tubules rather than distal tubules
are primarily involved in cellular iron flux and renal iron reabsorption [108]. Furthermore,
ZIP8, ZIP14 and DMT1 are expressed in the proximal and distal tubules in human kidney
biopsy samples [113]. Given that ZIP8 and/or ZIP14 function at a higher pH than DMT1
for maximum iron transport, we can speculate that ZIP8 and/or ZIP14 may facilitate apical
uptake of NTBI in mouse proximal tubules, while DMT1 may participate in subcellular
uptake of apical NTBI [28,114,115]. In addition to the proximal tubule, the thick ascending
limb of Henle’s loop, the distal tubule and collecting duct can also reabsorb TFBI for the
expression of TFR1 and NGALR on the apical part of the cell [108,116].

Apart from the tubule’s reabsorption, glomerular epithelial cells also have an iron
reabsorption function because of the expression of TFR1, FPN and DMT1 on cultured
human glomerular epithelial cells [117]. Alfonso et al. show that human podocytes can
take up hemoglobin through macrophage-mediated autophagy and metabolize it via heme
oxygenase 1 (HO-1) degradation [118].

3.2. Abnormal Iron Metabolism and Cellular Dysfunction in Renal Injury and Disease

Iron homeostasis plays a vital role in maintaining normal organism function. Dis-
rupted iron homeostasis can significantly impact various organs through both systemic iron
overload and iron deficiency. Systemic iron overload leads to elevated plasma TFBI and
non-transferrin bound iron (NTBI) levels and increased intracellular LIP, causing structural
alternations of diverse proteins, and DNA due to the high redox capacity of iron [119]. An
increased urinary iron excretion and renal iron deposition has been found in hemochro-
matosis (HH) mice [120]. Clinical case reports also indicate that HH can lead to hemosiderin
deposition in kidneys and injured kidneys [121,122]. Hemochromatosis is an inherited
disorder most commonly caused by mutations in the HFE gene that result in misfolding
of the HFE protein, loss of function in sensing iron concentration and defective hepcidin
synthesis in hepatocytes, which in turn leads to reduced ubiquitinated degradation of FPN,
elevated FPN levels and increased release of cellular iron, resulting in elevated circulating
iron levels [123]. In addition, hepcidin deficiency leads to an elevation of plasma TF satura-
tion, inducing the accumulation of toxic NTBI in plasma [124]. Prolonged exposure of the
kidney to enhanced levels of non-heme iron was found to potentially lead to renal injury in
cultured porcine kidney epithelial cells [125].

Elevated renal injury markers were additionally observed in infants and children with
iron deficiency anemia and could be corrected with oral iron therapy [126]. These findings
suggest that an iron deficit may cause kidney damage and has a deleterious effect on renal
function. In addition, patients with a variety of glomerular and tubular disorders, such
as diabetic nephropathy and Fanconi syndrome, also have abnormal content of iron and
TF in their urine [127–131]. In addition, patients with glomerular disease often exhibit
hypo-transferrinogenemia due to the inability to adequately synthesize TF through the
liver. However, there is little clinical evidence regarding whether iron deficiency impairs
renal function.
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4. The Regulation of Redox Homeostasis in the Kidneys
4.1. ROS and Oxidative Stress in the Kidneys

ROS can be categorized into two major classes of free radical- and non-free radical-
oxidizing molecules (Table 1). Free radicals are molecules or atoms with unpaired electrons
that are highly oxidizable and can directly react with intracellular biomolecules (e.g.,
proteins, lipids, DNA) in oxidative reactions, leading to cellular damage and oxidative
stress [132]. Non-free radical ROS are oxidizing molecules that do not carry unpaired
electrons and are less reactive compared to free radical ROS, but they can be converted to
free radicals or participate in other oxidative reactions that can also cause cellular damage.
ROS act in both directions, either as the “culprits” of oxidative stress, destroying cellu-
lar structures and causing damage (see Section 5), or as cellular signaling molecule that
regulates various physiological processes. For example, hydrogen peroxide participates
in the activation of the epidermal growth factor receptor (EGFR), which in turn activates
a number of downstream signaling pathways and promotes cell proliferation and sur-
vival [133–135]. Mitochondrial ROS also play an important role in T cell activation, and
inhibition of mitochondrial ROS production can reduce T cell activation in vivo or in vitro
experiments [136]. Recent studies have shown that mitochondrial ROS also contribute to
the bactericidal activity of macrophages [137]. In addition, ROS play an important role
in the regulation of cellular senescence and stem cell differentiation, which will not be
discussed in this article.

Table 1. The classification of ROS.

Reactive Oxygen Species Properties

Non-
radical

Hydrogen peroxide (H2O2) Low oxidative activity, participates in many physiological
processes as a signal molecule

Organic hydroperoxides (ROOH) Lipid peroxides derived from polyunsaturated acids
(PUFAs) in ferroptosis

Singlet oxygen High oxidative activity involved in many biological
processes

Electronically excited carbonyl (R–C=O) High oxidative activity

Peroxynitrite (ONOO−) Formed by the reaction of superoxide with nitric oxide

Ozone (O3) In atmosphere, but toxic to humans

Free radical

Superoxide (O2
−) Relatively low oxidative activity, participates in the

synthesis of H2O2

Hydroxyl radicals (HO·) High oxidative activity and unstable, react with various
cellular proteins, DNA, lipids

Peroxyl radical (ROO·) High oxidative activity, involved in the spread of lipid
peroxidation

Nitric oxide (NO·) Relatively low oxidative activity, participates in the
synthesis of H2O2

The primary producers of endogenous ROS in the kidneys of mammals are mitochon-
dria and NADPH oxidases (NOX) [138–140]. As kidneys require large amounts of energy
(ATP) for filtration and reabsorption, mitochondria serve as the main source of cellular
ATP to power these activities [141]. Mammalian mitochondria can produce superoxide
(O2

−) and/or hydrogen peroxide through substrate catabolism and electron leakage in the
electron transfer chain (ETC). During electron transfer, electrons may escape into oxygen
to yield O2

− and/or hydrogen peroxide. As the substrate of Fenton reaction, hydrogen
peroxide can react with ferrous iron from LIP and produce hydroxyl radicals, a ROS with
strong oxidization activity [142]. Previous studies suggest ROS are mainly produced from
ETC complexes I and III, while mitochondrial pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase are involved in this process [143]. Most mitochondrial enzymes near ROS
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production centers contain thiol groups modified by ROS, implying that mitochondrial
ROS production is tightly self-regulated [144]. The NOX family contains seven homolo-
gous isoforms differentially distributed among tissues, in which NOX4 is predominant
in kidneys [145]. NOX4 is localized mainly to mitochondria, the endoplasmic reticulum
and plasma membrane [145,146]. Due to its unique E-loop structure, NOX4 can produce
hydrogen peroxide rather than superoxide [147].

Stimulated by oxidative stress, NO synthase (NOS) can be converted from NO-
producing enzymes to superoxide-producing enzymes, a process that is known as NOS
uncoupling [148]. Uncoupling of NOS leads to NOS dysfunction and contributes to ROS
overproduction. Three types of NOS exist in the body: neuronal NOS (nNOS, also called
NOS1), inducible NOS (iNOS, also called NOS2) and endothelial NOS (eNOS, also called
NOS3). nNOS and eNOS are constitutively expressed, whereas iNOS expression asso-
ciates with inflammation [148]. It has been found that nNOS is expressed in cortical
tubules and eNOS is expressed in glomeruli [149]. NOS mainly mediates endogenous NO
synthesis [149]. NO can induce cGMP production, a second messenger which affects car-
diovascular, renal and metabolic systems beneficially. However, NOS uncoupling increases
ROS production and decreases NO bioavailability, which exacerbates CKD [149,150]. A
key eNOS function is to regulate blood flow and maintain endothelial integrity. Mice
lacking eNOS exhibited symptoms similar to metabolic syndrome and developed severe
kidney disease [151,152]; while supplementing nitrate in the diet could reverse the disease
outcome [153]. In addition, eNOS uncoupling and NOX activation were found to generate
ROS, leading to endothelial dysfunction in DKD rats [154,155]. When ROS accumulate and
cells undergo oxidative stress, the eNOS coenzyme tetrahydrobiopterin (BH4) oxidizes
to BH2 by ROS, inducing eNOS uncoupling [156]. At this point, NOS becomes unstable,
transferring electrons from L-arginine that should fuel eNOS to oxygen instead, producing
O2

− [157]. Treatment with BH4 prevents eNOS uncoupling, reduces ROS and improves
endothelial function [158,159]. Patients treated with BH4 in clinics showed decreased
urinary albumin excretion [154,160].

4.2. Antioxidant Defense Systems in the Kidneys

Like most tissues and organs, the kidney contains an enzymatic and a non-enzymatic
antioxidant system (Table 2). The enzymatic system consists of superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPX) and thioredoxin (Trx). The non-enzymatic
system is mainly composed of reduced glutathione (GSH) and other molecules.

Table 2. The enzymatic and non-enzymatic renal antioxidant systems.

Enzymatic System Non-Enzymatic System

Superoxide dismutase (SOD) Glutathione (GSH)

Catalase (CAT) Antioxidant vitamins: vitamin A/C/E

Glutathione peroxidase (GPX) Antioxidant minerals: copper, zinc, manganese

Thioredoxin (Trx) Hormones: melatonin, flavenoids,

coenzyme Q

SOD catalyzes the transformation of superoxide anion into oxygen and hydrogen per-
oxide, mitigating the effects of ROS. The activity of SOD in mammalian kidneys is largely
mediated by SOD1, and reduction of SOD1 has been associated with kidney injury [161,162].
CAT is localized in peroxisomes, which are highly expressed in the liver, lungs and kidneys
and reduce SOD-generated hydrogen peroxide to oxygen and water [163]. Antioxidant
enzymes like CAT, SOD1 and PRX are found in peroxisomes, which are organelles that
control the oxidative state of cells [164]. Targeted phosphorylation of the peroxisomal mem-
brane protein PEX14 shields DNA from ROS by elevating cytoplasmic levels of CAT during
mitotic nuclear membrane dissolution in mammalian cells [165]. However, peroxisomes
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are also involved in fatty acid breakdown through β-oxidation, which produces hydrogen
peroxide as a byproduct [166].

GPX can function similarly to CAT to reduce SOD-derived hydrogen peroxide to
oxygen and water [167,168]. In addition, GPX specifically reduces lipid peroxides and
prevents the lipid peroxidation chain reaction, thereby preventing cell membrane disruption
and cell necrosis [167]. Of these, GPX4 is the only known intracellular enzyme that is
resistant to phospholipid peroxidation, and GPX4 deficiency is associated with ferroptosis
through increased ROS, lipid peroxidation and iron overload [169,170].

Trx primarily accomplishes its antioxidant role by passing electrons to Trx-dependent
peroxidases (Prxs), methionine sulfoxide reductases (Msr) and other oxidation-sensitive
molecules [171,172]. The Trx system can transfer electrons to Prxs and Msr to remove
ROS [173]. Trx then restores redox activity by receiving electrons from TrxR [174]. NADPH,
in turn, can transfer electrons to Trx reductase (TrxR) via FAD [175,176]. Furthermore, it
was found that GSH can reduce oxidized Trx in vitro, suggesting that there may be crosstalk
between the Trx system and GSH [177].

GSH is involved in the scavenging of peroxides as a cofactor of GPX [178,179]. In
addition, GSH can reduce two oxidation products, protein thiyl radicals and protein thiolate,
back to protein sulfhydryl groups (protein-SH) [180]. GSH can also restore the free radicals
of other antioxidants that have lost their antioxidant capacity, such as vitamins C and E,
back to their functional, non-free radical state [181].

5. Oxidative Stress and Cellular Dysfunction in Kidney Diseases

Physiological concentration of ROS makes them function as signaling molecules that
control a number of critical physiological processes [182]. However, overproduction of
ROS disrupts redox homeostasis, leading to oxidative damage to important biomolecules
such as DNA, proteins and lipids [183].

5.1. Oxidative Stress and Renal Tubular Cell Dysfunction in Kidney Disease

It is generally estimated that each human cell is exposed to about 105 attacks per
day from ROS such as hydroxyl radicals [184]. Damage to DNA by ROS identified so
far includes bases modification, deletions, translocations, DNA strand breaks and DNA-
protein cross-links and chromosomal rearrangements [185]. Hydroxyl radicals, which can
react with all of DNA’s constituents, including the deoxyribose backbone and purine and
pyrimidine bases, are primarily responsible for DNA damage [186,187]. These injuries lead
to genetic variations, such as mutations and chromosomal rearrangements, which may
lead to cell senescence [188]. Renal tubular epithelial cells are commonly associated with
renal senescence. Increased tubular epithelial cell senescence was found in animal models
of AKI (IRI) and CKD (UUO) as well as in CKD patients [189,190]. Senescent cells are able
to secrete various cytokines, such as IL-1β, IL-6, IL-8 and TGFβ1, collectively known as the
senescence-associated secretory phenotype (SASP), which significantly affects neighboring
cell and tissue functions [191–193]. SASP mediates inflammatory and pro-fibrotic responses,
which activate renal interstitial fibroblasts, contributing to an overproduction of matrix
proteins, which disrupts the physiological structure of renal tissues and promotes the
formation of fibrous scars [194].

Apoptosis has been observed in human renal tubular cells of diabetic patients due to
high glucose-induced overproduction of ROS and disruption of mitochondrial structure,
which leads to decreased mitochondrial respiratory function and ATP production, thus
causing energy metabolism disorders and renal tubular cells’ apoptosis [195,196]. In
addition, the upregulation of kidney injury molecule-1 (KIM-1) in mouse renal tubular
epithelial cells during the course of DKD led to an increase of the internalization of palmitic
acid albumin by proximal tubular cells and an activation of NLRP3 inflammatory vesicles
by palmitic acid via ROS production, leading to the production of pro-inflammatory factors,
such as IL-1β, thereby inducing renal tubular cell death, mitochondrial fragmentation and
subsequent fibrosis [197–199].
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Acute tubular injury is the most frequent pathologic manifestation of AKI. The eti-
ology of prerenal AKI is inadequate perfusion due to decreased renal blood flow, which
usually manifests as acute ischemic tubular damage [200]. Under ischemia and hypoxia,
renal tubular cells, which are highly metabolically active, are severely injured due to their
high oxygen demand [201]. The most common initial manifestations of ischemic AKI are
ATP reduction and the alterations of mitochondrial structures [202]. The conditions of
hypoxia and ischemia can induce oxidative stress, which leads to strong oxidative damage
to mitochondrial lipids and proteins, disrupting energetic metabolism via disrupting ETC
function [203]. According to multiphoton imaging reports, the mitochondrion is the major
source of ROS in a mouse ischemic AKI model [203]. Subsequently, post-injury renal
tubular epithelial cells undergo cell death, such as apoptosis and necrosis, releasing in-
flammatory mediators that in turn exacerbate tubular injury [204]. In addition, reperfusion
after ischemia also causes injury due to mitochondrial ROS bursts [205,206], which can
induce infiltration of inflammatory cells, such as neutrophils, early in IRI. ROS and inflam-
matory factors originating from neutrophils can further aggravate renal tubular injury in
rats [207,208]. Furthermore, uncoupling protein 1 (UCP1) in renal tubular epithelial cells is
downregulated in a time-dependent manner during renal ischemia–reperfusion, resulting
in elevated renal oxidative stress and exacerbating ischemia-induced AKI in mice [209].

ROS are also involved in several aspects of renal tubular cell injury in septic AKI
(SAKI). Pathogen invasion activates the innate immune system, and neutrophils and
macrophages protect the organism with oxidants such as hydroxyl radicals and perox-
ides [210]. The generation of ROS during defense can activate the inflammatory response
to increased iNOS, resulting in excess NO, which in turn leads to uncoupling of eNOS
and production of highly reactive peroxynitrite radicals [211,212]. In addition, excess NO
reacts with peroxo-anion radicals to generate peroxynitrite to directly damage renal tubular
cells [213,214].

Nephrotoxic drugs such as antibiotics and chemotherapeutic drugs can directly dam-
age kidney tubular cells, leading to AKI. For example, cisplatin increases ROS production
and depletes antioxidant molecules such as GSH in vivo, leading to endogenous ROS
accumulation in renal tubular cells and then cell death [215]. In addition, cisplatin may
induce mitochondrial dysfunction, leading to increased mtROS production in microsomes
via cytochrome P450 enzymes, further exacerbating oxidative stress injury in porcine
kidneys [216].

5.2. Oxidative Stress and Podocyte Dysfunction in Kidney Diseases

Loss of podocytes is a feature of early diabetic nephropathy and is involved in the pro-
gression of DKD. Increased extracellular glucose has been found to stimulate intracellular
ROS production via NOX and mitochondrial pathways, which leads to the activation of
p38 mitogen-activated protein kinase and caspase 3, ultimately resulting in podocyte apop-
tosis [217]. Further studies revealed that Ras-related C3 botulinum toxin substrate 1 (Rac1)
plays a role in podocyte injury by regulating multiple signaling pathways [218,219]. Rac1
can be activated by various stimuli, including ROS, inflammatory cytokines, angiotensin II
and high glucose concentration [220–222]. The activation of Rac1 activates various down-
stream effector molecules and signaling proteins, such as WAVE complex, mDia2, PAK
and LIM kinase, which are involved in actin cytoskeleton remodeling, leading to increased
mouse podocyte motility [223]. Normal podocytes have a stationary phenotype, whereas
damaged podocytes are transformed into a Rac-dependent motile phenotype. The motile
phenotype is related to the increase of podocyte motility, loss of podocyte process and pro-
teinuria [224]. Motile podocytes may eventually be depleted, leading to podocytopenia and
focal segmental glomerulosclerosis (FSGS) [225]. In addition, angiotensin II activates the
Rac1-NOX-ROS cascade reaction by binding to the type I angiotensin II receptor, leading to
rearrangement of the actin cytoskeleton of podocytes and increased motility [226]. Similar
to renal tubular epithelial cells, podocytes can internalize plasma proteins via free fatty acid
receptor-mediated endocytosis, leading to protein accumulation in endoplasmic reticulum
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(ER) and dysregulation of unfolded protein reaction pathways, ultimately causing ER
stress and mitochondrial damage [227,228]. ER stress is considered to be induced by ROS,
whereas mitochondrial damage generates ROS, creating a vicious cycle that is detrimental
to podocytes.

5.3. Oxidative Stress and Mesangial Cell and Interstitial Fibroblast Dysfunction in Kidney Disease

Glomerular mesangial cells and interstitial fibroblasts are thought to be involved in
excessive extracellular matrix synthesis during the progression of CKD. Both cell types
respond very similarly to pro-fibrotic stimuli during disease progression, such as by trans-
forming to a myofibroblast phenotype upon activation and synthesizing matrix proteins,
including fibronectin, laminin and collagen types I, III and IV [229–233]. It has been re-
ported that a variety of stimuli including TGF-β, angiotensin II and hyperglycemia have
been shown to alter the activity of NOX in both mesangial cells and fibroblasts, and ul-
timately the amount of ROS production [234,235]. More specifically, NOX4 is a major
mediator of the activation of thylakoids and the conversion of fibroblasts to myofibroblasts
caused by high glucose or angiotensin II [145,236,237]. Increased ROS synthesis in activated
mesangial cells and myofibroblasts also activates downstream signaling pathways, leading
to increased extracellular matrix synthesis and renal fibrosis.

5.4. Oxidative Stress and Endothelial Cell Dysfunction in Kidney Disease

As discussed above, endothelial cells’ main function is the synthesis and secretion of
NO via eNOS. NO is involved in various life processes through cGMP-mediated vasodila-
tion, inflammation and immune responses. Under normal conditions, low NO levels in the
endothelium can induce antioxidant gene expression and inhibit cytochrome C oxidase,
reducing ROS production [238]. However, elevated ROS levels reduce endothelial NO
production by inhibiting and/or uncoupling NOS [239,240]. For example, in early CKD
patients, plasma accumulation of ADMA (an L-arginine analogue) and uncoupling of NOS
lead to inhibition of NO synthesis and increased ROS production [239,241]. Subsequently,
renal endothelial dysfunction and increased vasoconstrictive blood flow resistance lead
to glomerular ischemia. In addition, the reaction of NO with superoxide produces perox-
ynitrite, which further leads to tissue damage by reacting with thiols, lipids and proteins
containing aromatic amino acids [241,242].

6. Oxidative Stress-Related Molecules in Kidney Disease
6.1. Nrf2

Nrf2 is a transcription factor that responds to intracellular oxidative stress and is
involved in the regulation of cellular redox homeostasis. Normally, Nrf2 interacts with
kelch-like ECH-associated protein 1 (KEAP1) to be sequestered in the cytoplasm. Sub-
sequently, Nrf2 and E3 ubiquitin ligase are ligated, causing Nrf2 degradation via the
proteasome [243]. During oxidative stress, ROS modify critical cysteine residues within
KEAP1, inducing a conformational change that disrupts the KEAP1-Nrf2 interaction and
allows Nrf2 to evade degradation [244]. Nrf2 then translocates to the nucleus and binds
to antioxidant response elements (AREs) within promoter regions of various antioxidant
and cytoprotective genes, including GSH S-transferases, HO-1, CAT, γ-glutamylcysteine
synthetase and NAD(P)H quinone oxidoreductase, to increase their expression [245]. Nrf2
is also responsible for the regulation of GSH and Trx systems. Nrf2 regulates the expression
of GSH synthases, such as glutamate–cysteine ligase (GCL) enzyme complex, and the
amount of the limiting substrate of GSH, cysteine [246,247], to regulate GSH expression.
Nrf2 also regulates the expression of Trx through the induction of NADPH, which is crucial
for electron transfer in the Trx system [248].

The renoprotective functions of Nrf2 have been demonstrated in various CKD mod-
els, and serves to attenuate oxidative stress induced by pathological conditions, such as
ischemia-reperfusion injury (IRI), unilateral ureteral obstruction (UUO), nephrotoxicants
and diabetes mellitus (DM), to slow disease progression [249]. Nrf2 deficiency in a UUO
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mice model decreased the expression of antioxidant genes glutamate-cysteine ligase cat-
alytic (Gclc) and HO-1 and increased the expression of genes associated with inflammation
and fibrosis such as TGF-β, TNF, IL-6, IL-1b, etc., suggesting that the protective function
of Nrf2 for renal tubulointerstitial fibrosis may be facilitated by both anti-inflammatory
and antioxidant pathways [250]. DKD is a disease that develops and progresses due to
a number of interconnected pathogenic mechanisms, such as altered renal metabolism,
mitochondrial dysfunction and oxidative stress. Dandona P. et al. demonstrated that the
levels of 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative stress, were elevated in
the urine of diabetic patients relative to controls and correlated positively with other indi-
cators of complications such as proteinuria [251]. Furthermore, in a streptozotocin-induced
mice model of diabetes, knockout of Nrf2 led to more intense DNA damage and more ROS
production, resulting in severe proteinuria and glomerulosclerosis compared to wild-type
controls [252,253]. Nrf2 also confers protective effects on pancreatic beta cells and mitigates
insulin resistance in individuals with diabetes [254]. In addition, Nrf2-deficient mice are
more susceptible to cisplatin-induced kidney injury than wild-type mice [255]. Pretreatment
of wild-type mice with the Nrf2 activator CDDO-Im prevents cisplatin-induced nephro-
toxicity [256]. With the in-depth study of Nrf2 activators, a variety of compounds such as
astragaloside IV, bardoxolone methy, etc., can attenuate cisplatin-induced renal injury via
the activation of the Nrf2/HO-1 signaling pathway [257,258]. Nrf2 activators significantly
improved ischemia/reperfusion- and LPS-induced AKI [259]. Qiu et al. have demonstrated
that treatment with obacunone, an activator of the Nrf2 pathway, significantly decreased
mouse renal cyst growth in autosomal dominant polycystic kidney disease (ADPKD) mice
models by suppressing lipid peroxidation through upregulation of glutathione peroxidase 4
(GPX4), and inhibition of lipid peroxidation ultimately led to a decrease of hypercellular
proliferation through decreasing the activation of the mechanistic target of rapamycin
(mTOR) and mitogen-activated protein kinase (MAPK) signaling cascades [260].

6.2. NF-κB

Inflammation is a major contributor to CKD progression. The renal inflammatory
microenvironment consists of inflammatory factors and immune cells. Macrophages, in
particular, play a key role in renal inflammation [261]. Macrophages exhibit either M1 or
M2 phenotypes. M1 macrophages secrete proinflammatory mediators like ROS, TNF-α,
and IL-1β, thereby promoting inflammation and injury. Conversely, M2 macrophages
exhibit an anti-inflammatory phenotype through IL-10 secretion, which counteracts acute
inflammation caused by M1 cells [262]. However, sustained M2 responses can also result in
excessive extracellular matrix (ECM) deposition and exacerbate renal fibrosis [263].

Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor that normally
exists as an inactive cytoplasmic complex through combination with inhibitory κB (IκB)
proteins [264]. The activation of the toll-like receptor by TNF-α and IL-1β induces the activa-
tion of the IκB kinase complex (IKK), leading to IκB phosphorylation and degradation [264].
This allows NF-κB translocation to the nuclear region, to increase the transcription of
proinflammatory genes such as IL-1, IL-6 and TNF-α. Persistent NF-κB activation is associ-
ated with chronic inflammation in CKD [265,266]. ROS can activate NF-κB to drive renal
fibrotic progression, while NF-κB also upregulates NOX and NOS to exacerbate oxidative
stress [267,268]. Nrf2 can inhibit NF-κB signaling and decrease the expression of genes
stimulated by NF-κB [245].

Renal oxidative stress and inflammation, which are symbols of DKD, are considered to
be regulated by NF-κB. ROS can activate NF-κB signaling, thereby modulating the expres-
sion of various adhesion molecules, pro-inflammatory cytokines, and chemokines involved
in chronic renal inflammation in DKD [269]. Prolonged activation of NF-κB-mediated
inflammation exacerbates oxidative injury to renal cells. Additionally, oxidative stress
and inflammation disrupt the normal balance between ECM synthesis and degradation,
resulting in excessive ECM accumulation in the kidneys [270,271]. The cumulative effects
of aberrant NF-κB signaling, oxidative stress and inflammation ultimately promote renal
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fibrosis, a key pathological feature of advanced DKD [272]. Administration of sappanone A
(SA) mitigated systemic inflammation and cortical renal inflammatory responses as well as
renal injury in a murine model of DKD by modulating the NF-κB signaling cascade [273].

It is well known that systemic inhibition of NF-κB can influence the severity of AKI.
Inhibition of NF-κB attenuated kidney injury in a folic acid-induced AKI model [274].
Inhibition of IκB kinase at 24 h after the onset of AKI also effectively suppressed NF-κB
activity, which in turn improved renal function and attenuated fibrosis [275]. Further
studies found that NF-κB plays a role in AKI through immune cells and epithelial cells.
Inhibition of NF-κB in macrophages by blocking CD38 can alleviate LPS-induced AKI in
mice [276]. Additionally, NF-κB activation may augment M1 macrophage infiltration in AKI
through the C-type lectin receptor Mincle [277]. In an ischemia/cisplatin-induced mice AKI
model, Yang et al. proposed that KIM-1 mediates phagocytosis of apoptotic epithelial cells
to attenuate the inflammatory response, which may be achieved by decreasing the activation
of NF-κB [278]. Reduced apoptosis, lowered chemokine expression and attenuated AKI
were also observed in mice with renal tubular epithelial cell-specific NF-κB knockout [279].

6.3. Sirtuin 1

The seven mammalian sirtuins (SIRT1-7) regulate various processes related to antioxi-
dant capacity, oxidative stress and metabolism. SIRT1, the most extensively characterized
isoform, localizes to the cytoplasm and nucleus [280]. As a NAD+-dependent deacetylase,
SIRT1 helps maintain redox homeostasis by modulating the ratio of NAD+/NADH [281–283].
SIRT1 inhibits inflammatory responses and oxidative stress by deacetylating the p65 sub-
unit of NF-κB [284]. In human renal tubular epithelial cells (HK-2) cultured with high
glucose, SIRT1 deacetylation activity is decreased, resulting in a decrease of p65 deacety-
lation and then an increase of NF-κB activity, which decrease the expression of miR-29
through directly binding to its promoter. MiR-29 has an ability to target and suppress
Keap1 gene expression. The decrease of miR-29 increases Keap1 expression and inhibits
the Nrf2/ARE (antioxidant response element) pathway [285]. SIRT1 also promotes the
activation of endothelial NOS in rats, leading to more NO production and preventing
oxidative stress [286]. FOXO1 and FOXO3 regulate antioxidant genes like SOD2 and CAT
through SIRT1-mediated deacetylation [287]. By modifying the transcription of the FoxO
target gene, SIRT1 protects diabetic kidneys and blood vessels from oxidative stress and
tissue damage [287]. In addition, SIRT1 inhibits p53-dependent apoptosis arising from
DNA damage and oxidative stress through p53 deacetylation, promoting human renal cell
survival [288]. SIRT1 also negatively regulates the mitochondrial ROS producer p66Shc
by promoting its deacetylation, reducing oxidative stress and maintaining mammalian
endothelial function [289].

The activation of SIRT1 prevents CKD by mechanisms such as increasing COX-2
expression and attenuating renal fibrosis and inflammation [290]. In a rat model of CKD,
SIRT1 activation attenuated inflammation and tubular fibrosis via inhibition of the TGF-
β/SMAD pathway [290–292]. In DKD, activation of SIRT1 confers renoprotective effects
across various models of renal injury. SIRT1 predominantly exerts protection in proximal
tubular cells and podocytes. Activation of SIRT1 can reduce the expression of the pro-
apoptotic gene, Bcl2-like 11 (Bcl2l11), through deacetylation of FOXO4, thereby preventing
podocyte loss in diabetics [293]. SIRT1 also inactivates NF-κB and the signal transducer
and activator of transcription 3 (STAT3) to attenuate proteinuria and podocyte damage
in db/db mice [294]. Increased proteinuria and progression of DKD were observed in a
mouse model with podocyte-specific SIRT1 knockout [295]. In addition, Hasegawa et al.
proposed that knockout of SIRT1 increased the expression of the tight junction protein
claudin-1 in proximal renal tubules, exacerbating albuminuria and impairing renal function
in in vivo and vitro experiments [296].

In a rat model of IRI-induced AKI, upregulation of SIRT1 effectively recovered renal
function and attenuated apoptosis compared to controls. SIRT1 expression is observed to
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increase in HK-2 cells cultured under hypoxic conditions to reduce ROS production [297]
(Figure 2).
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Figure 2. The main sources of ROS and ROS mediated the activation of Nrf2, NF-κB and SIRT1
in kidneys. Intracellular ROS in renal tissues is mainly derived from the escape of O2

− and H2O2

during mitochondrial aerobic respiratory electron transfer and NOX4 transfers electrons directly to
oxygen molecules to produce H2O2. When ROS is elevated, the structure of Keap1-Nrf2 is disrupted,
resulting in the release and entry of Nrf2 into the nucleus, where it binds to the ARE in DNA and
increases the expression of downstream antioxidant genes. In addition, NF-κB is bound under normal
conditions by IκB, which exists as an inactive complex in the cytoplasm. When intracellular ROS
is elevated, IκB would be dissociated from NF-κB, leading to the activation of NF-κB activation
and its translocation into the nucleus, where it binds to IRE in DNA and initiates the expression
of downstream pro-inflammatory genes. Furthermore, elevated ROS can also lead to an increase
of NAD+ and the activation of SIRT1, a NAD+-dependent deacetylase capable of inhibiting NF-κB
activity by deacetylating its p65 subunit, thereby inhibiting the inflammatory response. In addition,
SIRT1 promotes FOXO1 activation and nuclear translocation by deacetylating FOXO1, leading to an
increase of the expression of various antioxidant genes, such as SOD2 and CAT. Abbreviation: NOX4:
NADPH oxidases 4, ETC: electron transfer chain, Keap1: kelch-like ECH-associated protein 1, Nrf2:
nuclear factor erythroid 2-related factor 2, ARE: antioxidant response element, IκB: inhibitory κB,
NF-κB: nuclear factor kappa B, IRE: iron-responsive element, SIRT1: sirtuin 1, FOXO1: forkhead box
O1, HO-1: heme oxygenase 1, CAT: catalase.

7. The Crosstalk of Abnormal Iron Metabolism and Oxidative Stress in Kidney Diseases
7.1. How Oxidative Stress Affects Iron Metabolism

It has been found that ROS can alter the activity of Fe-S clusters in IRP1 and influences
the activity of IRP1 binding with mRNA and subsequent cellular iron metabolism [298–300].
Intracellular superoxide anion inhibits cellular iron uptake capacity by inactivating IRP1,
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resulting in its inability to bind to the IRE segment of mRNA [301]. Treatment with ex-
ogenous hydrogen peroxide stimulates Fe-S clusters’ catabolism, which promotes IRP1
binding to mRNA and increases iron endocytosis in cultured mouse fibroblasts cells [302].
In addition, an IRP-IRE-independent mechanism of iron regulation was identified. The
transcriptional level of cellular TFR was elevated upon treatment with low concentrations
of hydrogen peroxide, and the ability of IRP to bind to mRNA was unchanged [303]. In
contrast, treatment with high concentrations of hydrogen peroxide increased ferritin protea-
some degradation in microglial cells [304]. In addition, treatment with hydrogen peroxide
may rapidly inactivate PHD by oxidizing divalent iron in the PHD active site and lead to
transient activation of HIF-1α in human osteosarcoma cells. However, prolonged hydrogen
peroxide treatment results in the activation of ferrireductase and restores enzymatic activity
of PHD, resulting in a decrease in HIF-1α [305].

7.2. Abnormal Iron Metabolism Leads to Oxidative Stress and Ferroptosis

In patients with CKD, intracellular iron efflux is usually blocked, leading to intracellu-
lar accumulation of iron. Elevated serum hepcidin levels have been found in patients with
CKD, which subsequently binds to FPN on the cell membrane and leads to FPN degra-
dation and intracellular iron accumulation [306,307]. Excess iron subsequently produces
hydroxyl radicals via the Fenton reaction, which can react with PUFAs on cell membranes
and oxygen to form lipid ROS or lipid peroxyl radicals. This results in ferroptosis, a ge-
netically and biochemically unique kind of programmed cell death that is different from
others [308]. Ferroptosis is an iron-dependent programmed cell death that is character-
ized by the accumulation of lipid peroxides and regulates the progression of certain renal
disorders [309] (Figure 3).
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Figure 3. Oxidative stress as a mediating factor connecting abnormal iron metabolism and aggravation
of kidney diseases. Abnormal iron metabolism leads to oxidative stress by generating excess ROS
through the Fenton reaction. Increased ROS promotes DNA damage, mitochondrial dysfunction,
inflammatory response, ER stress and lipid peroxidation (ferroptosis), resulting in an increase of
cellular senescence, cell death, ETC dysfunction and ferroptosis. Subsequently, this causes irreversible
renal damage because of loss of irreducible cells, such as podocytes and endothelial cells, as well as
abnormal tissue repair (nonfunctional scar repair), leading to the increase of the progression of renal
disease to further deteriorate renal function. Abbreviation: SASP: senescence-associated secretory
phenotype, ER: endoplasmic reticulum, GPX4: glutathione peroxidase 4, AKI: acute kidney disease.
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Recent studies have indicated that ferroptosis significantly leads to the pathogenesis
of renal tubular injury progressing to renal fibrosis [310]. Recently, it has been found that
repressor element 1-silencing transcription factor (REST) is upregulated in renal tubular
epithelial cells of AKI patients and mice and leads to renal injury through the regulation
of ferroptosis, and that tubular-specific knockdown of REST significantly attenuates the
transition from AKI to CKD and ameliorates renal fibrosis [311]. Treatment with ferroptosis
inducers, such as erastin, decreases GPX 4 activity and enhances intracellular lipid peroxi-
dation to aggravate renal fibrosis [312]. Pretreatment with ferroptosis inhibitors stopped
the progression of renal fibrosis by preventing ferroptosis-related lipid peroxidation and
GSH depletion. In addition, vitexin attenuates CKD by inhibiting ferroptosis in renal
tubular epithelial cells through activation of Nrf2 [312], and formononetin and tectorigenin
attenuate renal fibrosis by inhibiting Smad3 [313,314].

Iron-dependent lipid peroxidation also exists in db/db and STZ-induced mouse or
rat models of DKD and in DKD patients [315–318]. It has been found that under the
condition of high glucose, HK-2 cells were characterized with an iron overload, a reduction
of antioxidant ability, an accumulation of ROS and a lipid peroxidation [315,319], whereas
all of these could be alleviated by the treatment with ferrostatin-1 (Fer-1), a ferroptosis
inhibitor2, suggesting a role of ferroptosis in DKD [315,319]. ZIP14, a cellular iron importer,
was upregulated while GPX4 and GSH levels were decreased in rat DKD models and Fer-1
treatment could normalize iron and ZIP14 levels [318]. Increasing mitochondrial GSH
content with N-acetylcysteine (NAC) also significantly ameliorated high glucose-induced
ferroptosis in renal cells [320].

Ferroptosis also participates in the process of ADPKD [321]. Schreiber et al. discovered
that in the renal tissues of ADPKD patients as well as in a mouse model, lipid peroxidation
enhanced the activation of the chloride channel TMEM16A, which is closely linked to renal
cyst enlargement [322]. In contrast, treatment with Fer-1 effectively inhibited TMEM16A
activation and cyst enlargement. Mutations of polycystin 1 predisposed cells to ferroptosis
by dysregulating iron and lipid metabolism [323]. In addition, high iron levels, low GPX 4
activity and increased lipid peroxide accumulation were verified in both ADPKD cells and
mouse models [323].

A kidney biopsy report of a patient with IgA nephropathy shows a significant depo-
sition of iron-containing hemosiderin in the renal tubules [324]. A cohort study revealed
that compared to the healthy control group, IgA patients had significantly lower levels
of the antioxidant enzymes SOD and vitamin E in their serum, while the levels of the
intermediate product of lipid peroxidation, malondialdehyde (MDA), were elevated [325].
Furthermore, Wu et al. confirmed that GPX4 levels were significantly decreased in kidneys
of IgA patients, and treatment with the ferroptosis inhibitor Fer-1 resulted in a decrease of
MDA and ROS, an increase of GPX4, an inhibition of ferroptosis in mesangial cells and a
delay of the progression of IgA nephropathy [326]. These findings suggest that ferroptosis
plays a crucial promoting role in the progression of IgA nephropathy.

In the mouse IRI model of AKI, single-cell sequencing showed that ferroptosis-related
genes are predominantly expressed in the renal tubular epithelial cells [327]. Conditional
knockout of ferroptosis suppressor protein 1 (FSP1) or GPX4 increased cellular sensitivity
to iron death and exacerbated acute tubular necrosis in a mouse model of IRI-AKI [328].
Another study found that knockout of ACSL4 (a promoter of ferroptosis) effectively reduced
pathological injury in AKI mice [329]. In addition, treatment with ferroptosis inhibitors
has been shown to effectively alleviate IRI-AKI in mice model [327,330]. Ferroptosis is also
increased in sepsis-induced AKI mouse models [331]. Recent studies have demonstrated
that treatment with melatonin prevents ferroptosis and ameliorates sepsis-associated AKI
by upregulating Nrf2/HO-1 cytoprotective pathway [332]. Furthermore, ferroptosis is also
involved in the injury response in rhabdomyolysis and cisplatin-induced AKI [333,334]
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8. Conclusions and Perspectives

Abnormal iron metabolism and oxidative stress play crucial roles in the progression
of kidney diseases, ultimately resulting in end-stage renal disease. Iron homeostasis is
necessary to maintain normal life activities of cells, tissues and organs. Abnormal iron
accumulation disrupts iron homeostasis, leading to the overproduction of ROS through
the Fenton reaction, which in turn exacerbates tissue injury through inflammation, fer-
roptosis, tissue scar repair and other unfavorable reactions. In addition, ROS acts as
signaling molecules to regulate iron homeostasis by affecting the activity of regulators
of iron metabolism, which may result in a new form of cell death, ferroptosis. This may
be one of the mechanisms of how abnormal iron metabolism and oxidative stress cause
renal injury.

Understanding the underlying mechanisms of iron metabolism and oxidative stress in
kidney diseases is crucial to discovering possible therapeutic targets and devising effective
methods to reduce the burden of kidney diseases. The existence of a vicious cycle of
abnormal iron metabolism and oxidative stress perpetuate each other. Further investigation
into the correlation between iron metabolism and oxidative stress in the setting of kidney
disease is crucial, as it can offer valuable perspectives on potential therapeutic approaches.
Future studies need to delve into the following concerns, including verifying (1) besides
the Fenton reaction, whether there are any other ways for iron ions to regulate ROS
production, and (2) in addition to ROS leading to extreme oxidative stress, whether there
are any other mechanisms in ROS to alter cellular phenotypes. Because the mechanisms
related to ferroptosis are poorly defined, it is necessary further explore novel molecular
pathways and regulatory mechanisms related to ferroptosis. Although there is a possible
association between iron deposition and kidney injury in hemochromatosis, more in-depth
studies are needed to explore whether and how dysregulation of iron metabolism (iron
deposition or iron deficiency) directly leads to kidney injury and impaired renal function.
In addition, thus far, almost all mechanistic studies are based on experimental animals. The
individual differences between humans and experimental animals should be verified in
a clinical setting. In sum, an in-depth understanding of the iron metabolic pathways and
the regulatory mechanism of oxidative homeostasis is of great interest in determining their
specific roles in various kidney diseases and discovering the corresponding safe therapeutic
targets for treatment.
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