
CANCER

The landscape of cryptic antisense transcription in
human cancers reveals an oncogenic noncoding RNA in
lung cancer
Zhaozhao Zhao1,2†, Yu Chen1†, Xiaomeng Cheng1, Leihuan Huang1, Haimei Wen1, Qiushi Xu1,
Xiaolan Zhou1, Xiaoyang Zhang3‡, Jing Chen4*, Ting Ni1,5*

Cryptic transcription initiation has been previously linked to activation of oncogenic transcripts. However, the
prevalence and impact of cryptic antisense transcription from the opposite strand of protein-coding genes were
mostly unknown in cancer. Applying a robust computational pipeline to publicly available transcriptome and
epigenome datasets, we identified hundreds of previously unannotated cryptic antisense polyadenylated tran-
scripts (CAPTs) that were enriched in tumor samples. We showed that the activation of cryptic antisense tran-
scription was associated with increased chromatin accessibility and active histone marks. Accordingly, we found
that many of the antisense transcripts were inducible by treatment of epigenetic drugs. Moreover, CRISPR-me-
diated epigenetic editing assays revealed that transcription of a noncoding RNA LRRK1-CAPT promoted LUSC
cell proliferation, suggesting its oncogenic role. Our findings largely expand our understanding of cancer-asso-
ciated transcription events, which may facilitate the development of novel strategies for cancer diagnosis and
treatment.
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INTRODUCTION
Previous studies estimated that up to 85% of the human genome can
be transcribed by RNA polymerase II, resulting in large amounts of
RNA products (1–3). The application of high-throughput RNA se-
quencing (RNA-seq) and bioinformatic methods has revealed the
diversity and complexity of RNA transcription and processing in
human cells (4–7). Cancer is a complex and heterogeneous
disease involving both genetic and epigenetic alterations that lead
to a complicated transcriptome (6–11). Recently, a wave of discov-
eries has demonstrated that the broad role of transcriptome alter-
ation in various oncogenic properties underlying the hallmarks of
cancer (8, 9). For instance, de novo alternative transcription initia-
tion in ALK intron 19 produces a novel ALK transcript, which
encodes three oncogenic truncated proteins (8). Cryptic promoters
derived from activated transposable elements (TEs) have also been
associated with widespread expression of oncogenes (9). However,
our understanding of transcripts that are derived from the opposite
strand of protein-coding genes remains limited.

Natural antisense transcripts (NATs) are RNA molecules tran-
scribed from the opposite strands of DNA to that partially or

completely overlap with a sense transcript of either protein-
coding or noncoding genes (12). NATs may arise from independent
transcriptional units containing cryptic promoters situated within
genes, typically in intronic regions, or near transcriptional start
sites of neighboring genes (12). Previous studies have identified in-
dividual NATs that are dysregulated in various types of cancer, and
NATs have been regarded as pivotal regulators of the hallmarks of
cancer (13, 14). However, considering that the cancer transcriptome
was complicated and heterogeneous, whether there exists aberrant
activation of novel antisense transcripts that were unannotated by
reference transcriptome in cancer samples is an intriguing question
while remains unknown.

Here, we investigated the cryptic antisense transcription using
publicly available RNA-seq data from The Cancer Genome Atlas
(TCGA). We identified hundreds of previously unannotated
cryptic antisense polyadenylated transcripts (CAPTs), which are en-
riched in tumors as compared to normal tissues. Through integrat-
ing multiomics datasets, we revealed that the emergence of cryptic
antisense transcription is highly associated with activation of chro-
matin structures. Accordingly, inhibition of DNA methyltransfer-
ase and histone deacetylase promoted cryptic antisense
transcription. We showed that a CAPT transcribed from the oppo-
site strand of the protein-coding gene LRRK1 drives proliferation of
lung cancer cells. This study reveals a new type of transcripts and
their upstream regulation and downstream effect in the cancer
genome, extending our understanding regarding the diversity and
complexity of cancer transcriptome.

RESULTS
Identification of cryptic antisense transcription across
cancer types
To globally characterize cryptic antisense transcription, we can-
vassed RNA-seq data across 14 cancer types from the TCGA
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Research Network (fig. S1A and table S1). We constructed a com-
putational pipeline that identifies antisense transcripts that are un-
annotated and highly tumor-enriched (fig. S1B). Briefly, we
assembled transcriptomes in each sample using StringTie (15)
and retained the newly assembled transcripts that were unannotated
and overlapped with known protein-coding genes. Considering that
TCGA RNA-seq data did not preserve strand information of se-
quencing reads, we used splice-site orientation by recognizing
splice junction reads to strengthen the inference of the transcript
orientation (Fig. 1A and fig. S1, C and D). After taking into
account tumor enrichment and expression frequency (see Materials
and Methods for details), we identified 57 to 316 cryptic antisense
genes for each cancer type and found a total of 644 nonredundant
cryptic antisense genes across the 14 cancer types (Fig. 1B, fig. S2A,
and table S2). In the upstream [−40 nucleotide (nt)] of termination
sites of these antisense transcripts, canonical poly(A) signal
AATAAA can be successfully identified by MEME motif enrich-
ment analysis (16) (559 of these antisense genes have AATAAA

motif within 40 nt upstream of its transcription termination site)
(fig. S2B), suggesting that these transcripts are polyadenylated and
thus they could be detected by polyA+ RNA-seq libraries in TCGA.
We refer to these transcripts as “CAPTs.” We detected at least one
CAPT event in 85% of all tumors, with prevalence ranging from 51
to 95% across cancer types (fig. S2C). In addition, about 64% of
these antisense genes could undergo alternative splicing and gener-
ate multiple isoforms, as exemplified by antisense transcripts over-
lapped with the gene INPP4B (fig. S2, D and E). Examining the
distribution of CAPT expression showed strong heterogeneity:
Some CAPTs such as KCP-CAPT were present across multiple
cancer types, while NCEH1-CAPT was only expressed in four
lung squamous cell carcinoma (LUSC) tumors (fig. S2, F and G,
and table S3). We classified these CAPTs into three groups: 66 ubiq-
uitous CAPTs expressed in ≥7 cancer types, 451 intermediately spe-
cific CAPTs that are expressed in 2 to 7 cancer types, and 127
cancer-type-specific CAPTs that are expressed in only 1 cancer

Fig. 1. The CAPT landscape across cancer types. (A) Track plots showing the mean normalized coverage distribution ofOGFOD3-CAPT expression across LUSC samples.
Mean normalized coverage depth of each nucleotide position was shown as a solid line, and corresponding 95% confidence interval was shown in gray area. The total
patient number of different sample types (normal tissues, tumors without CAPT, and tumors with CAPT) was indicated at corresponding plot. (B) Expression profile of
CAPTs across human cancers. UCEC, uterine corpus endometrial carcinoma; THCA, thyroid carcinoma; SKCM, skin cutaneous melanoma; PCPG, pheochromocytoma and
paraganglioma; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; LIHC, liver hepatocellular carcinoma; LGG, low-grade glioma; KIRP, kidney renal pap-
illary cell carcinoma; HNSC, head and neck squamous cell carcinoma; GBM, glioblastoma multiforme; COAD, colon adenocarcinoma; BRCA, breast invasive carcinoma;
BLCA, bladder urothelial carcinoma. (C) Heatmap showing the expression status of all 316 CAPT genes supported by Michigan Center for Translational Pathology (MCTP)
strand-specific RNA-seq data in all analyzed MCTP samples. The left histogram showing the number of analyzed MCTP samples with corresponding CAPTs. Several CAPTs
are highlighted. (D) Expression pattern of CAPTs across various human tissues and cell types from the FANTOM5 project. (E) Expression level distribution of CAGE peak
associated with SLC25A13-CAPT in FANTOM5 samples. Sample types are indicated by different colors. (F) Heatmap showing the expression level of CAGE peaks associated
with CAPTs in 50 hepatocellular carcinoma (HCC) tumor tissues, 50 matched nontumor tissues, and 5 morphologically normal liver tissues. Several peaks associated with
certain CAPTs were indicated. TPM, tags per uniquely mapped million tags. (G) Scatter plots showing CAGE peaks associated with SLC17A2-CAPT (top) and CLPB-CAPT
(bottom) were highly expressed in several HCC tumors. (H) Top three track plots showing the mean normalized coverage distribution of SLC17A2-CAPT across matched
normal liver samples, LIHC tumors without corresponding CAPT expression, and LIHC tumors with corresponding CAPT expression. Bottom two normalized CAGE
profiling track plots showed that the CAGE peak supported the tumor-specific expression of SLC17A2-CAPT.
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type (Fig. 1B). These results provided a global profile of cryptic an-
tisense transcription across 14 cancer types.

To support the reliability of CAPTs identified in this study, we
first used additional strand-specific RNA-seq data of three cancer
types [breast invasive carcinoma (BRCA), lung adenocarcinoma
(LUAD), and LUSC] from the Michigan Center for Translational
Pathology (MCTP) compendium to validate the authenticity of
CAPTs (17). A total of 316 CAPTs (49%) identified in this study
were supported by this batch of strand-specific RNA-seq data,
and the proportion of CAPTs that were expressed in specific
TCGA cancer type and supported by MCTP dataset simultaneously
was increased to around 70% (74% for CAPTs expressed in TCGA-
LUSC and 67% for CAPTs expressed in TCGA-BRCA) (Fig. 1C and
fig. S3A). In addition, the expression pattern of CAPTs in all these
MCTP cancer samples showed strong heterogeneity: Some CAPTs
such as OGFOD3-CAPT were present in all these three cancer types,
while some CAPTs were only expressed in specific cancer type
(Fig. 1C and fig. S3, B to D). We found that CAPTs supported by
MCTP RNA-seq data have significantly higher expression frequen-
cy in TCGA samples than those not supported by MCTP RNA-seq
data (fig. S3E). For example, NCEH1-CAPT, only expressed in four
TCGA-LUSC samples (fig. S2G), was not expressed in all these 79
MCTP-LUSC samples. We also performed de novo identification of
cryptic antisense transcripts from strand-specific RNA-seq data of
six pairs of hepatocellular carcinoma (HCC) and matched normal
adjacent liver tissues (18) and further compared them with the anal-
ysis results from TCGA–liver hepatocellular carcinoma (LIHC). We
identified 11 cryptic antisense genes in this batch of HCC tumors,
where 10 among them were also identified in our TCGA-LIHC
result (fig. S3F). Again, their expression levels in HCC tumors
showed strong heterogeneity, as exemplified by PTPRB-CAPT,
which was specifically highly expressed in tumor NT10T (fig.
S3G). In conclusion, all above results not only support the authen-
ticity of CAPTs identified in this study and robustness of our com-
putational pipeline used in this study but also reveal the
characteristics of CAPTs, which are specifically highly expressed
in tumor samples, and their expression levels show strong
heterogeneity.

To further estimate how widely these CAPTs are expressed in the
human body, we used the functional annotation of the mammalian
genome 5 (FANTOM5) atlas, which provides expression data mea-
sured by CAGE (Cap Analysis of Gene Expression) across a broad
panel of primary cells, tissues, and cancer cell lines (19). We found
that only 13% of CAPT loci were associated with any CAGE peak
from FANTOM5 (Fig. 1D), where this ratio was significantly lower
than annotated antisense genes (42%; P < 2.2 × 10−16, chi-square
test; fig. S4, A and B). Some CAPTs supported by FANTOM5
CAGE peaks were only expressed at a faction of samples, particular-
ly highly expressed in cancer cell lines, as exemplified by SLC25A13-
CAPT and MBD5-CAPT (Fig. 1E and fig. S4C). We also systemati-
cally analyzed additional CAGE profiling data from 50 HCC
tumors, 50 matched nontumor tissues, and 5 morphologically
normal liver tissues (6). We found that about 16% of CAPT loci
were associated with these HCC CAGE peaks (fig. S4D). The frac-
tion of CAPTs associated with HCC CAGE peaks increased to 45%
when only checking CAPTs expressed in LIHC tumors (fig. S4D).
These CAPT-associated CAGE peaks were specifically highly ex-
pressed in HCC tumors (Fig. 1F). Again, their expression levels in
HCC tumor samples showed strong heterogeneity, as exemplified

by CAGE peak associated with PTPRB-CAPT, only stably expressed
in several HCC tumors (fig. S4, E and F). In these HCC CAGE
peaks-associated CAPTs, 48 were not associated with FANTOM5
CAGE peaks, as exemplified by SLC17A2-CAPT and CLPB-CAPT
(Fig. 1, G and H, and fig. S4G). SLC17A2-CAPT–associated HCC
CAGE peak was highly expressed in several HCC tumors, especially
in sample 133T, but not expressed in matched nontumor tissues and
normal liver tissues (Fig. 1, G and H). These results not only show
that the FAMTOM5 CAGE peaks remain far from saturation but
also support the characteristics (tumor-enriched and strong hetero-
geneity) and authenticity of CAPTs identified in this study.

The characterization of CAPTs
The majority of CAPTs were transcribed form intronic regions of
relevant sense genes, which was similar to previously annotated an-
tisense transcripts (Fig. 2A) (20). However, transcription start site
(TSS) of CAPTs had significantly higher fraction located in inter-
genic region than annotated antisense transcripts (Fig. 2A;
P = 1.34 × 10−11, chi-square test). Consistent with previous
reports (17, 18), the expression level of CAPTs was significantly
lower than those of annotated protein coding genes and antisense
genes (Fig. 2B). In addition, the expression level of CAPTs was sig-
nificantly lower than that of their matched sense protein coding
genes (Fig. 2C and fig. S5, A to C). In addition, CAPTs had signifi-
cantly lower coding potential than annotated protein coding genes
and the majority of them (about 90%) were predicted to produce
noncoding RNAs (Fig. 2D) (21). Antisense transcripts could be
classified as head to head, tail to tail, or embedded (one transcript
is fully contained within the other) according to their orientation
with respect to sense genes (fig. S5D) (12). We found that the ma-
jority of CAPTs were embedded with sense protein coding genes
(fig. S5D). The length of CAPTs was comparable to annotated an-
tisense transcripts (fig. S5E). Because it has been shown that TEs
play significant roles in regulating gene networks through novel
promoter (6, 8, 9), we examined which fraction of the TSSs of
CAPTs overlapped with the major types of repetitive elements
(long interspersed nuclear element (LINE), long terminal repeat
(LTR), and short interspersed nuclear element (SINE). About
26% of TSSs of the CAPTs overlapped with LTR elements in the
sense direction, which was significantly higher than the annotated
antisense transcripts (Fig. 2E; P < 2.2 × 10−16, chi-square test).
These results imply that while CAPTs share certain common fea-
tures with the annotated antisense transcripts, they also have dis-
tinct characteristics.

Expression of sense-antisense transcript pairs is often linked,
either positively or negatively, much more than randomly distribu-
ted (12, 17). To measure the expression correlation between CAPTs
and their matched sense genes, we examined whether the expres-
sion level of sense gene in tumors with corresponding CAPT was
different from that in tumors without CAPT or normal samples.
Consistent with previous reports about overall positive correlation
between sense/antisense genes (12, 17), we found that more sense
genes had higher expression in tumors with related CAPT than
those that had lower expression in tumors (Fig. 2F and fig. S5, F
to H). For example, NAA30-CAPT was transcribed from the
intron region of the gene NAA30, and the expression level of
NAA30 in LUAD tumors with NAA30-CAPT was significantly
higher than those in LUAD tumors without this CAPT (Fig. 2, G
and H). These results suggest that there may exist common
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Fig. 2. Characterization of CAPT. (A) Genomic distribution of transcription start sites (TSSs) of CAPTs and annotated antisense transcripts. UTR, untranslated region. (B)
Boxplot showing the comparison of expression level of annotated protein coding genes, long intergenic noncoding RNA (lincRNA), annotated antisense transcripts and
CAPTs among TCGA samples. (C) Boxplot showing the comparison of expression level of CAPTs and their matched sense protein coding genes in TCGA tumors with the
presence of CAPT. (D) The coding potential of annotated protein-coding genes, lincRNA, annotated antisense transcripts and CAPTs was assessed usingPLEK (predictor of
long non-coding RNAs and messenger RNAs based on an improved k-mer scheme) (21). Dashed line denotes the threshold for protein-coding transcripts. (E) Fraction of
CAPT TSSs overlapping with repetitive elements in the sense direction. ***P ≤ 0.001 by chi-square test. (F) Numbers of sense-antisense genes pairs whose expression has
correlation in different cancer types. (G) RNA-seq track plots showing the mean normalized coverage distribution of NAA30-CAPT across matched normal lung samples,
LUAD tumors without NAA30-CAPT expression, and LUAD tumors with NAA30-CAPT. Mean normalized coverage depth of each nucleotide position was shown as a solid
line, and corresponding 95% confidence interval was shown in gray area. (H) Boxplot showing that the gene NAA30 in LUAD tumors with NAA30-CAPT has higher ex-
pression than those without NAA30-CAPT.
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coordinated regulatory mechanisms controlling the sense-antisense
transcription.

Changes in the chromatin landscape underlie the
expression of CAPTs
To cast light on the mechanism of CAPT activation, we integrated
epigenomic data including chromatin accessibility, DNA methyla-
tion, and covalent histone modifications to investigate the potential
cancer-associated epigenetic reprogramming accompanying CAPT
expression. The assay for transposase-accessible chromatin using
sequencing (ATAC-seq) data from TCGA profiled genome-wide
chromatin accessibility to identify potential regulatory elements in
diverse types of human primary tumors (22). We analyzed matched
RNA-seq and ATAC-seq data of 275 tumor samples from the above
investigated 14 cancer types. We found that about 80% of TSSs from
those CAPTs overlapped with ATAC-seq peaks (Fig. 3A). Then, we
examined the correlation between ATAC-seq peak signal and their
overlapped CAPT expression across all samples. Globally, we found
that TSS regions of expressed CAPTs had significant increase in ac-
cessibility compared to those of other nonexpressed CAPTs (Fig. 3,
B and C). This trend still remained in specific cancer type, such as
kidney renal papillary cell carcinoma (KIRP) tumor (fig. S6, A and
B). TSS of ALG10-CAPT, which have been shown specifically ex-
pressed in the liver tumors (figs. S2F and S4F), overlapped with
an ATAC-seq peak named LIHC_80799. The tumor sample ex-
pressed ALG10-CAPT (TCGA-BC-A10U) had higher accessibility
in this peak region (Fig. 3, D and E). Peak regions overlapped
with several CAPTs such as MYT1L-CAPT and ATP8A2-CAPT
had overall higher accessibility in KIRP tumors compared with
other cancer types (fig. S6, C to F). However, the KIRP tumors
with the expression of related CAPTs still had higher accessibility
in the related peak regions (highlighted in red, fig. S6, C to F).
We speculated that some CAPTs were not supported by ATAC-
seq peaks due to the fact that ATAC-seq peaks derived from these
tumors remain far from saturation, as exemplified by HTR1E-
CAPT, not associated with TCGA ATAC-seq peaks, but expressed
in NCI-H838 cells and supported by ATAC peak and CAGE peak
(fig. S6G). Given that promoters and TSS-proximal regions were
always highly accessible for transcription factors (TFs) to initiate
transcription (23, 24), these results support the potential regulation
of CAPTs across cancer types.

DNA methylation alteration has been observed in various
cancers, and global hypomethylation is frequently observed in
highly and moderately repeated DNA sequences (25, 26). Combined
with DNA methylation array data, we found that the TSS regions of
some expressed CAPTs were hypomethylated in tumors with the
presence of relevant CAPT (fig. S7, A to C). For example, array
sites cg02775804 and cg15864074, located around TSS of
EPB41L5-CAPT, were significantly hypomethylated in tumors
with the presence of EPB41L5-CAPT (fig. S7B). We also examined
the correlation between CAPT expression level and DNA methyla-
tion level of associated CpG array site in all tumor samples with
matched RNA-seq and Illumina 450K methylation array data and
found that 60.6% of CAPT-to-CpG site links showed significant
negative correlation across cancer types, as exemplified by
WIPF1-CAPT and CpG array site cg24932433 (fig. S7, D and E,
and table S4).

Epigenetic marks on chromatin cooperate with TFs to regulate
transcription (27). Epigenetic deregulation has emerged as a

paradigm of cancer biology that underlies the hallmarks of cancer
cells (28). One early study collected 73 pairs of colorectal cancer
tissues (tumor and adjacent native tissue from the same patients)
and generated a series of high-quality sequencing data, including
147 H3K27ac chromatin immunoprecipitation sequencing (ChIP-
seq), 86 H3K4me3 ChIP-seq, and 144 RNA-seq (10). We used
this batch of data to investigate the dynamics of histone modifica-
tions accompanying the activation of CAPT. We first checked the
expression status of CAPTs in this batch of data and found that
30 CAPTs were expressed here and the majority of them were
uniquely expressed in tumor samples (fig. S8A). We found that
histone modifications H3K4me3 and H3K27ac, which were associ-
ated with transcriptional activation (29, 30), showed enrichment at
TSS of CAPTs (Fig. 3, F and G, and fig. S6, B to D). For example, the
expression of EPB41L5-CAPT was accompanied by co-occurrence
of H3K27ac and H3K4me3 signals on its promoter in tumor tissues,
while the matched adjacent native tissues had undetectable
EPB41L5-CAPT expression and no enrichment of the two histone
marks (Fig. 3F). The average H3K27ac signal and H3K4me3 signal
of TSSs in tumors with expressed CAPT were also higher than those
in tumors without CAPT or normal tissues (Fig. 3G).

To investigate the potential TFs regulating CAPTs, the DNA se-
quences of regions around TSSs of CAPTs were used for prediction
by HOMER software (31). We identified several TFs such as KLF5
(Fig. 3H), which was a driver of diverse cancer-related phenotype
(32). Together, these results reveal that the activation of CAPT is
tightly regulated by chromatin modulation and related TFs.

Treatment of epigenetic drugs induced the expression
of CAPTs
The correlation between epigenomic dynamics and expression of
CAPTs leads us to hypothesize that genome-wide epigenetic
changes following DNA methyltransferase and histone deacetylase
inhibitors (DNMTi and HDACi, respectively) treatment could
result in the activation of CAPTs (33). To this end, we systematically
analyzed the CAGE data of NCI-H1299 cells treated with DNMTi
(DAC), HDACi (SB939 or SAHA), or both DAC and SB939
(DAC + SB939). We found that epigenetic treatment activated
about 40 CAPTs, with the combinatorial treatment
(DAC + SB939) showing the strongest effects (Fig. 4, A and B,
and fig. S9A). In line with previous finding of the synergistic
effect on gene expression by combined demethylation and histone
deacetylase inhibition (33), we found that multiple CAPTs were ex-
clusively expressed after DAC + SB939 treatment (Fig. 4B). Majority
of these activated CAPTs were not associated with FANTOM5
CAGE peaks, as exemplified by CEP63-CAPT (fig. S9, B to E).
ChIP-seq revealed that TSS regions of activated CAPTs upon treat-
ment with DAC or DAC + SB939 showed increased signal of H3K4
trimethylation (Fig. 4C). Furthermore, we experimentally validated
that DNMTi and HDACi induced the up-regulation of several
CAPTs in different cell lines by quantitative reverse transcription
polymerase chain reaction (qRT-PCR) (Fig. 4, D and E, and fig.
S9F). Together, these findings suggest that these CAPTs are authen-
tic transcripts and regulated by chromatin modulation.

LRRK1-CAPT as a regulator of LUSC cell proliferation and
tumorigenesis
To investigate the potential role of CAPTs, we first evaluated global
CAPT expression pattern in 186 LUSC cell lines from the Cancer
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Fig. 3. The activation of CAPTwas associated with epigenetics alteration. (A) Fraction of CAPT TSSs overlapped with pan-cancer peak set called from TCGA ATAC-seq
data. Color indicates the type of genomic region overlapped by the ATAC-seq peak. (B) Heatmap representation of overlapped CAPT-to-peak links. Each column repre-
sents a tumor sample. Each row represents an individual link between one CAPT and its TSS overlapped ATAC-seq peak. Color represents the CAPT expression status (left)
or relative ATAC-seq accessibility (right) for each link. (C) Boxplot showing the comparison of chromatin accessibility between ATAC peak-overlapped TSS regions with
expressed CAPT and those without expressed CAPT in all tumor samples. The two-side Wilcoxon rank sum test was used to assess the statistical significance. CPM, counts
per million mapped reads. (D) RNA-seq density plots and normalized ATAC-seq tracks showing that the promoter of ALG10-CAPT had increased accessibility in tumor
sample TCGA-BC-A10U. Only the annotation of ALG10-CAPT transcript that had themost exons was shown. (E) Boxplots showing the normalized counts of ATAC-seq peak
named LIHC_80799 in different cancer types. Each dot represents an individual donor. Tumor with ALG10-CAPT shown in (D) was indicated. (F) RNA-seq and ChIP-seq
tracks showing that the significant enrichment of histone H3K27ac and H3K4me3 near the TSS of EPB41L5-CAPT in colorectal cancer sample. T20 and N20 mean tumor
and adjacent tissue of patient 20. ChIP-seq signal have been normalized. (G) The average normalized H3K27ac (left) and H3K4me3 (right) signal around TSS of EPB41L5-
CAPT in tumors with EPB41L5-CAPT, tumors without EPB41L5-CAPT, and adjacent normal tissues. (H) Motif analysis of TSSs of all CAPTs for putative transcription factor (TF)
binding sites. Regions (400 nt) centered on TSSs of all CAPTs were used for motif discovery.

Zhao et al., Sci. Adv. 9, eadf3264 (2023) 5 April 2023 6 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E



Cell Lines Encyclopedia (CCLE) (34) and found that 146 CAPT
genes were expressed in these LUSC cell lines (fig. S10A). The ex-
pression of CAPTs also showed strong heterogeneity in cancer cell
lines. EPB41L5-CAPT was frequently expressed in 18 cell lines,
while OGFOD3-CAPT was uniquely expressed in NCI-H196 cells
(fig. S10A). To verify the existence of CAPTs in relevant cell lines
and determine their full-length sequence, we performed rapid am-
plification of complementary DNA (cDNA) ends (RACE) followed
by Sanger sequencing for three CAPTs (EPB41L5-CAPT and
SLC25A13-CAPT in NCI-H520 cells, and LRRK1-CAPT in NCI-
H1299 cells) (Fig. 5A and fig. S10, B to D). These three CAPT

genes all had multiple isoforms generated by alternative splicing.
To evaluate the potential roles of these three CAPTs, we performed
functional knockdown experiments using small interfering RNA
(siRNA) targeting common region of isoforms of each of these
three CAPTs in the corresponding cell lines. We found that silenc-
ing of LRRK1-CAPT could significantly inhibit NCI-H1299 cell
proliferation, as detected by Cell Counting Kit-8 (CCK-8) assay
and related proliferation markers (Fig. 5, B and C). Silencing of
EPB41L5-CAPT could significantly inhibit NCI-H520 cell prolifer-
ation, while silencing of SLC25A13-CAPT had no significant effect
on NCI-H520 cell proliferation (fig. S10, E to I). Considering that

Fig. 4. DNMTi and HDACi induced the activation of a portion of CAPTs. (A) RNA-seq, CAGE, and ChIP-seq showing that combinatorial treatment (DAC + SB939)
induced the activation of BEND7-CAPT. Top three mean normalized coverage plots showing that BEND7-CAPT was expressed in some LUSC samples. CAGE and
H3K4me3 ChIP-seq signal have been normalized. (B) Heatmap showing that epigenetic treatment increased the expression of some CAPTs. Color represents the relative
expression of CAPT (CPM) as a z score. (C) ChIP-seq occupancy plots showing the average H3K4me3 level centered around TSSs of all activated CAPT upon treatment. (D)
Reverse transcription polymerase chain reaction (RT-PCR) analysis of several CAPTs upon drug treatment in NCI-H1299 lung cancer cells. (E) Heatmap showing the CAPT
expression level upon drug treatment in NCI-H1299 (left), IMR90 (middle), and HEK293 (right) cells. The log2 of themean expression from three independent experiments
relative to expression level of dimethyl sulfoxide (DMSO) condition is shown. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001 by a two-tailed Student’s t test.
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Fig. 5. LRRK1-CAPTwas a regulator of LUSC cell proliferation and tumorigenesis. (A) RNA-seq density plots and normalized ATAC-seq and CAGE tracks showing that
LRRK1-CAPT was expressed in LUSC samples and NCI-H1299 cells. (B) qRCR analysis for expression level of LRRK1-CAPT and proliferation-related marker genes CDK1 and
MKI67 upon LRRK1-CAPT knockdown in NCI-H1299 cells. (C) Cell proliferation rate evaluated by Cell Counting Kit-8 (CCK-8) assay upon LRRK1-CAPT knockdown in NCI-
H1299 cells. (D) qRT-PCR for LRRK1-CAPT, U2, and actin following nuclear and cytoplasmic fractionation of NCI-H1299 cell lysates. (E) qRCR analysis for expression level of
LRRK1-CAPT in NCI-H1299 cells for nontargeting sgRNA or two independent sgRNA with dCas9-KRAB. (F) Cell proliferation rate of NCI-H1299 cells evaluated by CCK-8
assay upon LRRK1-CAPT knockdown. (G) Cell proliferation rate of A549 cells evaluated by CCK-8 assay upon LRRK1-CAPT knockdown. (H) Cell proliferation rate evaluated
by CCK-8 assay upon LRRK1-CAPT overexpression in A549 cells. (I) Kaplan-Meier survival analysis of patients with LUSCwith or without LRRK1-CAPTexpression. P valuewas
calculated by log-rank test. (J) Comparison of promoter methylation level of LRRK1-CAPT in normal tissues and in patients with LUSC with or without LRRK1-CAPT ex-
pression. (K) qRCR analysis for expression level of LRRK1, LRRK1-CAPT, CDK1, andMKI67 upon LRRK1 knockdown in NCI-H1299 cells. (L) Cell proliferation rate evaluated by
CCK-8 assay upon LRRK1 knockdown in NCI-H1299 cells. (M) Heatmap of expression level of the top 1000most variable genes upon LRRK1-CAPT knockdown in NCI-H1299
cells. (N) Gene Ontology (GO) enrichment analysis for significantly down-regulated genes and significantly up-regulated genes upon LRRK1-CAPT knockdown in NCI-
H1299 cells. For all panels, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001 by a two-tailed Student’s t test. ns, not significant.
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LRRK1-CAPT had more profound effect than EPB41L5-CAPT on
slowing the proliferation rate when knocking down (Fig. 5C and fig.
S10F), we focused on LRRK1-CAPT to further explore its function
in lung cancer.

Cellular localization of LRRK1-CAPT via qRT-PCR following
cellular fractionation showed the predominant expression in cyto-
plasm (Fig. 5D). Multiple coding potential assessing tools all indi-
cated that LRRK1-CAPT was a noncoding RNA (fig. S11A) (21, 35,
36). Transwell assays showed that LRRK1-CAPT knockdown signif-
icantly reduced the migration of NCI-H1299 cells (fig. S11B). We
also suppressed LRRK1-CAPT via inhibiting its transcription by
CRISPR interference (37), and both two distinct single-guide
RNAs (sgRNAs) targeting LRRK1-CAPT significantly reduced pro-
liferation capacity and colony formation of NCI-H1299 cells (Fig. 5,
E and F, and fig. S11C). Moreover, we transfected these guide RNAs
(gRNAs) into A549 cells that did not express this CAPT (fig. S10A),
and the results showed that knockdown LRRK1-CAPT had no effect
on proliferation capacity and colony formation of A549 cells, which
validated the specificity of LRRK1-CAPT knockdown (Fig. 5G and
fig. S11D). Overexpression of LRRK1-CAPT by CRISPR activation
(37) exhibited a significant increase in proliferative capacity and
colony formation of both NCI-H1299 cells and A549 cells
(Fig. 5H and fig. S11, E to I). In addition, patients with LUSC
that showed LRRK1-CAPT expression in tumor samples had signif-
icantly worse survival rates (Fig. 5I). DNA methylation array site
cg13288361, located around TSS of LRRK1-CAPT, was significantly
hypomethylated in tumors with LRRK1-CAPT (Fig. 5J). In addi-
tion, we found that epigenetic treatment could increase the expres-
sion of LRRK1-CAPT (Fig. 4, D and E).

We then examined whether LRRK1-CAPT played a role by reg-
ulating the expression of its sense protein coding gene LRRK1.
LRRK1-CAPT knockdown had no effect on the expression of
sense gene LRRK1 (fig. S12A), consistent with that patients with
LUSC with LRRK1-CAPT expression had comparable expression
level of sense gene LRRK1 to those without LRRK1-CAPT expres-
sion, suggesting that these two overlapping genes were indepen-
dently regulated (fig. S12B). Moreover, the expression level of
LRRK1 in LUSC tumors had no significant change compared
with matched normal tissues, and the survival of patients with
LUSC was not associated with LRRK1 expression level (fig. S12, C
and D). We experimentally knocked down sense gene LRRK1 by
siRNA in NCI-H1299 cells and found that silencing of LRRK1
had no significant effect on proliferation and migration of NCI-
H1299 cells (Fig. 5, K and L, and fig. S12E), which was consistent
with that LRRK1was not essential to proliferation of lung cancer cell
lines revealed by CRISPR dependency data analysis (fig. S12F) (38).
These lines of evidence were combined to show that LRRK1-CAPT
played a role in regulating LUSC cell proliferation, not by affecting
its sense gene LRRK1.

We also conducted RNA-seq in the NCI-H1299 cells transduced
with either nontargeting siRNA or two distinct LRRK1-CAPT–spe-
cific siRNAs. We observed widespread gene expression change in
NCI-H1299 cells upon LRRK1-CAPT knockdown and found a
total of 124 and 88 genes that were significantly up- and down-reg-
ulated, respectively (Fig. 5M and fig. S12G). Gene Ontology (GO)
enrichment analysis revealed that down-regulated genes were en-
riched in pathways including DNA replication and cell cycle
(Fig. 5N), which was in accordance with our observation in the phe-
notype change described above. Moreover, gene set enrichment

analysis (GSEA) also identified several key cellular growth biologi-
cal processes, such as E2F and Myc signaling pathway–dependent
gene signatures, which were markedly down-regulated upon
LRRK1-CAPT knockdown (fig. S12H). Together, these results indi-
cated that LRRK1-CAPT acted as an oncogenic long noncoding
RNA (lncRNA) in promoting the proliferation of LUSC cells.

DISCUSSION
In this study, we systematically characterized the global landscape of
cryptic antisense transcription across diverse cancer types. De novo
transcript assembly approaches provide an unbiased modality for
transcript discovery and have been successful in pinpointing new
cancer-associated lncRNAs (39, 40). However, given that the
cancer transcriptomes have strong heterogeneity and the expression
of assembled transcripts is often inconsistent across different cancer
samples, it is still challenging to handle large amounts and different
types of sequencing data. By integrating multiomics data including
RNA-seq, CAGE profiling, ChIP-seq, and ATAC-seq, we discovered
hundreds of cryptic antisense transcripts in human cancers and
found that their expression was associated with epigenetic activa-
tion. Additional strand-specific RNA-seq data and CAGE profiling
data supported the authenticity and characteristics of CAPTs iden-
tified in this study. The number of CAPT events per individual
tumor was quite low, and the expression of CAPT showed strong
heterogeneity across tumor samples. While 95% of BRCA tumors
had at least one CAPT events, more than half of these tumors had
only two to four CAPT events (fig. S2C). In addition, majority of
CAPTs were specifically expressed in a small number of tumors,
as exemplified by NCEH1-CAPT in LUSC tumors (fig. S2, F and
G). We verified the existence of some CAPTs in relevant cell lines
and further revealed that LRRK1-CAPT acted as an oncogenic
lncRNA in promoting the proliferation of LUSC cells. Considering
that LRRK1-CAPT was only expressed in certain cancer samples
and not expressed in most normal tissues, LRRK1-CAPT could be
a cancer-specific target for the potential personalized treatment.
Here, we only used LRRK1-CAPT as an example to demonstrate
the function of this type of new transcript, and we believe that,
with the revealing of hundreds of such cryptic antisense transcripts,
this study would provide more potential durable targets for the field
and could be of great value in the future.

To dissect the mechanism by which LRRK1-CAPT promoted
lung cancer cell proliferation, we summarized its following features:
(i) The expression of LRRK1-CAPT and its sense gene LRRK1 was
independently regulated, and sense gene LRRK1 was not essential to
proliferation of lung cancer cell lines (Fig. 5, K and J, and fig. S12, A
to F); (ii) genes associated with E2F1, DNA replication, and cell
cycle pathways were enriched in down-regulated genes upon
LRRK1-CAPT knockdown in NCI-H1299 cells (Fig. 5, M and N,
and fig. S12, G and H); and (iii) cellular localization of LRRK1-
CAPT showed the predominant expression in cytoplasm
(Fig. 5D). Previous studies have reported that cytoplasmic
lncRNAs could act as competing endogenous RNA or “RNA
sponges,” interacting with microRNAs in a manner that can seques-
ter these molecules and reduce their regulatory effect on target
mRNA (41). Cytoplasmic lncRNAs could also interact with proteins
to modulate protein function, regulate protein-protein interactions,
or direct localization within cellular compartments (42, 43). Con-
sidering that further elucidating the direct interactions between
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LRRK1-CAPT and proteins (or RNA molecules) have significant
challenges, we raised two potential models to explain the functional
mechanism of LRRK1-CAPT based on all aforementioned experi-
ment results: (i) LRRK1-CAPT may directly interact with and stabi-
lize certain proteins, which could play important roles in regulating
cell proliferation, such as TF E2F1. Knocking down LRRK1-CAPT
would reduce the protein level of E2F1 and thus down-regulate the
expression level of E2F1 pathway associated genes accordingly. (ii)
LRRK1-CAPT may bind to microRNA in a manner that can seques-
ter these molecules and reduce their regulatory effect on target
mRNA of certain proteins such as E2F1. The interaction between
released microRNA upon LRRK1-CAPT knockdown and mRNA
of E2F1 would reduce the mRNA stability level (or translation effi-
ciency) level of E2F1. Future in-depth mechanism investigation is
required to fully address this question.

DNMTi and HDACi have been used for the treatment of several
hematopoietic cancers and solid tumors (44, 45). Although these
compounds have been in clinical use for several years, there is still
a lack of knowledge regarding mechanisms of action of these drugs
(46, 47). Recent study reported that treatment with hypomethylat-
ing agents led to demethylation and up-regulation of SALL4, a
known oncogene that plays an important role in multiple types of
cancer, which probably influenced the clinical progression of the
disease (48). Here, we showed that DNMTi and HDACi could
induce de novo transcription of cryptic antisense transcripts. We
found that epigenetic drugs treatment could up-regulate oncogenic
lncRNA LRRK1-CAPT, which provided a novel mechanism for the
action of different classes of epigenetic inhibitors and may partially
explain the side effect of these clinically used inhibitors.

Together, this study expands our understanding of complex an-
tisense transcription in human cancers and provides a resource that
will enable researchers to elucidate the mechanisms of sense/anti-
sense regulation in cancer and provide potential new targets for
cancer treatment.

MATERIALS AND METHODS
Data resource
We downloaded RNA-seq BAM files of 6492 tumor samples across
14 cancer types and their related 493 normal tissue samples from
the Genomic Data Commons (GDC) Data Portal (https://portal.
gdc.cancer.gov/) (table S1). Included were bladder urothelial carci-
noma, BRCA, colon adenocarcinoma, glioblastoma multiforme,
head and neck squamous cell carcinoma, KIRP, low-grade glioma
(LGG), LIHC, LUAD, LUSC, pheochromocytoma and paraganglio-
ma, skin cutaneous melanoma (SKCM), thyroid carcinoma, and
uterine corpus endometrial carcinoma. For two cancer types
(LGG and SKCM) that have no matched normal tissues in TCGA
project, we included 200 brain-related tissue samples (involving
cortex, hippocampus, hypothalamus, and substantia nigra) and
200 skin-related tissue samples from Genotype-Tissue Expression
Project (GTEx) project [database of Genotypes and Phenotypes
(dbGaP), phs000424.v8.p2] as normal tissue samples (table S1)
(49). In addition, normalized gene expression data (HTSeq-
FPKM-UQ) and methylation 450K array data were downloaded
using the gdc-client command line utility. We downloaded
paired-end RNA-seq BAM files of 186 LUSC cancer cell lines
from CCLE from the NCI’s GDC (https://portal.gdc.cancer.gov/
legacy-archive) (34). We downloaded the TCGA ATAC-seq data

for tumors with matched RNA-seq data (https://gdc.cancer.gov/
about-data/publications/ATACseq-AWG) (22). We downloaded
some sequencing data from the National Center for Biotechnology
Information (NCBI) dbGaP (www.ncbi.nlm.nih.gov/gap/): acces-
sion number phs000937.v1.p1 for strand-specific RNA-seq data of
different types of cancer samples from the MCTP compendium and
accession number phs000885.v1.p1 for human HCC CAGE profil-
ing data (6, 17). Other sequencing data are available from the NCBI
Gene Expression Omnibus database: GSE113946 (CAGE profiling
and ATAC-seq from NCI-H838 cells) (9), GSE174338 (strand-spe-
cific RNA-seq data from six pairs of HCC and normal adjacent liver
tissues) (18), GSE81322 (CAGE profiling and ChIP-seq from NCI-
H1299 upon treatment of epigenetic drugs) (33), and GSE156614
(RNA-seq and ChIP-seq data from colorectal cancer tissues with
paired adjacent tissues) (10).

Identification and quantification of cryptic antisense
transcript
StringTie v.1.3.5 was used to assemble the BAM files for all the
RNA-seq samples (15). Default parameters were used, and the
GENCODE reference annotation (v38) was supplied to guide
each assembly (20). All individual transcriptomes were then
merged together using StringTie merge (-F 1 -m 200). From the
merged transcript model, we extracted the transcripts that con-
tained at least one exon overlapped with protein-coding genes an-
notated by GENCODE (v38) in the opposite strand and supported
by at least 10 junction reads at least one sample, where canonical
splice site motif (GT for donor site and AG for acceptor site) was
used to strengthen the inference of the transcript orientation.

To perform the comparison between the newly assembled anti-
sense transcripts with the reference annotation, we first combined
the set of genes in GENCODE (v38) and “curated” RefSeq (v200)
records (that is, including only “NM_” and “NR_” identifiers; see
www.ncbi.nlm.nih.gov/refseq/about) into a joint transcriptome
that we named annotated RNAs. We then used the CuffCompare
(50) tool to compute the overlap of the set of newly assembled an-
tisense transcripts with the annotated RNAs. Each antisense gene
was considered to be annotated by reference transcriptome if at
least one of its transcripts was assigned one of the class codes “=”
or “c.” The unannotated antisense genes were used for downstream
analysis and were merged with the reference GENCODE v38 anno-
tation file to create a merged transcriptome model.

To quantify the expression level of antisense transcripts, we used
StringTie (-e -b) with the merged transcriptome model as the refer-
ence. For each sample, we labeled a candidate antisense transcript as
being present if it met the following criteria: (i) the antisense tran-
script contained at least one exon overlapped with sense gene and
supported by at least 10 junction reads; and (ii) the antisense gene
had at least one FPKM expression. Next, we further filtered for
tumor-enriched antisense genes: (i) showed minimal to no expres-
sion in normal tissues (maximum expression in all normal tissue
samples was less than 1 FPKM); (ii) showed highly tumor-enriched
(median expression level in all tumor samples with the presence of
corresponding antisense gene was at least 10-fold higher than
median expression level in all normal samples); and (iii) presented
at least three tumor samples. Last, we obtained a master list of 644
tumor-enriched unannotated antisense genes.
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Strand-specific RNA-seq data analysis
Considering the overlap between cancer types from TCGA analyzed
in this study and cancer types from MCTP compendium dataset, we
have chosen 190 RNA-seq data samples from three cancer types (66
for BRCA, 79 for LUAD, 39 for LUSC, and 6 lung matched normal
samples) from MCTP dataset for downstream analysis. After filter-
ing out low-quality reads, the remaining reads were aligned to hg38
reference genome sequence using TopHat2 (the option fr-first-
strand was used while all other parameters were set to default
values) (51). We used StringTie to assemble transcripts in a refer-
ence-guided manner (-G) and a strand-specific manner (--rf, which
assumes a stranded library fr-firststrand). The reference and assem-
bled transcript models were merged by StringTie merge to obtain
the merged transcript model. We also estimated the expression
levels (FPKM) for the merged transcript model by running String-
Tie in its expression abundance estimation mode (StringTie -e -b
--rf ). Then, we used CuffCompare to compare CAPT transcript
model annotation identified from TCGA with the newly merged
transcript model assembled in MCTP datasets. Each CAPT gene
was considered to be supported by MCTP datasets if at least one
of its transcripts was assigned class code “=” or class code “c,” and
the expression level of corresponding CAPT gene was more than 1
FPKM in at least one MCTP cancer sample. Last, 316 CAPTs iden-
tified in this study were supported by strand-specific RNA-seq data
from MCTP compendium.

For strand-specific RNA-seq data from six pairs of HCC and
normal adjacent liver tissues, we performed de novo identification
of cryptic antisense transcripts and further compared them with the
analysis results from TCGA-LIHC. Using the same pipeline of
TCGA data analysis, we first used StringTie to de novo assemble
transcripts and then merged them. In addition, we selected tran-
scripts that contained at least one exon overlapped with sense
protein coding genes in the opposite strand and supported by 10
splicing junction reads in at least one sample. Then, we kept 68 un-
annotated antisense genes. After quantifying expression level and
selecting further for tumor-enriched genes, we lastly identified 11
cryptic antisense genes in this batch of HCC tumors.

Differentially expressed gene analysis
To measure the expression correlation between CAPTs and their
matched sense genes, a cutoff of fold change > 2 and adjusted P
value < 0.05 was applied to obtain sense genes whose expression
level was significantly changed in tumors with the presence of
related CAPT. Only CAPT genes expressed at least five tumor
samples in the corresponding cancer type were used for
comparison.

Differentially expressed gene analysis upon LRRK1-CAPT
knockdown in NCI-H1299 cells was performed using edgeR (52),
and a statistical cutoff of adjusted P value < 0.05 and fold change
> 2 was applied to obtain significantly dysregulated genes. GO en-
richment analysis and GSEA were performed by clusterProfiler (53).

Comparative analysis with FANTOM5 CAGE peak and HCC
CAGE peak
FANTOM5 CAGE peak expression matrix across about 900 samples
including tissues, primary cells, and cancer cell lines was obtained
using the hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt
file provided in the FANTOM5 website (19). We first used liftOver
to convert the hg19 coordinates of FANTOM5 CAGE peaks and

HCC CAGE peaks to hg38 version. If the TSS of CAPT had a dis-
tance of <500 nt to the annotated CAGE peaks in the same strand,
then we thought that the CAPT was associated with CAGE peak. A
transcript was considered expressed in a given FANTOM5 CAGE
sample if the CAGE sample contained an active CAGE peak (tags
per million > 0) with a distance of <500 nt to the TSS of correspond-
ing transcript in the same strand.

DNA methylation analysis
To investigate the change of DNA methylation level accompanied
with the emergence of antisense transcript, we first filtered positions
on the Illumina 450K methylation array for those occurring within
± 500-nt regions around TSS of CAPT genes. To this end, we only
observe 406 of the 450K array sites around TSS regions of identified
CAPTs. Then, we compared the methylation level of specific array
site in patients with the presence of related CAPTs with those with
the absence of related CAPTs or matched normal tissues. A cutoff of
median methylation level difference > 0.1 and adjusted P value <
0.05 was applied to obtain CAPT genes whose expression was asso-
ciated with significantly changed methylation level. We also com-
puted the Spearman correlation between CAPT expression level
[log2(FPKM + 1)] and DNA methylation of associated CpG assay
site [log2(Beta value)] in all tumor samples that have both RNA-
seq and Illumina 450K methylation array data.

TCGA ATAC-seq data analysis
For the pan-cancer ATAC-seq datasets, the normalized count
matrix for 562,709 peaks of all samples was directly obtained
from the corresponding study. If the TSS of CAPT had a distance
of <500 nt to the annotated ATAC-seq peaks, then we considered
the CAPT as supported by ATAC peaks. For matched ATAC-seq
peak and CAPT, we compared the chromatin accessibility of peak
region in patients with the presence of corresponding CAPT with
those with the absence of corresponding CAPT.

ChIP-seq data analysis
Among the raw reads obtained from ChIP-seq experiments, low-
quality reads were filtered out, followed by alignment to human ref-
erence genome sequence (hg38). For dataset of colorectal cancer
patient tissues, we first detected expressed CAPT in tumor
samples by analyzing RNA-seq data, and then, we compared the
histone modification signal level (including H3K4me3 and
H3K27ac) around TSS region of CAPT in tumor samples with the
presence of related CAPT with those without related CAPT or
normal tissues. For dataset of NCI-H1299 cells upon epigenetic
drugs treatment, we first detected the up-regulated CAPT upon
treatment, and then, we examined the change of histone modifica-
tion around TSS of up-regulated antisense transcript before and
after treatment.

Cell culture and treatments
HEK293 (human embryonic kidney 293 cells), A549, NCI-H1299,
and NCI-H520 (human lung cancer cells) cells were purchased from
National Collection of Authenticated Cell Cultures. IMR90 cells
were purchased from the American Type Culture Collection
(ATCC). IMR90 cells were cultured in ATCC-formulated Eagle’s
minimum essential medium supplemented with 10% fetal bovine
serum (FBS; Gibco). HEK293 cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Invitrogen, 11960044)
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supplemented with 10% FBS (Gibco), 1% GlutaMAX (Invitrogen,
35050061), 1% sodium pyruvate (Invitrogen, 11360070), strepto-
mycin (100 μg/ml), and penicillin (100 U/ml). A549 cells were cul-
tured in F-12 K (Invitrogen, 21127-022) supplemented with 10%
FBS, streptomycin (100 μg/ml), and penicillin (100 U/ml). NCI-
H1299 cells were cultured in RPMI 1640 (Invitrogen, 11875093)
supplemented with 10% FBS, 1% GlutaMAX, 1% sodium pyruvate,
streptomycin (100 μg/ml), and penicillin (100 U/ml). NCI-H520
cells were cultured in RPMI 1640 supplemented with 10% FBS,
streptomycin (100 μg/ml), and penicillin (100 U/ml). All cell lines
were maintained at 37°C in a humidified incubator with 5% CO2.
NCI-H1299, IMR90, and HEK293 were treated with 500 nM DAC,
500 nM SB939, or 500 nM DAC + 500 nM SB939 for 72, 18, or
72 + 18 hours, respectively, and compound-containing medium
was refreshed every 24 hours.

RNA preparation and qRT-PCR
Total RNA was extracted with TRIzol reagent (Invitrogen,
15596018) according to the manufacturer’s instruction. Then, the
total RNA was reverse-transcribed into cDNA with reverse tran-
scription (RT-PCR) (TIANGEN, KR116-02) with oligo dT18-S
primer. qRT-PCR was performed using the Bio-Rad CFX96 Real-
Time PCR operating instrument with the ChamQ Universal
SYBR qPCR Master Mix (Vazyme, Q711-02). The relative expres-
sion of each RNA was determined using the 2−ΔΔCt method. Each
qRT-PCR analysis was performed in triplicate.

RT-PCR was performed using the 2× Phanta Flash Master Mix
(Vazyme, P520), and the targeted locus was PCR-amplified with the
corresponding primers. Glyceraldehyde-3-phosphate dehydroge-
nase was measured as a loading control. The RT-PCR products
were separated by gel electrophoresis through a 2% agarose gel in
1× tris-acetate-EDTA buffer (Tsingke Biotechnology Co.). To
confirm the sequence of each band, RT-PCR products were gel-pu-
rified using the Zymoclean Gel DNA Extraction kit (Zymo) and
verified by Sanger sequencing. Primer sequences were listed in
table S5.

siRNA knockdown and CRISPR-mediated gene modulation
siRNA was synthesized by Gene Pharma (Shanghai, China). The se-
quences used are shown in table S5. The cells were transfected at a
final concentration of 20 nM with a Lipofectamine iMax transfec-
tion reagent (Thermo Fisher Scientific, 13778075) per the manufac-
turer ’s instructions, nontargeting siRNA was used as a control.
Briefly, 30 pmol siRNA was diluted in 150 μl of Opti-MEM. For
each siRNA, 7.5 μl of iMAX was diluted in 150 μl of Opti-MEM
and incubated for 5 min at room temperature. Diluted siRNA and
RNAiMAX were mixed and incubated for another 5 min at room
temperature. Cells were seeded in six-well plates at a density of
60% replaced with 1.2 ml of fresh medium before adding the com-
plexes. Cells were grown for a total of 72 hours before being
collected.

For CRISPR-mediated gene interference and activation, lenti-
CRISPRv2- KRAB-dSpCas9 (Addgene plasmid no. 139094) and
lentiCRISPRv2- dSpCas9-VPR (Addgene plasmid no. 139090)
were constructed to express nontargeting gRNA or gRNAs that
target LRRK1-CAPT. Lentiviral particles were produced in
HEK293 cells using psPAX2 and pMD2.G packaging vectors
using Lipofectamine 2000. Two days after infection, cells were se-
lected and maintained with puromycin (2 μg/ml; Sigma-Aldrich,

p8833). The interference and activation efficiency were examined
by qRT-PCR.

Rapid amplification of cDNA ends
The full length of CAPT was identified and amplified from the total
RNA of NCI-H1299 cells and NCI-H520 by 5′- and 3′-RACE using
the SMARTer RACE cDNA Amplification Kit (Takara Bio, USA,
catalog no. 634858) following the manufacturer ’s protocol. The
PCR products were subsequently cloned to the PCE2 vector by
the TOPO-Blunt Cloning Kit (Vazyme, C602) and were validated
by Sanger sequencing. The primers used for 5′- and 3′-RACE
were listed in table S5.

Cell proliferation assay
Cells were plated 1500 cells per well on 96-well plates and incubated
according to specific experimental design with three-well replicates.
Cell viability was examined by CCK-8 assay (Dojindo, Rockville,
MD, USA) following the protocol of the manufacturer.

Colony formation assay
For the colony formation assay, cells were digested and resuspended
and counted under a microscope. In addition, the cells were cul-
tured in six-well plate at a density of 800 cells per well. The cells
were cultured under normal culture conditions for 14 days. The su-
pernatant was removed, the cells were fixed with 4% paraformalde-
hyde, and the cells were stained with 1% crystal violet (Sigma-
Aldrich) for 15 min. Then, the plates were washed with phos-
phate-buffered saline (PBS) and photographed.

Transwell migration assay
We conducted the transwell migration assay using a 24-well trans-
well chamber. The cells suspended in nonserum DMEM were
seeded in the top chamber of the transwell with a density of
1 × 104 per well, and 300 μl of fresh complete DMEM (10% FBS)
was added to the bottom chamber. After incubating for 48 hours,
the cells in the top chamber were washed with PBS twice and fixed
with 4% paraformaldehyde for 15 min, followed by staining with 1%
crystal violet (Sigma-Aldrich) for 30 min. After washing and wiping
of the nonmigratory cells in the inner side of the top chamber, the
migratory cells adhering to the bottom surface of the membrane
were observed and photographed. Migratory cells were counted
by ImageJ software.

Supplementary Materials
This PDF file includes:
Figs. S1 to S12
Legends for tables S1 to S5

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S5

View/request a protocol for this paper from Bio-protocol.
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