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Objective: This study aimed to develop and validate an integrated prediction model
based on clinicoradiological data and computed tomography (CT)-radiomics for
differentiating between benign and malignant parotid gland (PG) tumors via multicentre
cohorts.

Materials and Methods: A cohort of 87 PG tumor patients from hospital #1 who were
diagnosed between January 2017 and January 2020 were used for prediction model
training. A total of 378 radiomic features were extracted from a single tumor region of
interest (ROI) of each patient on each phase of CT images. Imaging features were
extracted from plain CT and contrast-enhanced CT (CECT) images. After dimensionality
reduction, a radiomics signature was constructed. A combination model was constructed
by incorporating the rad-score and CT radiological features. An independent group of 38
patients from hospital #2 was used to validate the prediction models. The model
performances were evaluated by receiver operating characteristic (ROC) curve analysis,
and decision curve analysis (DCA) was used to evaluate the clinical effectiveness of the
models. The radiomics signature model was constructed and the rad-score was
calculated based on selected imaging features from plain CT and CECT images.

Results: Analysis of variance and multivariable logistic regression analysis showed that
location, lymph node metastases, and rad-score were independent predictors of tumor
malignant status. The ROC curves showed that the accuracy of the support vector machine
(SVM)-based prediction model, radiomics signature, location and lymph node status in the
training set was 0.854, 0.772, 0.679, and 0.632, respectively; specificity was 0.869, 0.878,
0.734, and 0.773; and sensitivity was 0.731, 0.808, 0.723, and 0.742. In the test set, the
accuracy was 0.835, 0.771, 0.653, and 0.608, respectively; the specificity was 0.741,
0.889, 0.852, and 0.812; and the sensitivity was 0.818, 0.790, 0.731, and 0.716.
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Conclusions: The combination model based on the radiomics signature and CT
radiological features is capable of evaluating the malignancy of PG tumors and can help
clinicians guide clinical tumor management.
Keywords: CT, malignancy, parotid gland, radiomics, tumor
INTRODUCTION

Background
Parotid gland (PG) tumors are rare and account for
approximately 1%–3% of all head and neck tumors (1). Parotid
tumors are a clinically, morphologically, radiologically diverse
group of neoplasms that may present significant diagnostic and
management challenges. Radical tumor resection with lymph
node dissection remains the mainstay treatment for malignant
parotid tumors, followed by adjuvant chemotherapy and
radiotherapy (2). Knowledge of the clinical information and
imaging characteristics before surgery would be of outstanding
importance for evaluating these tumors, tailoring treatment
decisions and optimizing individualized surgical plans.
Additionally, for malignancies, preoperative knowledge of the
tumor type would also be of paramount importance.

Currently, multiple imaging techniques are available to study
the parotid region, such as ultrasound, computed tomography
(CT), and magnetic resonance imaging (MRI). Although CT is
not a first-line method for parotid gland tumor evaluation, it can
be used to help clinicians evaluate PG tumors to confirm the
presence of a parotid mass, assess the extent of tumor especially
in the deep lobe, and detect enlarged lymph nodes, to facilitate
the determination of benign or malignant nature of the tumor for
appropriate treatment. However, CT involves radiation, and
various neoplasms may have similar imaging features on CT
(3, 4). Furthermore, contrast-enhanced CT may cause contrast-
induced adverse reactions, though it is generally considered safe,
with an overall prevalence of adverse reactions around 0.7%,
among which most of the events (more than 80%) are mild (5).
Ultrasound is a cheap and effective tool for delineating cystic
versus solid tumors, tumor borders, and cervical lymph nodes;
however, it poorly visualizes the deep lobe and is dependent on
operator expertise. MRI has sufficiently high resolution to detect
and evaluate parotid tumors noninvasively. As a functional MRI
technique, DWI can be used to explore the diffusion changes in
composition of tissues, which is helpful for parotid tumor
detection and differential diagnosis (6). Nevertheless, its
disadvantages include limited availability for patients with
metal prostheses, high cost and long waiting times. Fine-needle
aspiration biopsy (FNAB) is an accurate method for identifying
the nature of these tumors; however, FNAB is invasive and may
cause hemorrhage, facial nerve injury, and acute sialadenitis at
the needle puncture site (7, 8). In addition, there are significant
variations in the performance of FNAB within different practice
settings which is associated with inadequate diagnoses and
missed malignancies, with a sensitivity for detecting
malignancy between 70% and 80% and non-diagnostic rates
average at 14%–18% (9).Thus, challenges remain in non-
2

invasively and accurately distinguishing benign from malignant
lesions on pre-operative CT images.

Radiomics is new method of mining objective and
quantitative features such as the shape, intensity, and energy of
regions of interest from medical images (e.g., gray-level co-
occurrence matrix (GLCM) and run length matrix (RLM)
features), describing the relationships between image voxels far
beyond the traditional visual features we can obtain and thus
reflecting the underlying genetic and biological variability of the
analyzed tissue, which can promote accurate diagnosis and
individualize cancer treatment (10). Recent studies describe the
use of radiomic analysis for head and neck tumors (11),
glioblastoma (12), breast cancer (13), rectal cancer (14),
hepatocellular carcinoma (15), etc. These studies demonstrated
that radiomic features are closely associated with the
histopathological types, grading and prognosis of tumors and
can help solve many clinical problems and optimize patient
treatment. A previous study (16) used energy spectrum CT,
which is not commonly used, in the tissue classification of benign
parotid tumors and demonstrated good discrimination ability.

However, as mentioned above, it is difficult to distinguish
benign frommalignant PG tumors with conventional CT images,
but considering the novelty of radiomics and the powerful
performance of tumor differential diagnosis in other field, we
hypothesize that radiomics analysis based on conventional CT
images can be used to distinguish between benign and malignant
PG tumors. The purpose of this study is to utilize conventional
CT images to extract PG tumor-related radiomic features and
combine them with conventional radiological features to build a
classification model for distinguishing benign and malignant
PG tumors.
MATERIAL AND METHODS

This retrospective study was approved by Ethics Committee of
Zhejiang Provincial People’s Hospital. All patients’ informed
consents were waived for the retrospective nature of this study.

The research method was carried out in accordance with the
relevant guidelines and regulations. Patients’ clinical and image
data were obtained from routine clinical records and the picture
archiving and communication systems (PACS) of the hospital.

Patient Population
A retrospective review of clinical and radiological databases was
performed from January 1, 2017, to January 30, 2020, in hospital
#1 and from Jan 1, 2019, to January 30, 2020, in hospital #2. The
inclusion criteria were as follows: (1) patients with PG-related
symptoms or masses; (2) confirmation of the PG tumor by
March 2021 | Volume 11 | Article 634452
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surgery and postoperative pathological diagnosis; and (3) non-
contrast computed tomography (NCCT) and contrast enhanced
computed tomography (CECT) images of the head and neck
containing the PG obtained within 2 weeks before the operation.
The exclusion criteria were as follows: (1) CECT images with
obvious artifacts, such as artifacts from false teeth, motion
artifacts, etc.; (2) fine needle aspiration performed before
imaging of the PG; or (3) patients with parotid lesions less
than 1.0 cm in diameter. Medical records from 208 patients were
initially analyzed, and 125 patients were finally included in this
study (see Figure 1 for details). In order to know whether there is
selection bias, a comparison between the included and excluded
dataset were performed.

CT scans were performed with a multi-slice CT scanner
(Siemens 40) or a 64 multidetector scanners (LightSpeed VCT;
GE Healthcare, Waukesha, WI, USA) with the following
parameters: tube voltage of 120 kVp; tube current of 150
mA; section thickness of 3 mm; and section interval of
3 mm. The scanning ranged from the base of the skull to the
inlet of the thorax. The CECT images were obtained after an
intravenous injection of 80–100 ml of nonionic iodinated
iopamidol containing 370 mg iodine per ml (Isovue 370,
Bracco Healthcare, Princeton, NJ) at 3–4 ml/s. Arterial-phase
CECT images were obtained 35 seconds after contrast
material injection.
Frontiers in Oncology | www.frontiersin.org 3
Clinical and Radiological Data Analysis
Clinical parameters, including age, sex, disease duration, and
smoking status, were collected from the hospital medical record
system. All original CT images were reviewed and assessed by
two experienced head and neck radiologists who were blinded to
the clinical data, including tumor location (in the deep or shallow
parotid), maximum diameter, distribution (single or bilateral),
shape (round or not), capsule (with or without), regularity
(regular or irregular), margin (clear or unclear), density
(hypo-, iso-, or hyperdense), enhancement (enhanced or non-
enhanced), cystic degeneration (with or without), lymph node
metastasis (with or without), hemorrhage (with or without),
calcification (with or without), and enhancement type (slight-
moderate or obvious). The definition of some radiological
features can be found in the Supplementary Material.
Discordant interobserver interpretations were resolved by
consensus. If there were multiple lesions in the parotid gland,
the largest lesion with confirmed pathology was chosen for
the analysis.

Image Preprocessing
All NCCT and CECT images were stored in Digital Imaging and
Communications in Medicine (DICOM) format and imported to
ITK-SNAP software for three-dimensional manual segmentation
of the region of interest (ROI). The ROI of each case was
FIGURE 1 | Flow chart for patient selection in this study.
March 2021 | Volume 11 | Article 634452
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manually drawn on the CECT images by two independent head
& neck radiologists (Radiologist X with 11 years of experience
and Radiologist W with 6 years of experience) who were blinded
to the clinical information, carefully avoiding the vessels, bones
and lymph nodes. All ROIs were then replicated to the NCCT
images, and manual correction was also performed to adjust
small deviations in delineating the ROI boundaries. All ROIs
from the NCCT and CECT images were uploaded into AK
analysis software (Artificial Intelligence Kit V3.0.0. R, GE
Healthcare) for feature extraction. To eliminate the potential
impact of different imaging parameters on the extracted features,
we preprocessed the segmented images, including resampling the
images to 1×1 ×1 mm3 voxel size, intensity normalizing, and
standardizing the gray levels to range from 1 to 32 (17).

Radiomics Feature Selection
The preprocessed images were used to extract the radiomics
features, including the histogram, Haralick, FormFactor, gray
level co-occurrence matrix (GLCM), run length matrix (RLM)
and gray level size zone matrix (GLZSM) features. In this study, a
joint feature set was obtained from both the NCCT and CECT
images. The most robust features of the two separate ROI
datasets from the two radiologists were used to ensure the
reproducibility and repeatability of the radiomics features (18).
Spearman’s rank test was utilized to evaluate the correlation
coefficients between the features of the datasets segmented by
Radiologist X and Radiologist W. Any features that had
correlation coefficients greater than 0.8 were defined as
“robust” features (19). A large quantity of features with a
limited sample size may hinder the predictive ability of the
model, especially in a high-dimensional feature space, owing to
the “curse of dimensions” (20); therefore, the dimensions of the
extracted features were reduced to address this issue. Analysis of
variance was first performed on the extracted features to select
those features that were statistically significant. Subsequently, the
minimum redundancy maximum correlation (mRMR)
algorithm was used to reduce the dimensions of the selected
features as well as to select the features that had the highest
correlation with the tumor classification and had the smallest
redundancy between one another. After that, the emerging
gradient boosting decision tree (GBDT) algorithm was used to
further reduce the dimensionality of the preselected features. In
this study, feature selections were performed on both the NCCT
and CECT images of all cases and finally obtained a joint feature
set containing NCCT and CECT image features. Based on these
selected features, logistic regression was used to construct the
radiomics signature.

To determine the correlation between the radiomics signature
and tumor classification, a logistic regression (LR)-based
signature model based on the combined feature set was used to
calculate a score to reflect the actual tumor classification in the
training set, defined as the rad-score, which was then used to
determine the effectiveness of the signature models in
differentiating between patients with benign and malignant
parotid tumors. The formula of the model used in the training
set was then employed to calculate the scores for the test set.
Frontiers in Oncology | www.frontiersin.org 4
The area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used to evaluate the accuracy of
the radiomics signature in both the training and validation sets.
The calibration performance was assessed with the calibration
curve for the continuous variables. Furthermore, decision curve
analysis (DCA) was used to assess the clinical efficiency of the
radiomics signature in classifying the tumor by calculating the
net benefit.

Prediction Model Construction and
Validation
One-way analysis of variance was performed for each potential
predictor variable including clinical characteristics, radiological
characteristics, and the radiomics signature in the training group,
and then multivariable logistic regression was used on the
preselected features with significant differences to obtain the
predictors that were ultimately employed for model
construction. As machine learning can provide highly accurate
and reliable models to improve clinical oncology decisions, in
this study, we chose a support vector machine (SVM) to build a
combined prediction model based on the selected predictors. The
performance of the model was validated with the training set and
the test set separately, including calibration performance
assessed with the calibration curve, diagnostic accuracy using
ROC analysis and net benefit evaluated by DCA. In addition, the
tumor prediction value of each patient in the training set and test
set was calculated according to the model, the cut-off value of the
ROC curve was used to divide parotid tumors into low-risk and
high-risk groups, and the clinical effectiveness was determined by
the actual tumor classification in the different groups. Figure 2
shows the workflow of this study.

Statistics Analysis
SPSS 17.0 software (IBM, Chicago, IL, USA) was used to evaluate
the normality of the distribution of the dataset using the
Kolmogorov-Smirnov test and to perform the chi-square test
for the categorical data. The T test is used for normally
distributed variables, and the Mann-Whitney test is used for
non-normally distributed variables. The conditional forward
stepwise selection method was applied for the multivariable
logistic regression model. MedCalc15.8 software (MedCalc,
Ostend, Belgium) was used to assess the ROC curves for the
diagnostic performance of the models, and differences between
the various AUCs were compared with the DeLong test. R
statistical software was used for all other statistical analyses.
The “mRMRe” and “gbm” packages were used for mRMR and
GBDT analyses, respectively. DCA plots were generated with the
“dca. R” package. Two-tailed p-values less than 0.05 were
considered statistically significant.
RESULTS

Clinical Features
A total of 125 patients (63 male and 62 female) with PG tumors
were included from two medical centers. The results showed that
March 2021 | Volume 11 | Article 634452
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there was no significant difference between the included and
excluded datasets (see Table 1 in the Supplementary Materials
for details). Seventeen different tumor types were represented,
most of which were benign tumors, especially pleomorphic
adenomas and Warthin tumors. The details of the PG tumors
are shown in Table 1. The clinical and radiological features of the
patients in the training set and test set are shown in Table 2. No
statistically significant difference was found for any of the data
between the two groups. In the training set, the tumor location
and borders and lymph node status were significantly different
between benign and malignant PG tumors. In the test group,
there were significant differences only in tumor location (Table
3). Figure 3 shows an example of radiological feature analysis of
two cases.
Frontiers in Oncology | www.frontiersin.org 5
Radiomics Signature Construction and
Validation
A total of 378 radiomics features were extracted from a single ROI;
thus, 756 radiomics features were extracted from each patient in the
two scan phases. Among these features, 14 retained after feature
dimensionality reduction, including 5 features from NCCT images
(HaralickCorrelation_angle45_offset7_P, Inertia_angle45_offset7_P,
LongRunEmphasis_angle135_offset1_P, uniformity_P,
Percentile5_P) and 9 features from CECT images (Correlation_
AllDirection_offset7_SD_A, Correlation_angle90_offset1_A,
GLCMEnergy_AllDirection_offset7_SD_A, GreyLevel
Nonuniformity_AllDirection_offset1_SD_A, HaralickCorrelation_
AllDirection_offset1_SD_A, HighGreyLevelRunEmphasis_
AllDirection_offset7_SD_A, HighIntensitySmallAreaEmphasis_A,
kurtosis_A, ShortRunEmphasis_angle0_offset1_A). Logistic
regression was used to construct the radiomics signature. The rad-
scores were significantly different between the training group and the
test group. The predictive effects of the two groups of patients were
favorable, with AUCs of 0.772 and 0.771, specificities of 0.878 and
0.889, and sensitivities of 0.808 and 0.790, respectively (see Figure 4
for details). Detailed information about the dimensionality reduction
proceduresandresultscanbe foundin theSupplementaryMaterials.

Classification Model Construction and
Validation
Analysis of variance and multivariable logistic regression analysis
showed that location, lymph node status, and rad-score were
independent predictors of benign and malignant tumors. See
Table 4 for details. ROC curve analysis shows that the accuracy of
theSVM-basedpredictionmodel, radiomics signature, locationand
lymph node status in the training set was 0.854, 0.772, 0.679, and
0.632, respectively; the specificitywas 0.869, 0.878, 0.734, and0.773;
and the sensitivity was 0.731, 0.808, 0.723 and 0.742. In the test set,
the accuracy was 0.835, 0.771, 0.653, and 0.608, respectively; the
FIGURE 2 | Workflow of this study.
TABLE 1 | Details of the parotid tumors.

Parotid gland tumor Number

Pleomorphic adenoma 53
Warthin tumor 25
Squamous cell carcinoma 10
Lymphoma 9
Salivary ductal carcinoma 5
Acinic cell carcinoma 4
Mucoepidermoid carcinoma 4
Basal cell adenoma 3
Myoepithelial tumor 2
Haemangioma 2
Lymphoepithelial carcinoma 2
Malignant pleomorphic adenoma 1
Basal cell adenoma 1
Mammary analog secretory carcinoma 1
Schwannoma 1
Oncocytoma 1
Adenoid cystic carcinoma 1
Total 125
March 2021 | Volume 11 | Article 634452
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specificity was 0.741, 0.889, 0.852, and 0.812; and the sensitivity
was 0.818, 0.790, 0.731, and 0.716. Details are shown in Figure 5.

We performed DCA for the SVM model, radiomics signature,
location, and lymphadenopathy in the training and test sets. The
results show that the SVM model has the greatest net benefit in
both datasets. Additionally, we conducted calibration curve
analysis of these continuous variables in both datasets, and they
all showed good consistency, as shown in Figure 6. According to
the optimal diagnostic cut-off value of the model (0.323), patients
were divided into a low-risk group and a high-risk group. There
were significant differences in the number of malignant PG tumors
between the low-risk group and the high-risk group in both the
training set and test set (P<0.0001), as shown in Figure 7.
DISCUSSION

We developed and validated a combined prediction model based
on radiological data and CT-radiomics for differentiating benign
Frontiers in Oncology | www.frontiersin.org 6
and malignant PG tumors in two independent clinical cohorts.
The combined model was constructed by incorporating the rad-
score from the radiomics signature and two radiological features.
The rad-score was calculated using the LR model, which was
developed with 14 selective features, including five features from
NCCT and nine features from CECT images of PG tumors. The
combined SVM model outperformed the radiomics signature
and individual radiological features in both the training and test
groups. Thus, the proposed non-invasive method of the
favorable, combined prediction model makes it a potential
preoperative evaluation tool in clinical practice.

Medical imaging is one of the major factors in clinical
evaluation and treatment. However, traditional medical
imaging is primarily a subjective or qualitative science.
Radiomics, a relatively newly developed set of techniques,
allows the high-throughput extraction of imaging features to
quantify the different characteristics that oncologic tissues
exhibit in medical imaging (20). Recently, there have been
several studies on the application of radiomics to PG disease.
Ajmi et al. (16) used dual-energy CT to investigate the
classification of two benign parotid tumors, Warthin tumors
and pleomorphic adenomas. Pallamar et al. (21) utilized
standard MRI sequence-based textures to discriminate PG
masses; however, only a rather small 38 patients with various
pathological entities were enrolled, and regions of interest
derived from only three slices rather than from the whole
tumor were used for extracting a limited number of features.
Another study (22) used only the arterial phase to distinguish
pleomorphic adenoma from Warthin tumor, both of which are
benign tumors and have similar clinical management. In
addition, several studies have investigated the changes in the
parotid morphology and secretory function induced by
radiotherapy for head and neck cancers (23, 24). Unlike the
above-mentioned literature, we performed 3D whole tumor
analysis to differentiate benign and malignant PG tumors with
larger, multicentre datasets of both plain CT and contrast-
enhanced CT images. Furthermore, machine learning methods
were employed to ensure robustness and reproductivity, which
make this study more clinically practical.

In this study, 14 texture features were selected with a machine
learning method from both NCCT and CECT images to develop
a radiomics signature, including first-order and high-order
features. Previous literature has demonstrated that radiomics
features may reflect relevant and potentially important
phenotypic information, such as intra-tumor heterogeneity,
subsequently providing valuable information for diagnosis,
prognosis and individualized therapy (25). Our results showed
that several GLCM features survived as robust in the radiomics
signature and participated in the construction of the prediction
model. GLCM features describe the relationship between two
neighboring pixels, which could potentially reflect local intra-
tumor heterogeneity and is associated with tumor malignancy. It
is hypothesized that intra-tumor heterogeneity can be exhibited
at several spatial levels—macroscopic, cellular and molecular
(genetics)—, all leading to radiological differences; thus,
radiological tumor phenotype characteristics may be useful for
TABLE 2 | Clinical and radiological characteristics of patients in the training and
test sets.

Variable Training set
(n=87)

Test set
(n = 38)

P
value

Age (years) 52.6 ± 16.8 55 ± 14.8 0.446
Duration (months) 31.8 ± 62.3 21.3 ± 48.3 0.356
Maximum diameter (cm) 26 ± 11.9 29.3 ± 22.1 0.385
Sex [n (%)] Male 39(44.8) 24(63.2) 0.059

Female 48(55.2) 14(36.8)
Smoking [n (%)] Yes 18(20.7) 13(34.2) 0.107

No 69(79.3) 25(65.8)
Distribution Single 76(87.4) 35(92.1) 0.439

Bilateral 11(12.6) 3(7.9)
Location Deep 15(17.2) 9(23.7) 0.4

Shallow 72(82.8) 29(76.3)
Shape Round 15(17.2) 10(26.3) 0.4

Non-
rounded

72(82.8) 28(73.7)

Capsule Yes 40(46) 17(44.7) 0.898
No 47(54) 21(55.3)

Regularity Yes 40(46) 23(60.5) 0.135
No 47(54) 15(39.5)

Border Clear 47(54) 24(63.2) 0.343
Unclear 40(46) 14(36.8)

Density Hypodense 36(41.4) 15(39.5) 0.842
Iso-
hyperdense

51(58.6) 23(60.5)

Enhancement Yes 79(90.8) 36(94.7) 0.456
No 8(9.2) 2(5.3)

Marked
Enhancement

Yes 60(69) 24(63.2) 0.525
No 27(31) 14(36.8)

Cystic
degeneration

Yes 39(44.8) 18(47.4) 0.793
No 48(55.2) 20(52.6)

Lymphadenopathy Yes 14(16.1) 8(21.1) 0.503
No 73(83.9) 30(78.9)

Hemorrhage Yes 1(1.1) 1(2.6) 0.544
No 86(98.9) 37(97.4)

Calcification Yes 4(4.6) 1(2.6) 0.606
No 83(95.4) 37(97.4)

Heterogeneity Yes 32(36.8) 14(36.8) 0.995
No 55(63.2) 24(63.2)
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TABLE 3 | Clinical and radiological characteristics between benign and malignant parotid gland tumors in the training and test sets.

Variable Training set (n=87) Test set (n = 38)

Benign (n=61) Malignant (n =26) P value Benign (n=27) Malignant (n =11) P value

Age (years) 52.2 ± 17.5 53.4 ± 15.4 0.781 53.9 ± 16.4 57.6 ± 10.3 0.496
Duration (months) 31.3 ± 59.2 33.2 ± 70.5 0.893 25.2 ± 56.3 11.7 ± 15.7 0.44
Maximum diameter (cm) 25 ± 11.9 28.3 ± 11.8 0.234 27.3 ± 22.7 34.5 ± 20.6 0.37
Sex [n (%)] Male 30 (49.2) 9 (34.6) 0.211 18 (66.7) 6 (54.5) 0.482

Female 31(50.8) 17 (65.4) 9(33.3) 5(45.5)
Smoking [n (%)] Yes 15 (24.6) 3 (11.5) 0.169 10 (37) 3(27.3) 0.565

No 46(75.4) 23 (88.5) 17 (63) 8 (72.7)
Distribution Single 52(85.2) 24 (92.3) 0.364 25(92.6) 10 (90.9) 0.861

Bilateral 9 (14.8) 2 (7.7) 2 (7.4) 1 (9.1)
Location Deep 4(6.6) 11 (42.3) <0.001* 4(14.8) 5 (45.5) 0.044*

Shallow 57 (93.4) 15 (57.7) 23 (85.2) 6(54.5)
Shape Round 10(16.4) 5 (19.2) 0.748 8(29.6) 2 (18.2) 0.467

Non-rounded 51 (83.6) 21 80.8) 19 (70.4) 9 (81.8)
Capsule Yes 32 (52.5) 8 (30.8) 0.063 13 (48.1) 4 (36.4) 0.508

No 29(47.5) 18 (69.2) 14(51.9) 7 (63.6)
Regularity Yes 31(50.8) 9 (34.6) 0.165 17(63) 6 (54.5) 0.63

No 30 (49.2) 17(65.4) 10 (37) 5 (45.5)
Border Clear 38(62.3) 9 (34.6) 0.018* 19(70.4) 5 (45.5) 0.149

Unclear 23 (37.7) 17(65.4) 8 (29.6) 6 (54.5)
Density Hypodense 26(42.6) 10 (38.5) 0.718 11(40.7) 4 (36.4) 0.802

Iso-hyperdense 35 (57.4) 16 61.5) 16(59.3) 7(63.6)
Enhancement Yes 55 (90.2) 24 (92.3) 0.751 25 (92.6) 11 (100) 0.354

No 6(9.8) 2 (7.7) 2(7.4) 0 (0)
Marked Enhancement Yes 40 (65.6) 20 (76.9) 0.295 17 (63) 7 (63.6) 0.969

No 21(34.4) 6 (23.1) 10(37) 4 (36.4)
Cystic degeneration Yes 28 (45.9) 11 (42.3) 0.758 12 (44.4) 6 (54.5) 0.572

No 33(54.1) 15 (57.7) 15(55.6) 5 (45.5)
Lymphadenopathy Yes 5 (8.2) 9 (34.6) 0.002* 4 (14.8) 4 (36.4) 0.139

No 56(91.8) 17 (65.4) 23(85.2) 7 (63.6)
Hemorrhage Yes 0 (0) 1 (3.8) 0.123 1 (3.7) 0 (0) 0.518

No 61(100) 25 96.2) 26(96.3) 11 (100)
Calcification Yes 2 (3.3) 2 (7.7) 0.368 1 (3.7) 0 (0) 0.518

No 59(96.7) 24 92.3) 26(96.3) 11 (100)
Heterogeneity Yes 24(39.3) 8 (30.8) 0.448 12(44.4) 2 (18.2) 0.128

No 37 (60.7) 18(69.2) 15 (55.6) 9 (81.8)
Frontiers in Oncology | www.frontiersin.org
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*represents P < 0.05.
FIGURE 3 | CT example images of benign and malignant parotid tumors. (A) Axial plain CT image of a 60-year-old male patient without a smoking history
presenting with a left neck mass (solid white arrow). The patient had undergone parotidectomy 3 days after CT examination, and the mass was histopathologically
confirmed as a Warthin tumor. (B, C) Axial contrast-enhanced CT image of a 59-year-old male patient with a 20-year smoking history presenting with a right neck
mass (open white arrow, B) that was surgically removed and histopathologically confirmed as a salivary ductal carcinoma with lymph node metastasis (△, C). The
mass shows heterogeneous enhancement with an irregular and unclear border.
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investigating the underlying evolving biology and have been
reported to be associated with worse survival in tumor patients
(26). Our radiomics result was consistent with that of Zhang
(27), who found that texture features, mainly consisting of
GLCM features, in malignant PG tumors were significantly
different from those in benign tumors. It can be surmised that
malignant tumors grow rapidly and are mostly infiltrating,
resulting in insufficient blood supply, which can easily cause
microbleeds and necrosis of the tumor. Therefore, the
heterogeneity of malignant lesions is higher than that of
benign lesions.

Our study employed both plain CT and CECT to extract
features to construct the radiomics signature as PG tumors have
different CT densities for different tumor histologies and are
Frontiers in Oncology | www.frontiersin.org 8
mainly supplied by arterial blood, yielding more texture
information than only the arterial phase, as used in a previous
study (22). More features were selected from CECT images than
from NCCT images; thus, CECT may reflect more important
information, and it may be speculated that unlike plain CT,
CECT might also reflect some heterogeneous features associated
with the tumor blood supply (3). Our results may further suggest
that blood supply information is different between benign and
malignant PG tumors, which may be because tumor capillaries
generally have wider inter-endothelial junctions and a large
number of discontinuous or absent basement membranes in
malignant tumors, which result in different haemodynamic
conditions in the arterial stage between benign and malignant
tumors (28).
A B

C D

E F

FIGURE 4 | Score diagrams of the radiomics signature in (A) the training set and (B) the test set. (C, D) show the diagnostic accuracy of the rad-score of the
radiomics signature in the training and test groups. (E, F) show the calibration curve of the radiomics signature in the training and test sets.
March 2021 | Volume 11 | Article 634452
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Our integrated model showed the best performance,
followed by the radiomics signature alone and then individual
radiological features, which indicates that although the
radiomics features of the tumor itself had better predictive
ability than the radiological features themselves, extra-tumor
radiological information such as lymphadenopathy is also
Frontiers in Oncology | www.frontiersin.org 9
important; only by combining these two complementary
features could the model provide a precise evaluation of the
entire tumor for management.

Our study still has several limitations. First, the sample size
was relatively small, with 87 patients in the training group.
However, 38 patients were enrolled from another independent
medical center as the test group to investigate the models’
reproducibility, and our results showed that the prediction
model based on the training set was also stable for the test set.
In the future, we will carry out further multicentre studies with a
larger sample size. Second, the manual process of tumor
segmentation and the reproducibility of radiomics features is
one debatable aspect in radiomics analysis, as there is some
subjectivity involved in the delineation of tumor boundaries.
However, a recent study on the robustness and reproducibility of
radiomics features suggested that only those reproducible
features should be selected in building a radiomics model (29),
which was employed in this study to ascertain the robustness of
the features extracted from the segmented tumors by the two
radiologists independently. In addition, ultrasound is sufficient
for most benign tumors for primary diagnosis. However, CT can
be used as a complementary assessment tool in some cases such
as deep tissue involvement, recurrence, suspicious malignancy or
large tumors.
CONCLUSION

This study developed and validated a combined prediction
model based on radiological data and CT radiomics features to
distinguish benign and malignant PG tumors in two
independent clinical cohorts; this model showed better
prediction accuracy than the radiomics signature and
radiological features alone. Thus, the proposed model could be
TABLE 4 | Multivariable logistic regression analysis for selecting predictors for
model construction.

Variable ANOVA Multivariable logistic regression

F
value

P
value

OR (95%CI) P
value

VIF
value

Sex 1.556 0.216
Age 0.078 0.781
Duration 0.018 0.893
Smoking 1.89 0.173
Distribution 0.812 0.37
Location 19.64 <0001* 0.21(0.047–0.936) 0.041* 1.195
Maximum diameter 1.436 0.234
Shape 0.101 0.752
Capsule 3.513 0.064
Regularity 1.926 0.169
Border 5.874 0.017* NA NA
Density 0.127 0.722
Enhancement 0.098 0.755
Marked
Enhancement

1.086 0.3

Cystic degeneration 0.093 0.761
Lymphadenopathy 10.325 0.002* 4.694(1.06–20.789) 0.042* 1.062
Hemorrhage 2.384 0.126
Calcification 0.798 0.374
Heterogeneity 0.567 0.454
Radiomics
signature

29.375 <0.001* 2.521(1.432–4.438) 0.001* 1.18
NA, Not available.
*represents P < 0.05.
FIGURE 5 | ROC curves for the SVM model, radiomic signature, location, and lymphadenopathy when predicting malignancy in the training and test sets.
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used as a noninvasive prognostic or predictive biomarker for
personal evaluation and could help clinicians guide surgical
decisions. Multicentre and prospective validation studies with
larger datasets should be further implemented prior to practical
application of the model in the clinic.
Frontiers in Oncology | www.frontiersin.org 10
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FIGURE 6 | (A, B) DCA curves for the combined model, radiomics signature, lymphadenopathy and location in classifying parotid gland tumors in the training and
test sets, respectively. The graphs show that the combined model has the greatest net benefit for both datasets. (C, D) Calibration curves for the combined model
and radiomics signature in classifying the parotid gland tumors in the training and test sets, respectively. LN, Lymphadenopathy; RS, radiomic signature.
FIGURE 7 | Classification performance of the combined model in the training and test sets.
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