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Entanglement and nonclassicality 
in four-mode Gaussian states 
generated via parametric down-
conversion and frequency up-
conversion
Ievgen I. Arkhipov1, Jan Peřina Jr.1, Ondřej Haderka2, Alessia Allevi3 & Maria Bondani4

Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two 
simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion 
are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly 
entangled states are found. Transfer of the entanglement from the down-converted modes into the 
up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-
noise intensity correlations between the equally-populated down-converted modes, as well as the 
equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful 
entanglement identifier also in other cases with arbitrarily populated modes.

Since the discovery of quantum mechanics, entanglement has been considered a very peculiar and purely quan-
tum feature of the physical systems. Its fundamental importance emerged when the experiments showing the 
violation of the Bell inequalities1–3, implementing quantum teleportation4,5 or demonstrating dense coding were 
performed. Nowadays, entanglement is undoubtedly considered as the key resource of modern and emerging 
quantum technology, including quantum metrology, quantum computation6 and quantum communications7–9.

For this reason, a great deal of attention has been devoted to the construction of practical sources of entangled 
light, both in the domains of discrete and continuous variables. While individual entangled photon pairs arising 
in spontaneous parametric down-conversion are commonly used in the discrete domain10, single-mode as well as 
two-mode squeezed states originating in parametric down-conversion and containing many photon pairs repre-
sent the sources in the domain of continuous variables11. Even more complex nonlinear optical processes, includ-
ing those combining simultaneous parametric down-conversion and frequency up-conversion, have been analyzed 
as sources of more complex entangled states. This approach has been experimentally implemented in refs 12 and 
13 considering three-mode entanglement and in ref. 14 where the four-mode entanglement has been analyzed.

Here, we consider a four-mode system composed of two down-converted modes and two up-converted modes. In 
the system, parametric down-conversion and frequency up-conversion involving both down-converted modes simul-
taneously occur in the same nonlinear medium15. While parametric down-conversion serves as the primary source of 
entanglement16, frequency up-conversion is responsible for the transfer of the entanglement to the up-converted modes.

This transfer operation is interesting from the fundamental point of view, as it generalizes the well-known 
property of ‘one-mode’ frequency up-conversion pumped by a strong coherent field, in which the statistical prop-
erties of the incident field are transferred to the frequency up-converted counterpart, also including the non-
classical ones (for example, squeezing,17). We note that such properties are important for the applications of the 
up-conversion process: For instance, it has been used many times for ‘shifting’ an optical ‘one-mode’ field to an 
appropriate frequency where its detection could be easily achieved18,19.

1RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of the Czech Academy of Sciences, 
17. listopadu 12, 77146 Olomouc, Czech Republic. 2Institute of Physics of CAS, Joint Laboratory of Optics of Palacký 
University and Institute of Physics, 17. listopadu 50a, 771 46 Olomouc, Czech Republic. 3Dipartimento di Scienza 
e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy. 4Istituto di Fotonica e 
Nanotecnologie, Consiglio Nazionale delle Ricerche, Via Valleggio 11, 22100 Como, Italy. Correspondence and 
requests for materials should be addressed to I.I.A. (email: ievgen.arkhipov01@upol.cz)

Received: 31 May 2016

Accepted: 01 September 2016

Published: 23 September 2016

OPEN

mailto:ievgen.arkhipov01@upol.cz


www.nature.com/scientificreports/

2Scientific RepoRts | 6:33802 | DOI: 10.1038/srep33802

In the general analysis of the four-mode system, we quantify its global nonclassicality via the Lee nonclassicality  
depth20. Since the four-mode system under consideration cannot exhibit nonclassicality of individual single 
modes, the global nonclassicality automatically implies the presence of entanglement among the modes for a 
two-mode Gaussian system involving parametric down-conversion, (see ref. 21). The analysis of ‘the structure of 
entanglement’ further simplifies by applying the Van Loock and Furusawa inseparability criterion22 that excludes 
the presence of genuine three- and four-partite entangled states. This means that in the system discussed here 
there are only bipartite entangled states. It is thus sufficient to divide the analyzed four-mode state into different 
bipartitions to monitor the structure of entanglement. Then, the well-known entanglement criterion based on the 
positive partial transposition of the statistical operator23,24, which gives the logarithmic negativity as an entangle-
ment quantifier, is straightforwardly applied25,26.

The experimental detection of two-mode (-partite) entanglement is in general quite challenging, as it requires 
measurements in complementary bases. Here, we theoretically show that, for the considered system with the 
assumed initial vacuum state, any two-mode partition exhibiting sub-shot-noise intensity correlations is also entan-
gled. As a consequence, the measurement of intensity auto- and cross-correlations in this system is sufficient to 
give the evidence of the presence of two-mode entangled states through the commonly used noise reduction factor.

Finally, we note that the Hamiltonian of the analyzed four-mode system formally resembles that describing 
a twin beam with signal and idler fields divided at two beam splitters. This analogy results in similar properties 
of the four-mode states obtained in the two cases, though the processes of down-conversion and up-conversion 
occur simultaneously in our system, at variance with the system with two beam splitters, which modify the 
already emitted twin beam. We note that the system with two beam splitters has been frequently addressed in 
the literature as a prototype of more complex devices based on two multiports that are used to have access to 
intensity correlation functions for the detailed characterization of the measured fields27, also including their 
photon-number statistics28–33.

The paper is organized as follows. In Section Four-mode nonlinear interaction the model of four-mode nonlinear  
interaction including parametric down-conversion and frequency up-conversion is analyzed. Nonclassicality of the 
overall system is addressed in Section Nonclassicality. In Section Four-mode entanglement, the entanglement of the 
overall system is investigated considering the partitioning of the state into different bipartitions. Two-mode entan-
gled states obtained after state reduction are analyzed in Section Two-mode entanglement and noise reduction factor, 
together with two-mode sub-shot-noise intensity correlations. Suitable parameters of the corresponding experimen-
tal setup can be found in Section Experimental implementation. Section Conclusions summarizes the obtained results.

Four-mode nonlinear interaction
We consider a system of four nonlinearly interacting optical modes (for the scheme, see Fig. 1). Photons in 
modes 1 and 2 are generated by parametric down-conversion with strong pumping (coupling constant g1). 
Photons in mode 1 (2) can then be annihilated with the simultaneous creation of photons in mode 3 (4). The two 
up-conversion processes are possible thanks to the presence of two additional strong pump fields with coupling 
constants g2 and g3. The overall interaction Hamiltonian for the considered four-mode system is written as15:

  = + + + . .ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †H g a a g a a g a a H c , (1)int 1 1 2 2 1 3 3 2 4

where the operators ˆ†a1 and ˆ†a2 create an entangled photon pair in modes 1 and 2 and the creation operators ˆ†a3 and ˆ†a4 
put the up-converted photons into modes 3 and 4, respectively. Symbol H.c. replaces the Hermitian conjugated terms.

The Heisenberg-Langevin equations corresponding to the Hamiltonian Ĥ int in Eq. (1) are written in their 
matrix form as follows:

= +
ˆ ˆ ˆd

dt
a a LU , (2)

where =ˆ ˆ ˆ ˆ ˆ† †a a a aa ( , , , )T1 2 3 4  and =ˆ ˆ ˆ ˆ ˆ† †
L L L LL ( , , , )T1 2 3 2 . The matrix U introduced in Eq. (2) is expressed as

Figure 1. Optical fields in modes 1 and 2 interact via parametric down-conversion described by the 
nonlinear coupling constant g1. Photons from mode 1 (2) are converted into photons of mode 3 (4) thanks to 
the frequency up-conversion characterized by the coupling constant g2 (g3); t stands for the interaction time. In 
the symmetric case we have g23 =  g2 =  g3.
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in which γj stands for the damping coefficient of mode j, j =  1, … , 4. The Langevin operators L̂ j, j =  1, … , 4, obey 
the following relations:

δ γ δ

δ γ δ

〈 〉 = 〈 〉 = 〈 ′ 〉 = 〈 〉 − ′
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j j j k jk j dj

j k jk j dj

The Kronecker symbol is denoted as δij and the symbol δ(t) means the Dirac function. The mean numbers ndj 
corresponding to noise reservoir photons have been used in Eq. (4). We note that for the noiseless system the 
following quantity  + − −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †a a a a a a a a1 1 4 4 2 2 3 3  is conserved in the interaction.

Introducing frequencies ωj and wave vectors 


k j of the mutually interacting modes, we formulate the assumed 
ideal frequency and phase-matching conditions of the considered nonlinear interactions in the form:

ω ω ω ω ω ω ω ω ω= + = + = +

= + = + = + .
        

k k k k k k k k k

, , ,

, , (5)

p p p

p p p

12 1 2 13 1 3 24 2 4

12 1 2 13 1 3 24 2 4

In Eq. (5), ωp12 (


kp12) stands for the pump-field frequency (wave vector) of parametric down-conversion, whereas 
ωp13 [ωp24] 



kp13 [


kp24]) means the frequency (wave vector) of the field pumping the up-conversion process between 
modes 1 [2] and 3 [4].

The solution of the system of first-order linear operator stochastic equations (2) can be conveniently expressed 
in the following matrix form:

= +ˆ ˆ ˆt ta a F( ) M (0) ( ), (6)

where the evolution matrix M is written in Eq. (18) of Appendix for the noiseless case and vector F̂ arises from the 
presence of the stochastic Langevin forces. More details can be found in ref. 34. When applying the solution (6), 
we consider the appropriate phases of the three pump fields such that the coupling constants gj, j =  1, 2, 3, are real.

The statistical properties of the optical fields generated both by parametric down-conversion and 
up-conversion are described by the normal characteristic function C  defined as

 ∑ ∑β ρ β β=
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where Tr denotes the trace and β ≡  (β1, β2, β3, β4)T. Using the solution given in Eq. (6), the normal characteristic 
function C  attains the Gaussian form:

 ∑β β β β β β β β β β
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and c.c. replaces the complex conjugated terms. The coefficients occurring in Eq. (8) are derived in the form:
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We note that the two-mode interactions characterized by the coefficients Dij and Dij in Eq. (8) attain specific 
forms. While the coefficients Dij reflect the presence of photon pairs in modes i and j, coefficients Dij describe 
mutual transfer of individual photons between modes i and j.

The normal characteristic function C  can be rewritten in the matrix form exp(β†Aβ/2) by introducing the 
normally-ordered covariance matrix A:

=
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where the 2 ×  2 matrices are defined as:
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The covariance matrix σ related to the symmetric ordering and corresponding to the phase space ˆ ˆx p( , ) is 
needed to perform easily partial transposition. It has the same structure as the covariance matrix A written in 
Eq. (10) with the blocks Ai (Djk) replaced by the blocks σi (εjk) defined as:
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Symbol Re (Im) denotes the real (imaginary) part of the argument.
In what follows, we consider the situation in which all four modes begin their interaction in the vacuum state. 

Moreover, we focus on the specific symmetric case in which g2 =  g3 ≡  g23. A note concerning the general case 
g2 ≠  g3 is found at the end.

Nonclassicality
We first analyze the global nonclassicality of the whole four-mode system as it is relatively easy and, for the con-
sidered initial vacuum state, it implies entanglement (see below). Nonclassicality of the whole four-mode state 
described by the statistical operator ρ̂ is conveniently quantified by the Lee nonclassicality depth τ20. This quantity 
gives the amount of noise, expressed in photon numbers, needed to conceal nonclassical properties exhibited by 
the Glauber-Sudarshan P function, which attains negative values in certain regions or even does not exist as an 
ordinary function. The Glauber-Sudarshan P function is determined by the Fourier transform of the 
normally-ordered characteristic function C  given in Eq. (8). Technically, the Lee nonclassicality depth is given 
by the largest positive eigenvalue of the covariance matrix A defined in Eq. (10). So, it can be easily determined.

The Lee nonclassicality depth τ as a function of the coupling parameters g1t and g23t is shown in Fig. 2. The 
increasing values of g1t result in larger values of the nonclassicality depth τ, as the number of photons simulta-
neously generated in modes 1 and 2 increases. We note that this pairing of photons in the process of paramet-
ric down-conversion is the only source of nonclassicality in the analyzed four-mode system. On the contrary, 
nonzero values of parameter g23t only lead to the oscillations of the nonclassicality depth τ. This behavior occurs 
as the frequency up-conversion moves photons, and so also photon pairs, from modes 1 and 2 to modes 3 and 
4 and vice versa (see the scheme in Fig. 1). This results in the nonclassical properties of modes 3 and 4, at the 
expenses of the nonclassical properties of modes 1 and 2.

The maximum value of the Lee nonclassicality depth τ =  0.5 is reached for g23t =  0 and ideally in the limit 
g1t →  ∞ , i.e. when only the strong parametric down-conversion occurs. This is in agreement with the analysis of 
nonclassical properties of twin beams reported in ref. 35. The value τ =  0.5 can also be asymptotically reached in 
the limit g23t →  ∞ , in which we have

τ =






− + − +




→∞ B B D B B1

2
( ) 4 ( )

(13)g t 1 2
2

12
2

1 223

with B3 →  B1, B4 →  B2 and D34 →  D12. It is worth noting that formula (13) applies also for g23t =  0.
Nonclassicality is also strongly resistant against damping in the system. This means that even a low number of 

photon pairs is sufficient to have a nonclassical state. We demonstrate this resistance by considering the damping 
constants γ proportional to the nonlinear coupling constant g1, which quantifies the speed of photon-pair genera-
tion. The graphs in Fig. 3 show that the generated states remain strongly nonclassical even though a considerable 
fraction of photon pairs is broken under these conditions. The comparison of graphs in Fig. 3(a,b) reveals that 
the damping is more detrimental in the down-converted modes 1 and 2 than in the up-converted modes 3 and 4.
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At variance with nonclassicality, the determination and quantification of entanglement is more complex 
and it is technically accomplished by considering all possible bipartitions of the four-mode system (see the next 
Section). On the one side all bipartitions considered below are in principle sufficient to indicate entanglement, on 
the other side the application of the Van Loock and Furusawa inseparability criterion22 to our system excludes the 
presence of genuine three- and four-mode entanglement. The analyzed Hamiltonian written in Eq. (1) together 
with the incident vacuum state also excludes the presence of nonclassical states in individual modes. In what fol-
lows, the bipartite entanglement is thus the only source of the global nonclassicality in the analyzed system. This 
situation considerably simplifies the possible experimental investigations as positive values of the Lee nonclassi-
cality depth directly imply the presence of entanglement somewhere in the system.

Four-mode entanglement
In quantifying the entanglement in our four-mode Gaussian system, we rely on the following facts applicable to 
an arbitrary (m +  n)-mode Gaussian state. It has been proven that positivity of the partially transposed (PPT) 
statistical operator describing any 2 ×  2 or 2 ×  3 bipartition of the state is a necessary condition for the separability 
of the state23,24. Moreover, it has been shown that the violation of PPT condition occurring in any 1 ×  (m +  n −  1) 
bipartitions or m ×  n bisymmetric bipartitions for m >  2 and n >  3 is a sufficient condition for the entanglement 
in the analyzed (m +  n)-mode state36,37. For continuous variables systems, the PPT is simply accomplished when 
the symmetrically-ordered field operators are considered allowing to perform the PPT only by changing the signs 
of the momenta p̂36. Moreover, symplectic eiganvalues ni of the symmetrically-ordered covariance matrix σ can 
be conveniently used to quantify entanglement in bipartite systems via the logarithmic negativity E26, defined in 
terms of eigenvalues <n 1/2i :

∑=




−






E nmax 0, log (2 ) ,
(14)i

i

where max gives the maximal value.

Figure 2. Nonclassicality depth τ as a function of the parameters g1t and g23t. 

Figure 3. Nonclassicality depth τ as a function of the parameters g1t and g23t for (a) γ1t =  γ2t =  g1t, γ3t =  γ4t =  0; 
(b) γ1t =  γ2t =  0, γ3t =  γ4t =  g1t, assuming ndj =  0 for j =  1, … , 4.
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In the four-mode Gaussian state sketched in Fig. 1, we have two kinds of bipartitions. Either a single mode 
forms one subsystem and the remaining three modes belong to the other subsystem, or two modes are in one 
subsystem and the remaining two modes lie in the other subsystem. Due to the symmetry, only two members 
of each group are of interest for us. Namely, these are bipartitions 1 ×  234 and 3 ×  124 from the first group and 
bipartitions 12 ×  34 and 13 ×  24 from the second one. We note that, while the bipartition 12 ×  34 is bisymmetric 
in our interaction configuration (provided that g2t =  g3t), the bipartition 13 ×  24 is not bisymmetric. Nevertheless, 
positive values of both the logarithmic negativities E12×34 and E13×24 reflect entanglement as both bipartitions 
involve two modes on both sides. Similarly, positive values of the logarithmic negativities E1×234 and E3×124 guar-
antee the presence of entanglement.

We first pay attention to the entanglement expressed in the logarithmic negativities E1×234 and E3×124. As 
suggested by the graphs in Fig. 4(a,b), the oscillating behavior of negativity E1×234 is complementary to that of 
negativity E3×124. This means that the larger values of negativity E1×234 are accompanied by the lower values of 
negativity E3×124 and vice versa. Such a result is a consequence of the fact that the entanglement is due to the pres-
ence of photon pairs and a photon created in mode 1 can move to mode 3 and later return back to mode 1. This 
movement leads to the oscillations with frequency g23, which are clearly visible in Fig. 4(a,b). This explanation 
also suggests that no entanglement is possible between modes 1 and 3. Indeed, if we also determine the negativity 
E1×24 (or E3×24), we will get the same values already obtained for the negativity E1×234 (E3×124).

The negativity E12×34, characterizing the entanglement between the twin beam in modes 1 and 2 and the 
up-converted beams in modes 3 and 4, is plotted in Fig. 4(c). It reflects the gradual movement of photon pairs 
from modes 1 and 2, where they are created, to modes 3 and 4. Note that the maxima of negativity E12×34 along 
the g23t-axis occur inbetween the maxima of negativities E1×234 and E3×124. The origin of entanglement in photon 
pairing is confirmed in the graph of Fig. 4(d), showing that the negativity E13×24 is independent of parameter g23t 
and that the negativity E13×24 increases with the increasing parameter g1t. In certain sense, the independence of 
negativity E13×24 from parameter g23t represents the conservation law for nonclassical resources, as the negativi-
ties of the different two-mode reductions derived from this bipartition (E1×2, E1×4, E3×2, and E3×4) do depend on 
parameter g23t.

The developed model also allows us to study the role of damping in the entanglement creation. The investiga-
tions based on equal damping constants γ and noiseless reservoirs (nd =  0) just reveal the deterioration of entan-
glement in all the considered bipartitions with the increase of damping constants see (Fig. 5).

Two-mode entanglement and noise reduction factor
The results of the theoretical analysis suggest that, from the experimental point of view, the observation of entan-
glement between pairs of modes is substantial for the characterization of the emitted entangled states. Formally, 
the theory describes such observations through the reduced two-mode statistical operators. The analysis shows 
that the behavior of two-mode negativities E1×2, E3×4, and E1×4 with respect to parameters g1t and g23t is quali-
tatively similar to that of four-mode negativities E1×234, E3×124, and E12×34 plotted in Fig. 4(a–c). This similarity 
originates in possible ‘trajectories’ of photon pairs born in modes 1 and 2 and responsible for the entanglement.

Additional insight into the generation of entanglement in the analyzed system is provided when the entangle-
ment is related to the intensities of the interacting fields. As quantified in the graphs of Fig. 6, both mean photon 
numbers B1 ≡  B2 and B3 ≡  B4 are increasing functions of parameter g1t and oscillating functions of parameter g23t. 
This oscillating behavior is particularly interesting, as it reflects the flow of photons from modes 1 and 2 to modes 
3 and 4, respectively, and vice versa. As we will see below, this is in agreement with the ‘flow of the entanglement’ 
among the modes.

The graph in Fig. 7(a) shows that the negativity E1×2 is on the one side an increasing function of the mean pho-
ton number B1, on the other side it only weakly depends on the mean photon number B3. This confirms that pair-
ing of photons in parametric down-conversion is the only resource for entanglement creation. On the contrary, as 
shown in Fig. 7(b), the negativity E3×4 is an increasing function of the mean photon number B3, whereas it weakly 
depends on the mean photon number B1. This indicates that the entanglement in modes 34 comes from modes 
12 through the transfer of photon pairs: The stronger the transfer is, the larger the value of negativity E3×4 is.  
Moreover, optimal conditions for the observation of entanglement in modes 1 and 4 occur provided that there is 
the largest available number of photon pairs with one photon in mode 1 and its twin in mode 4. According to the 
graph in Fig. 7(c) this occurs when the mean photon numbers B4 (B4 ≡  B3) and B1 are balanced, independently 
of their values.

In general, the experimental identification of two-mode entanglement is not easy, as it requires the simul-
taneous measurement of the entangled state in two complementary bases. Alternatively, entanglement can be 
inferred from the reconstructed two-mode phase-space quasi-distribution, which needs two simultaneous homo-
dyne detectors38, each one endowed with a local oscillator. However, the detection of entanglement, at least in 
some cases, can be experimentally accomplished by the observation of sub-shot-noise intensity correlations. This 
is a consequence of the detailed numerical analysis, which reveals that the majority of the reduced two-mode 
entangled states also exhibits sub-shot-noise intensity correlations. Nevertheless, it should be emphasized here 
that, in the analyzed system, there are also two-mode entangled states not exhibiting sub-shot-noise intensity 
correlations. On the contrary, we note that the reduced two-mode separable states do not naturally exhibit 
sub-shot-noise intensity correlations.

Sub-shot-noise intensity correlations are quantified by the noise reduction factor R39,40, that is routinely meas-
ured to recognize nonclassical intensity correlations of two optical fields. The noise reduction factor R expressed 
in the moments of photon numbers nj and nk of modes j and k, respectively, is defined by the formula:
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Figure 4. Logarithmic negativities E1×234 (a), E3×124 (b), E12×34 (c), and E13×24 (d) as functions of parameters g1t 
and g23t for different bipartitions indicated in the subscripts.

Figure 5. Logarithmic negativity E as a function of the damping coefficient γt for different bipartitions: 
1 × 234 (dashed red line), 3 × 124 (brown dotted line), 12 × 34 (dashed-dotted green line), and 13 × 24 
(solid blue line). We set g1t =  g2t =  g3t =  0.7, γ ≡  γ1 =  γ2 =  γ3 =  γ4; ndj =  0 for j =  1, … , 4.
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Sub-shot-noise intensity correlations are described by the condition R <  1. We note that there exists the whole 
hierarchy of inequalities involving higher-order moments of photon numbers (or intensities)27,33,41,42 that indi-
cate nonclassicality and, in our system, also entanglement. We mention here the inequality derived by Lee43 as a 
practical example that is sometimes used in the experimental identification of nonclassicality. We note that this 
criterion is stronger than the noise reduction factor R in revealing the nonclassicality39.

The noise reduction factors R1×2, R3×4 and R1×4 describing the reduced two-mode fields with their negativities 
plotted in Fig. 7 are drawn in Fig. 8 for comparison. We can see complementary behavior of the negativities E 
and noise reduction factors R in the graphs in Figs 7 and 8. An increase of the negativity E is accompanied by a 
decrease in the noise reduction factor R. A closer inspection of the curves in these graphs shows that the condi-
tion R <  1 identifies very well entangled states when the noise reduction factor is measured in modes 1 ×  2 and 
3 ×  4. Nevertheless, there are entangled states with R1×4 >  1, as shown in the graph of Fig. 9, in which the values of 
parameters g1t and g23t appropriate for this situation occur in the areas I and III. On the other hand, the entangled 
states found in the area II in the graph of Fig. 9 have R <  1. It is worth noting that the relative amount of entangled 
states not detected via R <  1 increases with the increasing coupling constant g1t and so with the increasing overall 
number of photons in the system.

The observed relation between the entangled states and those exhibiting sub-shot-noise intensity correlations 
can even be explained theoretically, due to the specific form of the reduced two-mode Gaussian states analyzed in 
ref. 35. According to ref. 35 entangled states in modes i and j are identified through the inequality BiBj <  |Dij|2. On 
the other hand, the noise reduction factor Rij defined in Eq. (15) attains for our modes the form:

= +
+ − | |

+
R

B B D
B B

1
2

(16)
ij

i j ij

i j

2 2 2

that assigns the sub-shot-noise intensity correlations to the states obeying the inequality + < | |B B D2i j ij
2 2 2. Thus, 

the inequality + ≥B B B B2i j i j
2 2  implies that the states with sub-shot-noise intensity correlations form a subset in 

the set of all entangled states. Moreover, if Bi =  Bj, both sets coincide as we have + =B B B B2i j i j
2 2 . Thus, the noise 

reduction factors R12 and R34 are reliable in identifying entangled states in the symmetric case, in which B1 =  B2 
and B3 =  B4.

We note that, according to the theory developed for the modes without an additional internal structure35, the 
logarithmic negativity Eij can be determined along the formula35

= − + + − − + | |{ }( )E B B B B Dmax 0, log 1 ( ) 4 ,
(17)ij i j i j ij

2 2

where |Dij|2 =  〈 Δ niΔ nj〉 . According to Eq. 17 the logarithmic negativity Eij can, in principle, be inferred from the 
measured mean intensities in modes i and j and the cross-correlation function of intensity fluctuations in this 
idealized case.

At the end, we make a note about the entanglement in the general four-mode system with different 
up-conversion coupling constants (g2 ≠  g3). This is relevant when non-ideal phase-matching conditions of the 
three nonlinear interactions are met in the experiment (see below). According to our investigations, the largest 
values of negativities E1×2 and E3×4 are found in the symmetric four-mode system (g2 =  g3) considered above. On 
the contrary, the largest values of negativities E1×4 and E2×3 are obtained for unbalanced g2 and g3 interactions.

Figure 6. Mean photon numbers B1 (a) and B3 (b) plotted as functions of parameters g1t and g23t.
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Similarly to the symmetric case, separable states, entangled states without sub-shot-noise intensity correlations 
and entangled states exhibiting sub-shot-noise intensity correlations are found in the whole three-dimensional 
parametric space spanned by variables gjt for j =  1, 2, 3. As an example, the distribution of different kinds of 
reduced two-mode states found in the up-converted modes 3 and 4 in this space is plotted in Fig. 10. The graphs 

Figure 7. Logarithmic negativities E1×2 (a), E3×4 (b) and E1×4 (c) as functions of the mean photon numbers B1 
and B3.

Figure 8. Noise reduction factors R1×2 (a), R3×4 (b) and R1×4 (c) as functions of the mean photon numbers B1 
and B3. In (c), the plane defined as R1×4 =  1 is represented by the blue mesh.

Figure 9. Solutions of the equations for logarithmic negativity E1×4 = 0 (blue dashed line) and noise 
reduction factor R1×4 = 1 (red solid line) in the plane spanned by parameters g1t and g23t. The two-mode 
field is entangled (E1×4 >  0) inbetween the blue dashed lines, i.e. in the areas I, II, and III, whereas it is sub-shot-
noise (R1×4 <  1) in between the red solid lines, i.e. in the area II.
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in Fig. 10 indicate that, in accord with the symmetric case, the larger the value of constant g1t, the larger the rela-
tive amount of entangled states that cannot be identified through sub-shot-noise intensity correlations.

Experimental implementation
A possible experimental implementation of the four mode interaction described above can be achieved by using a 
BaB2O4 crystal as the nonlinear medium, a ps-pulsed laser (a mode-locked Nd:YLF laser regeneratively amplified at 
500 Hz, High-Q Laser Production) to get the pump fields and hybrid photodetectors (mod. R10467U-40, Hamamatsu 
Photonics) as the photon-number-resolving detectors. A typical experimental setup can be built in analogy with other 
previous experiments33. The phase-matching conditions can be chosen so as to have ω1 =  ω2 and a common pump 
field for both up-conversion processes so that ω3 =  ω4. In this specific symmetric case we have g2 =  g3 ≡  g23.

We can estimate the range of coupling constants achievable in this setup based on the above-mentioned laser 
source. Let us consider the following parameters: wavelength of the pump for down-conversion λp1 =  349 nm, 
λ1 =  λ2 =  698 nm, wavelength of the pump for up-conversion λp2 =  1047 nm, λ3 =  λ4 =  418.8 nm, length of the BaB2O4 
crystal L =  4 mm, diameters of the pumps 0.5 mm, pulse duration 4.5 ps. The coupling constants g1 and g23 are linearly 
proportional to the corresponding pump field amplitudes so that g1t =  κ1Ap1L and g23t =  κ23Ap2L, where κj (j =  1, 23) 
are the nonlinear coupling coefficients and Aj (j =  p1, p2) are the pump amplitudes. For the considered parameters we 
can estimate κj ≈  10−13s1/2. The useful range of energies per pulse is up to 66 μJ in the UV and up to 240 μJ in the IR, 
corresponding to maximum values g1t ≈  5.9 and g2t ≈  7. The theoretical results discussed above predict an interesting 
behavior for this range of parameters, including the transfer of entanglement into the up-converted modes.

Conclusions
Four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion have been 
analyzed in terms of nonclassicality, entanglement and entanglement transfer among the modes. While nonclas-
sicality of the state has been described by the easily-computable Lee nonclassicality depth, logarithmic negativity 
for different bipartitions has been applied to monitor the occurrence of entanglement among different modes. 
It has been shown that whenever the analyzed system is nonclassical, it is also entangled. Moreover, the entan-
glement is present only in the form of bipartite entanglement. The analysis of the noise reduction factor iden-
tifying sub-shot-noise intensity correlations, in parallel with the logarithmic negativity quantifying two-mode 
entanglement, has shown that the noise reduction factor is a powerful indicator of the entanglement in the ana-
lyzed system. This is substantial for the experimental demonstration of the transfer of entanglement from the 
down-converted modes to the up-converted ones.

The evolution matrix M
The evolution matrix M describing the operator solution of the Heisenberg equations written in Eq. (2) is derived 
in the form:
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Figure 10. Planes given by g1t =  0.5 (a), g1t =  1 (b) and g1t =  5 (c) in the ‘phase diagram’ identifying classical 
states (white areas), entangled states without sub-shot-noise intensity correlations (blue) and entangled states 
with sub-shot-noise intensity correlations (red) in the space spanned by the coupling constants gjt, j =  1, 2, 3.
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where x =  (a +  b)/2, x1 =  (a1 +  b)/2, y =  (a −  b)/2, y1 =  (a1 −  b)/2, = − + −a g g g1
2

2
2
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4 , =c x tcos( )1 1 , =c y tcos( )2 1 , =s x tsin( )1 1 , and 

=s y tsin( )2 1 .
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