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In Brief
Candidate HLA class I T-cell
epitopes are frequently identified
using a single threshold across
multiple alleles. However,
previous studies have
demonstrated that different HLA
class I alleles have varying
repertoire sizes. In this study, we
investigated the performance of
different strategies to perform
epitope-binding prediction for
multiple HLA class I alleles
simultaneously. We identified
and present here a set of general
and allele-specific thresholds
that may be used to identify
eluted ligands and T-cell
epitopes at 80% sensitivity.
Highlights
• Confirmed findings that different HLA class I alleles have varying repertoire sizes.

• Defined common and allele-specific thresholds that capture 80% of eluted ligands.

• Defined common and allele-specific thresholds that capture 80% of T-cell epitopes.

• Allele-specific thresholds perform more consistently when analyzing a few alleles.
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Allele-Specific Thresholds of Eluted Ligands for
T-Cell Epitope Prediction
Brian Reardon1,‡, Zeynep Koşaloğlu-Yalçın1,‡, Sinu Paul1, Bjoern Peters1,2, and
Alessandro Sette1,2,*
A common strategy for predicting candidate human
leukocyte antigen class I T-cell epitopes is to use an
affinity-based threshold of 500 nM. Although a 500 nM
threshold across alleles effectively identifies most epi-
topes across alleles, findings showing that major histo-
compatibility complex repertoire sizes vary by allele
indicate that using thresholds specific to individual alleles
may improve epitope identification. In this work, we
compare different strategies utilizing common and allele-
specific thresholds to identify an optimal approach for
T-cell epitope prediction. First, we confirmed previous
observations that different human leukocyte antigen class
I alleles correspond with varying repertoire sizes. Here, we
define general and allele-specific thresholds that capture
80% of eluted ligands and a different set of thresholds
associated with capturing 9-mer T-cell epitopes at 80%
sensitivity. Our analysis revealed that allele-specific
threshold performance was roughly equivalent to that of
a common threshold when considering a relatively large
number of alleles. However, when predicting epitopes for
only a few alleles, the use of allele-specific thresholds
would be preferable. Finally, we present here for public
use a set of allele-specific thresholds that may be used to
identify T-cell epitopes at 80% sensitivity.

Computational prediction tools are commonly used to
identify epitopes that are presented on major histocompati-
bility complex (MHC) class I molecules to CD8+ T cells. Most
MHC-binding prediction tools are based on machine learning
algorithms trained on datasets of known peptide–MHC bind-
ing affinities and can accurately predict the binding capacity of
a peptide to a given MHC. IC50 values are usually utilized to
measure the binding affinity (BA): IC50 values are defined as
the concentration that inhibits 50% binding of a labeled
reference peptide, and low IC50 values correspond to high
binding affinities.
More recently, algorithms are also being trained on ligand

elution data. As eluted ligands (ELs) passed through the nat-
ural antigen processing and presentation pathway, ligand
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elution data inherently contain information that is not available
when only peptide–MHC binding is considered (1). Also, as
high-throughput ligand elution assays allow identifying thou-
sands of natural ligands with a single experiment, large
training datasets have become available (2, 3). These methods
usually provide a score to estimate a peptide's likelihood of
being eluted from a given human leukocyte antigen (HLA)
molecule and have been shown to perform better in predicting
epitopes than methods that are solely based on binding-
affinity data (4, 5).
In this study, we used the state-of-the-art prediction tool

NetMHCpan 4.0, which was trained with both BA and EL data
(4). Using such prediction tools, different strategies are avail-
able to select peptides as potential T-cell epitope candidates.
One approach is to use set thresholds for the predicted IC50

values or EL scores. Alternatively, percentile ranks that
describe the percentile of the prediction among a large num-
ber of random peptides can be utilized.
In a most commonly encountered practical application of

epitope predictions, predictions for multiple alleles are per-
formed simultaneously to accommodate HLA polymorphisms
commonly present in the study population of interest. How-
ever, we previously reported that different HLA class I alleles
have different repertoire sizes (6). Accordingly, here, we
wanted to explore whether using allele-specific thresholds
would perform better than a common “one-size-fits-all”
threshold.
In this study, we first compared the performance of BA and

EL predictions in identifying ELs. As expected, we found that
percentile ranks of ligand elution predictions (EL Rank) are
superior to BA predictions in this context. Next, we estab-
lished common and allele-specific thresholds that predict ELs
with 80% sensitivity. Using these newly established thresh-
olds, we then evaluated the findings from our previous study
about different HLA class I alleles having varying repertoire
sizes (6) and found that the repertoire sizes described in Paul
et al. in 2013 are highly correlated to those found in the
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Allele-Specific HLA Class I Binding Thresholds
present study. We further compared the established common
and allele-specific thresholds that were derived from ELs to
predict ELs and analyzed their performance in predicting ELs
and T-cell epitopes. We found that these thresholds are not
suitable to predict T-cell epitopes and established additional
thresholds that were also derived from ELs but scaled to
predict 80% of epitopes. Our analysis revealed that either
common or allele-specific thresholds necessary to capture
80% of reported ELs were significantly more stringent than
those required to predict 80% of known T-cell epitopes. Our
analysis further revealed that allele-specific threshold perfor-
mance was roughly equivalent to that of a common threshold
when considering a relatively large number of alleles. How-
ever, when predicting epitopes for only a few alleles, the use of
allele-specific thresholds would be preferable.
EXPERIMENTAL PROCEDURES

Selection of Eluted 9-Mer Ligands From Defined HLA Class I
Alleles

We selected human HLA class I ELs by querying the Immune
Epitope Database (IEDB) (7–9) on 1/29/2020 using the following pa-
rameters; MHC ligand assays: MHC ligand elution assay, positive
assays only, no B-cell assays, no T-cell assays, MHC restriction class
I; host: Homo sapiens; epitope: any epitopes; disease: any disease.
The search results with Internationalized Resource Identifiers were
exported to a comma-separated file. The resulting download had
763,213 records. All records from PubMed IDs 28188227 and
29393594 were excluded from analysis because the ligands were
primarily eluted from transgenic rat T cells. Further filtering to retain
only a single instance of 9-mer ligands with defined alleles resulted in
126,299 remaining ELs. Alleles having at least 100 ligands were
selected, resulting in 123,707 ligands from 72 HLA alleles (Table 1).
The number of ligands considered ranged from 101 to over 8000.
From these ligands, 100 ligands per allele were randomly selected.
These ligands comprised the positive data points in the eluted ligand
dataset (Fig. 1).

Assembly of HLA Class I Restricted 9-Mer Epitopes

To generate a set of T-cell epitopes suitable for analysis, we
queried the IEDB website on 11/15/2019 using the following pa-
rameters; positive assays only, no B-cell assays, no MHC ligand
assays, MHC restriction class I; host: Homo sapiens. This query
resulted in a download of 23,353 records. The categories of posi-
tive assays considered in order of ‘positivity’ were tetramer >
positive-high > positive > positive-intermediate > positive >
positive-low. The inclusion of positive tetramers here defines the
most stringent level of MHC restriction. We retained only 9-mer
epitopes associated with a defined HLA restriction (specified allele
group and specific HLA protein). For epitopes having more than one
assay result for a given allele (e.g., positive-high and positive-
intermediate for epitope 'X'/HLA allele 'Y'), we only retained the
most positive epitope.

Similarly, we retained a single copy of each epitope sequence.
Epitopes having identical sequences and MHC alleles but located in
multiple proteins or occurring more than once in a single protein were
considered as a single instance (retaining the most positive result).
Finally, we only included data for a set of 21 HLA class I alleles having
at least 20 total assay results across all levels of positivity (Fig. 1,
Table 2).
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Generating Background Peptides to Analyze Binding Thresholds
in 9-Mer Peptides

A 'control' background dataset composed of 10,000 peptides was
assembled using custom Python scripts. We identified 12,315 source
proteins from which the positive peptides of Table 1 were derived. We
then generated over 800,000 9-mer peptide sequences from these
source proteins and randomly selected a subset of 10,000 peptides.
By using all available source proteins and randomly selecting pep-
tides, we avoided introducing any bias for source proteins. These
10,000 peptides were used as background control peptides for each
tested allele by assigning them the same HLA restriction. If peptide
sequences were present in both the random background and positive
datasets, we only retained it in the positive ligand dataset. These
randomly generated 10,000 background peptides assigned to the
analyzed 72 alleles comprised the negative data points in the eluted
ligand dataset (Fig. 1).

Prediction of Binding Affinities and EL Ranks

We determined the predicted binding capacities for all positives and
negatives in the EL and T-cell epitope datasets. We utilized the MHC
binding prediction tool NetMHCpan 4.0 as implemented on the IEDB
Analysis Resource (4, 10). Specifically, we used the NetMHCpan 4.0
BA method to calculate the predicted BA (IC50) and corresponding
percentile ranks (BA rank), and we used the NetMHCpan 4.0 EL
method to generate EL scores and corresponding percentile ranks (EL
rank). Of note, only about 30% of the 72,000 ligand–HLA pairs
included in our study were also included in the training of NetMHCpan
4.0. Distributions of predicted IC50 and EL ranks of ligands and
background peptides are displayed in supplemental Figs. S1 and S2
and highlight that ligands of each allele are predicted to bind signifi-
cantly stronger than the background peptides.

Assessment of HLA Class I Binding Threshold Performance

Performance of different IC50 and EL rank thresholds was deter-
mined using Python, version 3.8, with the 'pandas' and 'sklearn'
packages. When analyzing a given threshold, we considered positive
peptides that were predicted below the threshold as true positives
(TPs) and positive peptides predicted above the threshold as false
negatives (FNs). We considered negative peptides that were predicted
below the threshold of interest as false positives (FPs) and negative
peptides predicted above the threshold as true negatives (TNs).

We then used these counts to calculate various measures of
performance:

- Sensitivity: TP/(TP + FN)
- Specificity: TN/(TN + FP)
- Positive predictive value (PPV): TP/(TP + FP)
- Negative predictive value (NPV): TN/(TN + FN)
- Accuracy: (TP + TN)/(TP + TN + FP + FN)
We additionally assessed performance by receiver operating char-

acteristic (ROC) analyses measuring the area under the ROC curve.

Experimental Design and Statistical Rationale

In querying the IEDB for HLA class I T-cell epitopes, we selected
epitopes at any level of 'positivity'. To compare our datasets of 100
ELs per allele, we generated a background dataset comprised of
10,000 peptides. The control background dataset thus corresponded
to an approximate 1:100 ratio of positives to controls for ELs. For
threshold analysis in T-cell epitope datasets, this corresponded to an
approximate 1:200 ratio of positives to background controls. We
generated an independent set of T-cell epitopes from a subset of six
alleles to validate results from this analysis.



TABLE 1
Unique eluted ligands identified from 72 HLA class I alleles selected for threshold analysis

Allele Ligands Allele Ligands Allele Ligands

HLA-A*01:01 2217 HLA-B*18:03 105 HLA-B*51:01 2034
HLA-A*02:01 8041 HLA-B*27:01 1877 HLA-B*51:08 486
HLA-A*02:03 1212 HLA-B*27:02 1259 HLA-B*54:01 608
HLA-A*02:04 2306 HLA-B*27:03 468 HLA-B*56:01 399
HLA-A*02:05 211 HLA-B*27:04 761 HLA-B*57:01 5707
HLA-A*02:07 2974 HLA-B*27:05 6738 HLA-B*57:03 2266
HLA-A*03:01 2227 HLA-B*27:06 747 HLA-B*58:01 1943
HLA-A*11:01 1445 HLA-B*27:07 1087 HLA-B*73:01 104
HLA-A*23:01 101 HLA-B*27:08 938 HLA-C*01:02 1163
HLA-A*24:02 3290 HLA-B*27:09 1004 HLA-C*02:02 1533
HLA-A*24:06 115 HLA-B*35:01 1032 HLA-C*03:03 883
HLA-A*24:13 148 HLA-B*35:03 128 HLA-C*03:04 1661
HLA-A*25:01 916 HLA-B*35:08 107 HLA-C*04:01 1285
HLA-A*29:02 5101 HLA-B*39:01 584 HLA-C*05:01 2559
HLA-A*30:01 594 HLA-B*39:24 129 HLA-C*06:02 1587
HLA-A*31:01 763 HLA-B*40:01 989 HLA-C*07:01 323
HLA-A*32:01 418 HLA-B*40:02 7846 HLA-C*07:02 789
HLA-A*68:02 1169 HLA-B*41:01 329 HLA-C*08:02 2232
HLA-B*07:02 5634 HLA-B*44:02 2119 HLA-C*12:02 6819
HLA-B*08:01 2984 HLA-B*44:03 2556 HLA-C*12:03 1542
HLA-B*14:02 229 HLA-B*45:01 513 HLA-C*14:02 1609
HLA-B*15:01 4111 HLA-B*46:01 1341 HLA-C*15:02 1639
HLA-B*15:02 1590 HLA-B*49:01 158 HLA-C*16:01 2032
HLA-B*18:01 1048 HLA-B*50:01 427 HLA-C*17:01 418
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RESULTS

Comparison of IC50 and EL Rank Prediction Performance in
a Multiallele Setting

First, we addressed the issue of whether, when predictions
for various alleles are performed simultaneously, it is prefer-
able to use a common IC50 or EL rank threshold to maximize
epitope prediction efficiency. We used our dataset of human
ELs and performed ROC analyses to compare the perfor-
mance of the two prediction outputs, EL rank, and IC50, in
discriminating ELs (positives) from background peptides
(negatives). The results of this analysis showed a higher area
under the ROC curve using EL rank compared with IC50-based
binding prediction scores, confirming previous reports (4, 5)
(Fig. 2).

Predicted Binding Affinities and EL Ranks of ELs Vary as a
Function of Different HLA Class I Alleles

We had previously reported that different HLA class I alleles
have different repertoire sizes (6). To validate those results, we
performed NetMHCpan 4.0 predictions using the background
control peptides described above and calculated the fraction
of peptides predicted to bind at 500 nM. As expected, the
results confirmed that the different alleles are associated with
varying repertoire sizes (6) (supplemental Fig. S3). The reper-
toire sizes observed in the Paul et al. (2013) report (6) and in
the current analysis were strongly correlated (supplemental
Fig. S4).
Next, we wanted to verify that the phenomenon was still
detected using data derived from ELs. For each allele in
Table 1, we determined thresholds for IC50 and EL rank that
corresponded with 80% of ligands being predicted as binding
(Figs. 3 and 4A, supplemental Table S1). This level of sensi-
tivity is roughly equivalent to what is afforded by the
commonly used 500 nM threshold (11) and is a reasonable
level that captures the majority of epitopes while still providing
adequate specificity. Cumulative plots showing the fraction of
ligands at each IC50 and EL rank threshold are presented in
supplemental Figs. S5 and S6.
We found that the IC50 values corresponding to 80% of the

ligands ranged over more than two logs from 22 nM up to
14,793 nM (mean 1459 nM; median 468 nM). Likewise, EL
rank values ranged between 0.03 and 2.50 (~2 logs, mean
0.27; median 0.16, supplemental Table S1). Of note, the
number of ligands available for each allele was only weakly
correlated with the different allele-specific thresholds (R2 =
0.2, Pearson's correlation, supplemental Fig. S7). Using these
updated allele-specific IC50 and EL rank thresholds, we
calculated repertoire sizes for each allele and confirmed the
variability of repertoire sizes among different alleles (Fig. 5).
We did not see any obvious clustering of alleles by repertoire
size according to their supertype or similarity in nucleotide
sequences. Given that changing a single or just a few residues
can change the shape of the binding groove, one cannot
presume that highly similar alleles would necessarily cluster by
repertoire size. We also examined whether there was any bias
Mol Cell Proteomics (2021) 20 100122 3



FIG. 1. Generation of peptide datasets used for binding threshold analyses. A, the eluted ligand dataset is composed of 100 9-mer
peptides for each of 72 HLA class I alleles and binding predictions for each peptide to its corresponding HLA allele. B, the background pep-
tide dataset is composed of 10,000 9-mers and binding predictions for each of 72 HLA class I alleles. C, the T-cell epitope dataset was selected
from an initial set of ~23,000 peptides. Only epitopes from alleles having 20 or more T-cell assays were retained for inclusion in this dataset
composed of 2492 9-mers and binding predictions for each peptide to its corresponding HLA allele. HLA, human leukocyte antigen.

TABLE 2
Unique T-cell epitopes identified from 21 HLA class I alleles selected

for threshold analysis

Allele Total epitopes (per allele)

HLA-A*02:01 1465
HLA-A*24:02 155
HLA-B*07:02 143
HLA-B*35:01 152
HLA-A*11:01 96
HLA-B*08:01 119
HLA-A*03:01 73
HLA-A*01:01 68
HLA-B*15:01 57
HLA-B*57:01 44
HLA-B*40:01 37
HLA-B*58:01 42
HLA-B*27:05 50
HLA-A*02:06 32
HLA-B*51:01 25
HLA-C*06:02 36
HLA-B*53:01 24
HLA-A*29:02 26
HLA-A*02:03 26
HLA-A*02:02 25
HLA-A*68:02 22
Total epitopes (nonredundant) 2492

A total of 2717 epitopes from 21 HLA class I alleles having ≥20 total
positive assays were retained for threshold analysis.

Allele-Specific HLA Class I Binding Thresholds
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at the allele level by plotting the repertoire size as a function of
the number of reported ligands on which the analysis was
based and detected no significant correlation (R2 = 0.06,
Pearson's correlation, supplemental Fig. S8).
These observations are important, as the ELs are not

identified or selected based on predicted binding. Reproduc-
ing the analysis of different repertoire sizes with ELs excluded
that the previous observations were due to biases in the
predictive algorithms.
Comparison of the Common IC50 and EL Rank Thresholds
With Allele-Specific Thresholds for Predicting ELs in a

Multiallele Setting

We next addressed whether it is preferable to use allele-
specific thresholds or a common IC50 or EL rank threshold
to maximize epitope prediction efficiency. We used the IC50

and EL rank thresholds corresponding to 80% sensitivity for
each allele from Table 2 and computed specificity, PPV, NPV,
and accuracy. To allow direct comparison with the common
IC50 and EL rank thresholds, we identified the IC50 and EL rank
values corresponding to 80% sensitivity in all ligands across
all tested alleles (Fig. 3). We found that a set level of 80%
sensitivity corresponded to an EL rank value of 0.17% and an
IC50 of 780 nM (supplemental Table S1).



FIG. 2. EL rank predictions outperform IC50 predictions in
identifying HLA class I eluted ligands. EL rank and IC50 thresholds
were tested using the eluted ligand dataset. Receiver operating
characteristics (ROC) curves and area under the ROC curve (AUC) are
displayed for EL rank (blue) and IC50 (orange). EL, eluted ligand; HLA,
human leukocyte antigen.
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Using allele-specific thresholds provided similar overall
specificity compared with the common EL rank threshold
(Table 3a). Most importantly, however, the allele-specific
thresholds by definition eliminated the variable performance
of predictions that were observed when utilizing a common
threshold. Indeed, when using the common EL rank threshold
of 0.17%, the sensitivity on a per allele basis ranged from 46%
to 100%, with an SD of 12.97 (Table 3a, supplemental
Table S2). In contrast, in the case of allele-specific thresh-
olds, the sensitivity on a per allele basis was by definition 80%
with an SD of zero (Table 3a, supplemental Table S2). We
obtained similar results when considering IC50 values
(Table 3b and supplemental Table S2).

Allele-Specific Thresholds Derived From ELs Perform
Comparably to the Common Threshold in Predicting Actual

T-Cell Epitopes

We next determined how the allele-specific EL rank
thresholds that were established based on 80% sensitivity for
each allele separately compared with the common EL rank
threshold that was set based on 80% sensitivity for all alleles
combined (0.17%). For this analysis, we used 50 randomly
selected T-cell epitopes for each tested allele together with
the random background control set. Accordingly, we used
counts of TPs, TNs, FPs, and FNs to calculate performance for
each threshold (supplemental Table S3).
First of all, we noted that the sensitivity provided by the EL-

defined thresholds was not adequate to capture 80% of the
T-cell epitopes; the sensitivities for common and allele-
specific thresholds were only 51% and 58.4%, respectively
(Table 3c, supplemental Table S3). Thus, the allele-specific
threshold offered a limited gain in sensitivity. We next
compared the SD of sensitivity for allele-specific and common
thresholds to determine whether allele-specific thresholds
would yield more consistent sensitivity values. We conducted
this analysis as the SD expresses how much variation exists in
the predictions going from one allele to the next. At the
common EL rank threshold of 0.17%, the sensitivity for the 50
epitopes set on a per allele basis had an SD of 11.56, while the
SD in the case of allele-specific thresholds was 12.75
(Table 3c, supplemental Table S3). Surprisingly, the variation
in performance of allele-specific thresholds did not improve
compared with common thresholds. The use of the allele-
specific IC50 thresholds was also associated with similar re-
sults (data not shown).
To allow a more direct comparison, we adjusted the com-

mon threshold and allele-specific thresholds to an average
80% sensitivity. This was accomplished by increasing the
common and allele-specific thresholds by a factor of 0.05 in a
stepwise manner until an average sensitivity of 80% was
achieved (Fig. 3B). As a result, common and allele-specific
thresholds were increased by 6.5 and 4.6-fold, respectively,
and performance was measured in the 50-epitope dataset
(supplemental Tables S1 and S3). Similar to our observations
when predicting ELs, the use of allele-specific thresholds
provided similar overall specificity compared with the com-
mon threshold. The specificity for the 50 epitopes set when
using the common threshold of 1.1% had an SD of 0.82, while
the SD when using allele-specific thresholds was 3.07
(Table 3d, supplemental Table S3). Again, the variation in
performance of allele-specific thresholds did not improve
compared with common thresholds.
To validate these results, we assembled a second, inde-

pendent set of epitopes. We chose not to reuse any of the
peptides included in the 50 epitopes dataset. Several alleles
had few or no remaining untested peptides beyond the 50,
and we selected 45 peptides per allele from a subset of six
alleles that still had sufficient untested peptides available to
pick from. The performance on this independent dataset was
comparable with what was observed with the 50-epitope
datasets (Table 3e, supplemental Table S4). The EL rank
thresholds that corresponded to 80% of T-cell epitopes being
predicted are shown in Figure 4B and listed in supplemental
Table S1.

Allele-Specific Thresholds Derived From Binding
Predictions Perform Comparably to the Common

Threshold in Predicting T-Cell Epitopes

We next explored the performance of different thresholds
based on BA predictions rather than ELs in predicting actual
T-cell epitopes. To accomplish this, we used the common and
allele-specific percent of background peptides predicted to
bind at or below 500 nM (supplemental Fig. S3). These per-
centiles were increased in a stepwise manner by a factor of
0.1 until an average sensitivity of 80% was achieved in the 50-
epitope dataset. As a result, the common and allele-specific
thresholds were increased by 66.2 and 79.3-fold, respec-
tively (Fig. 3C). We measured the performance of these
Mol Cell Proteomics (2021) 20 100122 5



FIG. 3. Generating thresholds for predicting eluted ligand and T-cell epitope. A, thresholds derived from eluted ligands (ELs) for predicting
ELs at 80% sensitivity. 7200 ELs with corresponding EL rank–based binding predictions were sorted into 72 allele-specific peptide lists or
retained in a single list composed of all alleles combined. Allele-specific thresholds were determined by setting the sensitivity to 80% for each
allele. Common thresholds were determined by setting the sensitivity to 80% for all alleles combined. B, thresholds derived from ELs for
predicting T-cell epitopes at 80% sensitivity. The sensitivity of EL rank thresholds was first measured in the T-cell epitope dataset. To generate
thresholds for predicting T-cell epitopes, allele-specific and common EL rank thresholds were increased until an average sensitivity of 80% was
reached across alleles. C, thresholds derived from predicted binders for predicting T-cell epitopes at 80% sensitivity. Using the background
peptides, for each allele, we determined the proportion of peptides that bind at 500 nM. These proportion values were then used as thresholds,
and the sensitivity of predicting T-cell epitopes was measured. To generate thresholds for predicting T-cell epitopes, allele-specific and common
EL rank thresholds were increased until an average sensitivity of 80% was reached across alleles.

Allele-Specific HLA Class I Binding Thresholds
thresholds in the 50-epitope dataset (Table 3f, supplemental
Table S3). We also validated these results in the indepen-
dent epitope datasets (Table 3g, supplemental Table S4). The
EL rank thresholds based on binding predictions that corre-
sponded with 80% of T-cell epitope being predicted are
shown in Figure 4C and listed in supplemental Table S1.
These results show that the thresholds set based on binding

predictions again perform overall similar to thresholds set
based on eluted data. These results further indicated that
overall, only a minor difference exists between using a com-
mon threshold versus allele-specific thresholds when the
overall analysis is considered.
Finally, we also assessed the performance of the commonly

used EL rank thresholds of 2% and 0.5% (supplemental
Fig. S3). First, we evaluated the prediction of ELs. As
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expected, using a 2% threshold increased sensitivity; this
was, however, at the expense of a dramatically decreased
PPV and lower specificity and accuracy. Using a 0.5%
threshold also increased sensitivity with a slight decrease in
specificity and accuracy. There was, however, again a large
decrease in the PPV. Given the low proportion of positives to
negatives and the large number of ELs in an experiment, these
thresholds would likely identify a few more TPs at the expense
of many more FPs when compared with using our proposed
common or allele-specific thresholds.

Allele-Specific Thresholds Provide an Advantage for
Selected Alleles

We found that overall, predicting epitopes using allele-
specific thresholds performs comparably to what was



FIG. 4. Allele-specific EL rank thresholds for 72 alleles. Thresholds were derived from eluted ligands (ELs) for (A) predicting ELs at 80%
sensitivity and (B) predicting T-cell epitopes at 80% sensitivity. C, thresholds were derived from a set of predicted binders to predict T-cell
epitopes at 80% sensitivity.

Allele-Specific HLA Class I Binding Thresholds
observed when using a common threshold. Hence, when
predictions for many different alleles are being performed, a
common threshold might be practical, whereas if predictions
are performed for a few selected alleles, allele-specific
thresholds might be more advantageous.
To demonstrate this, we selected two alleles with very

different allele-specific thresholds, namely HLA-A*02:01 with
FIG. 5. The predicted binding repertoire varies by HLA class I alle
rank (orange)–based allele-specific thresholds (sensitivity set to 80%) is
an EL rank threshold of 2.62 and HLA-A*11:01 with an EL
rank threshold of 0.41 and combined the epitopes and
background peptides for these two alleles. We then
compared the performance of allele-specific thresholds to
the common threshold of 1.11. We found that the precision
is comparable when allele-specific or common thresholds
are used; however, the sensitivity is considerably higher
le. The fraction of peptides predicted to bind using IC50 (blue) and EL
shown. EL, eluted ligand; HLA, human leukocyte antigen.

Mol Cell Proteomics (2021) 20 100122 7



TABLE 3
Performance of allele-specific and common thresholds

Section
Threshold
dataset

Forced
sensitivity

Test dataset Threshold type Statistic
Sensitivity

(%)
Specificity

(%)
PPV NPV

Accuracy
(%)

a Eluted ligands
(EL rank)

80% in eluted
ligands

Eluted ligands Common Mean 80.00 99.24 51.56 0.99 99.05
SD 12.97 0.18 7.98 0.00 0.23

Allele specific Mean 80.00 98.89 52.00 0.99 98.71
SD 0.00 1.19 19.32 0.01 1.18

b Eluted ligands
(IC50)

80% in eluted
ligands

Eluted ligands Common Mean 80.00 98.22 41.46 0.98 98.04
SD 19.11 1.57 19.29 0.02 1.46

Allele specific Mean 80.00 98.46 44.21 0.98 98.28
SD 0.00 1.81 16.85 0.02 1.79

c Eluted ligands
(EL rank)

80% in eluted
ligands

50 epitopes Common Mean 51.00 99.36 30.53 0.99 99.10
SD 11.56 0.20 10.10 0.00 0.22

Allele specific Mean 58.40 98.96 27.90 0.99 98.75
SD 12.75 0.82 11.02 0.01 0.79

d Eluted ligands
(EL rank)

80% in epitopes 50 epitopes Common Mean 80.00 96.99 12.93 0.97 96.90
SD 9.80 0.82 3.52 0.01 0.81

Allele specific Mean 80.40 96.21 13.42 0.96 96.13
SD 9.88 3.07 6.18 0.03 3.03

e Eluted ligands
(EL rank)

80% in epitopes 45 epitopes Common Mean 81.85 96.69 10.77 0.97 96.62
SD 6.19 0.75 1.68 0.01 0.73

Allele specific Mean 84.07 95.34 11.53 0.95 95.29
SD 11.19 3.80 7.04 0.04 3.75

f Predicted
binders

80% in epitopes 50 epitopes Common Mean 80.00 96.99 12.93 0.97 96.90
SD 9.80 0.82 3.52 0.01 0.81

Allele specific Mean 80.00 96.53 15.52 0.97 96.44
SD 9.80 1.97 13.66 0.02 1.94

g Predicted
binders

80% in epitopes 45 epitopes Common Mean 81.85 96.69 10.77 0.97 96.62
SD 6.19 0.75 1.68 0.01 0.73

Allele specific Mean 84.07 95.89 9.78 0.96 95.83
SD 9.37 1.76 2.85 0.02 1.72

We tested various common and allele-specific thresholds derived from different dataset and scaled to predict either 80% of ligands or 80% of
T-cell epitopes. Threshold dataset: Peptide dataset from which thresholds were derived. Test dataset: Peptide dataset in which threshold
performance was measured.
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when allele-specific thresholds are used (supplemental
Table S5).
DISCUSSION

In the present study, we investigated the performance of
different strategies to perform predictions for multiple HLA
class I alleles simultaneously. We found that strategies that
use common thresholds generally applied to different alleles
have similar overall performance compared with strategies
utilizing allele-specific thresholds. This is true regardless of
whether the thresholds were derived based on MHC-binding
predictions or ELs. It would thus appear that if predictions
for many different alleles are to be performed simultaneously,
a common threshold might be more practical, whereas if
predictions are performed for one or a few selected alleles,
allele-specific thresholds are likely to allow for more consistent
results. Here, we provide sets of thresholds associated with
80% sensitivity, which roughly corresponds to the original
sensitivity level used to define the commonly used 500 nM
threshold (supplemental Table S1).
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One of the first issues we addressed was whether we could
reproduce the finding by Paul et al. (6), highlighting that
different alleles are associated with varying repertoire sizes,
defined as the fraction of peptides predicted to bind in a
control background set of peptides. Indeed, even with the
most current NetMHCpan algorithm, the observation was
reproduced and expanded to a larger number of alleles. As
Paul et al. used binding data in their 2013 study, we next
asked whether the findings could also be reproduced using an
EL dataset. This dataset of ELs was generated by an entirely
different method that does not involve any binding pre-
dictions, thus avoiding the danger of methodological self-
referencing. The data clearly confirmed that different alleles
are associated with different allele-specific thresholds to
predict 80% of peptides. This is of significance, as it confirms
the previous observations by Paul et al. (6), with a set of
thresholds derived from a completely independent
methodology.
Variability in the repertoire size among MHC alleles and the

associated effects on the immune response against various
diseases is a topic that is being actively researched.
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Correlations between repertoire sizes and cell-surface
expression of MHC have been reported. Interestingly,
several alleles with wide repertoires, that is, promiscuous al-
leles, were found to be associated with resistance to a variety
of common diseases. In contrast, some alleles with narrow
repertoires, that is, fastidious alleles, were reported to be
associated with resistance to HIV progression (12, 13). One
hypothesis that was suggested to explain this phenomenon is
that during T-cell development in the thymus, promiscuous
MHC molecules might present so many self-peptides that
negative selection would deplete too many developing T-cells,
which might be counteracted by reducing cell-surface
expression of those alleles to reduce the extent of negative
selection (14, 15). To explain these observations from an
evolutionary view, it was suggested that promiscuous MHC
alleles act as so-called “generalists” and fastidious alleles as
“specialists.” Generalists are expected to provide sufficient
protection against a wide variety of common pathogens but
might fail to protect against new and virulent pathogens. In
these cases, specialists might be particularly capable of pre-
senting special peptides from the new pathogen (14, 15).
Another mechanism that reportedly has an effect on reper-

toire size is tapasin dependence. Tapasin is a critical compo-
nent of the MHC class I peptide loading complex where it
mediates the interactionbetweennewly assembledMHCclass I
molecules and the transporter associated with antigen pro-
cessing. Tapasin facilitates the loading of MHC with high-
affinity peptides and promotes dissociation of low-affinity
peptides (16). It was shown that some MHC class I alleles are
tapasin dependent, whereas others are not (17, 18). Tapasin-
dependent alleles require the peptide-loading complex to load
peptides, and thus only high-affinity peptides are likely able to
dissociate tapasin from the MHC peptide-binding groove. In
contrast, tapasin-independent alleles do not require the peptide
loading complex to load peptides, which enables the binding of
peptides that may be of low affinity, resulting in a wider reper-
toire size (19). Bashirova et al. measured tapasin dependence
levels of around 100 HLA alleles. We compared the top three
tapasin-dependentHLAallelesBashirova et al. reported, that is,
B*50:01, B*44:03, and B*44:02, and found that these alleles
have narrow repertoire sizes in our analysis (Fig. 5). The top
three alleles that our analysis identified as alleles with wide
repertoires, that is, B*57:01, C*12:02, and A*68:02, were re-
ported as highly tapasin independent by Bashirova et al.
Ultimately, the purpose of bioinformatic predictions is, in

most cases, not to predict ELs but rather to predict T-cell
epitopes. To address this point, we curated sets of T-cell
epitopes restricted by various HLA class I alleles and applied
the thresholds defined with the eluted peptides to predict
actual T-cell epitopes. We found that, to reach 80% sensi-
tivity, the thresholds needed to be significantly adjusted. The
thresholds associated with capturing 80% of the ELs only
captured about 60% of the epitopes. The fact that a looser
threshold needed to be used to predict epitopes rather than
ELs is of practical importance and suggests that ELs are
overrepresented in terms of high-affinity binders as compared
with actual T-cell epitopes (supplemental Fig. S9). It is
possible that lower affinity ligands might be lost during HLA
purification, skewing the ligand affinity distribution. Alterna-
tively, it is also possible that few copies of relatively lower
affinity ligands might go undetected in the EL sequencing but
be nevertheless sufficient to activate T-cells. Indeed, it has
been shown that a few or even a single epitope copy per cell
might be sufficient for T-cell activation (20–22).
Strikingly, we also found that the overall performance of

allele-specific thresholds and common thresholds was
equivalent when a relatively large number of alleles was
considered. This likely reflects the fact that while performance
varies over different alleles, the average performance is rela-
tively stable and constant. In the case of allele-specific pre-
diction, the fact that intrinsically vastly different number of
peptides are predicted from one allele to another impacts
overall performance and skews it toward over-representing
the performance of alleles with larger repertoire sizes. Ulti-
mately, for the sake of simplicity in global prediction, it is
therefore preferable to use a “common threshold” strategy.
But conversely, in the case of performing prediction for only
one or few alleles, the use of allele-specific thresholds would
be preferable. Because we make all the different thresholds
available, each user can select a threshold strategy and
methodology to fit their needs (supplemental Table S1).
We confirmed previous studies that EL rank–based pre-

dictions outperform IC50-based predictions (4). EL data
contain important data such as sequence motifs associated
with processing and allele-specific information about peptide
length preferences. It was previously shown that including
allele-specific length preferences in machine learning ap-
proaches improved predictions of ELs and epitopes (5, 23).
The fact that these allele-specific length preferences are
included in ligand elution data is a major advantage of utilizing
training data based on ELs instead of BA.
One limitation of our study is that we only included 9-mer

peptides. Future studies including various peptide lengths
could provide more accurate insights into allele-specific
thresholds and repertoire sizes. Another drawback is the
limited number of epitopes available for analysis. Studies
including a larger number of epitopes, given more epitopes
become available in the future, could shed more light into our
interesting finding that ELs are associated with significantly
better prediction scores than epitopes.
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