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Lichen associations, a classic model for successful and sustainable interactions
between micro-organisms, have been studied for many years. However, there are
significant gaps in our understanding about how the lichen symbiosis operates at the
molecular level. This review addresses opportunities for expanding current knowledge
on signalling and metabolic interplays in the lichen symbiosis using the tools and
approaches of systems biology, particularly network modelling. The largely unexplored
nature of symbiont recognition and metabolic interdependency in lichens could benefit
from applying a holistic approach to understand underlying molecular mechanisms
and processes. Together with ‘omics’ approaches, the application of signalling and
metabolic network modelling could provide predictive means to gain insights into
lichen signalling and metabolic pathways. First, we review the major signalling and
recognition modalities in the lichen symbioses studied to date, and then describe
how modelling signalling networks could enhance our understanding of symbiont
recognition, particularly leveraging omics techniques. Next, we highlight the current state
of knowledge on lichen metabolism. We also discuss metabolic network modelling as
a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-
dependence between symbionts. This is especially important given the growing number
of lichen genomes now available and improved computational tools for reconstructing
such models. We highlight the benefits and possible bottlenecks for implementing
different types of network models as applied to the study of lichens.
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INTRODUCTION

Lichens are often seen as a typical example of successful
and sustainable symbiotic interactions between micro-organisms
(Ahmadjian, 1993; Honegger, 1998). With the long evolutionary
history of these fungal-algal associations (Gueidan et al.,
2011; Prieto and Wedin, 2013; Lutzoni et al., 2018; Nelsen
et al., 2019) and their multiple origins within the evolution
of fungi (Gueidan et al., 2008; Schoch et al., 2009; Nelsen
et al., 2020), lichens have colonised and diversified greatly in
most terrestrial and some aquatic environments, including the
most inhospitable niches (Kappen, 2000; Sadowsky and Ott,
2016). They are a discrete but inherent part of most of our
landscapes, including both natural and man-made. This success
stems from their ability to act as self-sustainable ecosystems,
for which an evolutionary modularity (i.e., selection of the
most fitted partners for a particular environment) has allowed
adaptation to a broad range of habitats. Because of their slow
growth, they particularly excel in colonising harsh habitats
in which competition with faster growing micro-organisms is
low. As such, they have adapted to surviving on nutrient-
poor substrates and under drastically fluctuating environmental
conditions, and play key roles in their ecosystems. In the
future, lichen adaptations and their natural ecological flexibility
may prove to be key to the successful responses of lichens
to climate change.

The lichen symbiosis is no longer perceived to be the simple
union of a fungal partner (i.e., mycobiont) and a microalgal
partner (i.e., photobiont), either an alga (i.e., chlorolichen) or a
cyanobacterium (i.e., cyanolichen). Instead, previous studies have
shown that lichens harbour a diverse microbiome (e.g., Petrini
et al., 1990; Hofstetter et al., 2007; Grube et al., 2009; Hodkinson
and Lutzoni, 2009), and more recent studies corroborate lichens
as multi-symbioses, i.e., complex multi-species associations
including bacteria and other fungi or algae (Spribille et al.,
2016; Onut-Brannstrom et al., 2018; Tuovinen et al., 2019;
Smith et al., 2020; Leiva et al., 2021). In such symbioses, each
partner contributes to the association: the primary mycobiont
provides shelter and minerals to the photobiont, while the
photobiont provides organic carbon fixed from atmospheric
CO2 via photosynthesis (Nash, 2008a) as well as nitrogen if
it is a cyanobacteria. Additional bacteria, algae, and/or fungi
have also been shown to serve certain functions in the lichen
symbiosis (Cernava et al., 2017; Smith et al., 2020; Tagirdzhanova
et al., 2021), although much more remains to be explored.
Additionally, the levels of dependence and specificity of some of
these microbes to the symbiosis are still debated (Grube et al.,
2015; Kono et al., 2017; Jenkins and Richards, 2019; Lendemer
et al., 2019; Smith et al., 2020). Lichens demonstrate unique
physiological properties and ecosystem functions (Porada et al.,
2014). All lichens contribute to atmospheric carbon fixation,
with global net carbon uptake by both lichens and bryophytes
predicted to be 0.34–3.3 Gt carbon per year (Palmqvist, 1995;
Green et al., 2008; Palmqvist et al., 2008; Porada et al.,
2013). Cyanolichens are capable of both carbon and nitrogen
fixation (Dahlman et al., 2004; Nash, 2008b; Porada et al.,
2017). Lichens grow on various substrates (including rocks,

trees, and soil), can survive extreme temperatures, tolerate
desiccation (poikilohydric) and high levels of UV radiation,
and form morphologically diverse structures (Beckett et al.,
2008; Kranner et al., 2008). Many lichens produce unique
specialised/secondary metabolites, including depsides, xanthones
and dibenzofurans, some of which have been shown to have
medicinal properties (Fahselt, 1994; Elix and Stocker-Worgotter,
2008; Calcott et al., 2018).

The establishment of the lichen symbiosis, or “lichenisation,”
has been described as a four-stage process (Ahmadjian et al.,
1978): (A) a pre-contact phase (chemical interactions between
symbionts but no physical contact), (B) a post-contact phase
(with chemical and physical interactions), (C) a phase of
growth characterised by an un-differentiated mass, and (D)
a phase of differentiation that leads to a stratified thallus
(Figure 1). Because mycobionts grow relatively slowly, the
application of classical experimental microbiology techniques
and co-culture/resynthesis experiments to the understanding of
the development and functioning of the lichen symbiosis has
lagged. Despite some recent studies focusing on early stages of
lichenisation (Joneson et al., 2011; Armaleo et al., 2019; Kono
et al., 2020), the molecular basis of fungal-algal interactions
during lichenisation remains mostly uncharacterised, and
processes involved in signalling and metabolic interplays
between the symbionts are poorly understood. Contemporary
systems biology approaches may facilitate tackling long-standing
questions about the lichen symbiosis.

Systems biology is the study of living systems through
the joint application of advanced high-data-volume generating
technologies (e.g., ‘omics’) and computational tools (e.g., multi-
scale or constraint-based modelling) to gain a more holistic
understanding of the inter-dependencies of system components
and underlying system complexity. Hypotheses are generally
tested using iterative cycles of ‘wet’ (lab-based) and ‘dry’
(simulation-based) experiments, by which systems-level data
are generated, analysed, and then used to inspire new insights
and hypotheses about the biological system at hand (Kitano,
2002a,b). For instance, applying systems- and genome-level
approaches to the legume-rhizobium symbiosis has greatly
enhanced the knowledge on the underlying mechanisms of
symbiotic interactions at molecular level, moving us one
step closer to improving agricultural crop yields through
the development of more efficient symbiotic N2 fixation
processes (diCenzo et al., 2019). A similar systems biology
approach has not yet been applied to the study of the
lichen symbiosis.

In this review, we summarise the current knowledgebase of
signalling and recognition mechanisms in the lichen symbiosis.
We then discuss the modelling of signalling networks as a tool
to extend our understanding of such mechanisms in lichens.
We review the literature on lichen metabolism and propose that
modelling fluxes in metabolic networks could be a powerful tool
for providing insights into lichen metabolism in particular, and
the metabolic interplays between symbiotic partners in general.
We provide a broad overview of metabolic network models and
their applications in addition to a review of some of the symbiotic
systems that have been studied through the lens of metabolic
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FIGURE 1 | Schematic representation of the four stages of lichen formation. (A) pre-contact where the symbionts are located at the proximity of each other but not
in physical contact, (B) post-contact which marks the initiation of physical contacts between symbionts, (C) growth of an undifferentiated mass consisting of fungal
hyphae and algal cells, and (D) formation of a differentiated thallus. (Image created with BioRender.com).

models. Finally, the opportunities and challenges of modelling
both signalling networks and metabolic fluxes are discussed.

SIGNALLING AND RECOGNITION
PATHWAYS IN THE LICHEN SYMBIOSIS

Distinct small molecules are produced by lichen symbionts
during symbiosis that are absent when mycobiont and
photobiont are grown separately (Green and Smith, 1974;
Elshobary et al., 2015). Whether symbiont signalling and
recognition processes in lichens are driven initially by those
small molecules, or whether recognition processes are initiated by
other regulatory mechanisms is not known. The available data for
molecules with potential roles in signalling and/or recognition
mechanisms during lichen symbiosis are summarised in Table 1.
So far, there is no direct evidence confirming the production of
compounds with a potential role in signalling and/or recognition
during lichenisation by inhabiting fungi or bacteria. Several
studies have shown that signalling between lichen symbionts
can be initiated as early as the pre-contact stage of lichenisation

(Joneson et al., 2011; Meessen and Ott, 2013; Piercey-Normore
and Athukorala, 2017; Armaleo et al., 2019). At present and
for a few reasons, it is difficult to propose universal signalling
models that initiate lichen symbiosis. Firstly, there is no single
signalling molecule with a known or proposed role that has been
studied across different lichens. Secondly, signalling pathways of
those molecules with putative recognition roles have not been
elucidated. Thirdly, lichens have likely evolved independently
in several fungal lineages (Gueidan et al., 2008; Schoch et al.,
2009), suggesting that the nature of these signalling pathways
might differ depending on the species of interest. Nonetheless,
owing to advances in genetic and analytical tools, several studies
have begun to uncover mechanistic details underlying partner
signalling and recognition at various stages of lichenisation
(Meessen et al., 2013; Meessen and Ott, 2013; Athukorala et al.,
2014; Athukorala and Piercey-Normore, 2015).

Lectin-Ligand Signalling in Lichens
Lectins are glycoproteins that occur ubiquitously across all
domains of life (Kennedy et al., 1995). Lectins have also
been isolated and characterised from both chlorolichens and
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FIGURE 2 | Proposed lectin-ligand recognition and signalling for Xanthoria parietina. (A) For compatible partners. The process starts by the production and
positioning of algal binding protein (ABP) on the cell wall of the mycobiont. ABP is a lectin (“receptor”) which is glycosylated and secreted into the intercellular space
(Molina et al., 1993; Molina and Vicente, 1995) to bind specific cognate ligands of a photobiont, with which a potential lichenisation could be established. It is
speculated that ABP is part of a group of “recognition lectins” that is responsible for engaging the mycobiont with a specific photobiont, and another group of
“recruitment lectins” that play a role in recruiting the photobiont cells to mycobiont hyphae (Sacristán et al., 2007). In the lichen X. parietina, a recruitment lectin was
identified as a secreted arginase of the Xanthoria mycobiont (SAX). Although both ABP (recognition) and SAX (recruitment) mycobiont lectins were shown to bind to
the ligand URE, a glycosylated urease located on the compatible photobiont cell wall (Millanes et al., 2004), it is not clear whether both must attach to urease for
lichenisation to proceed. Both ABP and SAX lectins possess identical peptide sequences and Mn2+-dependent arginase activity, hydrolysing arginine to produce
urea and ornithine (Legaz et al., 2004). However, the glycosidic moiety of SAX contains galactose and glucose, whereas that of ABP contains glucose and
N-acetyl-glucosamine (Molina et al., 1993). Upon binding, enzymatic activities of ABP (recognition lectin and receptor) and URE (ligand) are inhibited. As a result,
putrescine concentrations in a compatible photobiont are kept at relatively low endogenous levels because it is only produced through arginine decarboxylase (ADC)
and agmatine amidinohydrolase (AAH). (B) For incompatible partners. The binding selectivity of ABP (receptor on mycobiont) for URE (ligand on photobiont) is the
key in compatible partner recognition. For example, the ABP lectin receptor of E. prunastri can only bind to a single galactosylated ligand (Diaz et al., 2016c). Thus,
an incompatible photobiont lacking galactosylated URE would not be recognised, resulting in an internalisation of ABP by the photobiont. Without URE
ligand-induced inhibition, ABP goes on to hydrolyse cytoplasmic arginine stores in the photobiont (ABP has a higher affinity for arginine than that of ADC), producing
urea and ornithine and a reaction cascade (involving both ornithine decarboxylase (ODC) and AAH) that results in increased cytoplasmic putrescine levels. High
intracellular putrescine concentrations lead to the activation of glucanase (GLU), which results in cell wall disruptions and, ultimately, death of the incompatible
photobiont cells (Molina et al., 1998). (Image created with BioRender.com).

cyanolichens (Table 1). Possessing versatile carbohydrate-
binding site(s), lectins can act as receptors and/or
bind/agglutinate cells that may facilitate further interfacial
communication between cells. The glycosidic moieties of lectins
synthesised by the mycobiont may contain various combinations
of carbohydrate groups that bind to specific ligands from the
photobiont. In this atypical receptor-ligand system, lectins
from mycobionts act as receptors for photobiont-attached
ligands. A proposed mechanism of photobiont recognition and
recruitment by the mycobiont is illustrated in Figure 2, based
on the extensive studies of the lichens Xanthoria parietina and
Evernia prunastri (Bubrick and Galun, 1980; Bubrick et al.,
1981; Perezurria and Vicente, 1989; Vicente and Perezurria,
1989; Rodriguez and Vicente, 1991; Molina et al., 1993, 1998;
Molina and Vicente, 1995, 2000; Legaz et al., 2004; Millanes et al.,
2004). Lectins characterised from other lichens also have been
proposed to have roles in the establishment and/or maintenance
of compatible symbiotic relationships (Table 1).

In several lichen associations (including X. parietina and
E. prunastri shown in Figure 2), the ligand for lectin receptors
has been identified as urease, which is bound to the cell
wall of the photobiont (Molina et al., 1993; Millanes et al.,
2004; Diaz et al., 2009). In the lichen Cladonia rangiferina, a

urease-like recognition-related protein (RR1) was characterised
and speculated to act as a ligand on the cell wall of the compatible
photobiont of this lichen association (Athukorala et al., 2014;
Athukorala and Piercey-Normore, 2015). Urease is produced by
several lichens (presumably by the photobiont) and is secreted
into the culture medium under laboratory conditions (Perezurria
et al., 1989, 1993). The secretion of urease into the medium
is hypothesised to be the consequence of its transfer from the
photobiont to the mycobiont, depending on the nitrogen content
of the mycobiont as well as the water content of the lichen
thallus (Perezurria et al., 1989). However, it is not clear, whether
the secreted ureases play a role similar to that of membrane-
bound urease.

The lectin recognition and signalling mechanism summarised
for chlorolichens in Figure 2 can be true of all or some
cyanolichens (Sacristán et al., 2007; Vivas et al., 2010; Díaz
et al., 2016a). Diaz et al. (2015), Diaz et al. (2016b) showed that
actin- and myosin-like proteins produced by the cyanobacterial
photobiont Nostoc of the lichen Peltigera canina is involved
in the chemotactic movement of photobiont cells towards
the lectin of the mycobiont. The process also involves a
contractile protein and ATPase of photobiont, which creates a
series of contraction-relaxation steps that result in photobiont
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TABLE 1 | Molecules produced by different lichen symbionts with proposed roles in symbiotic signalling and recognition.

Molecule Chemical class Proposed role Mycobiont Photobiont◦ References

Produced by the mycobiont

Algal binding protein (ABP) Glycoprotein Plays a role in recognition of
photobiont ligand

Xanthoria parietina1 Trebouxia sp.? Molina et al., 1993;
Molina and Vicente, 2000

Cyanobacterium-binding
protein (CBP)

Possibly a glycoprotein Plays a role in the first step of the
recognition of compatible symbionts
in a cyanolichen

Peltigera canina2 Nostoc sp. Diaz et al., 2009

Scytinium palmatum4 Nostoc sp. Vivas et al., 2010

Galectin LEC-1 and LEC-2 Glycan-binding proteins Plays a role in recognition of
photobiont ligand

Peltigera
membranacea2

Nostoc sp. Manoharan et al., 2012;
Miao et al., 2012

Nephroma laevigatum
agglutinin (NLA)

Possibly a glycoprotein Functions as a determinant of
specificity at the initial stage of
symbiont interaction

Nephroma laevigatum3 Nostoc sp. Kardish et al., 1991

Peltigera membranacea
agglutinin (PMA)

Glycoprotein Functions in the recognition process
between symbionts

Peltigera
membranacea2

Nostoc sp. Lehr et al., 1995

Phytohemagglutinins Glycoprotein May be involved in the initial stages
of the symbiosis establishment

Peltigera canina2 Nostoc sp. Lockhart et al., 1978

Peltigera polydactyla2 Nostoc sp. Lockhart et al., 1978

Phytolectin Glycoprotein May be involved in the recognition or
initial interactions between
compatible lichen symbionts

Peltigera horizontalis2 Nostoc sp. Petit, 1982

Peltigera canina var.
canina2

Nostoc sp. Petit et al., 1983

Secreted arginase of
Evernia (SAE)

Hydrolytic enzyme Plays a role in recognition of
photobiont ligand (e.g., urease)

Evernia prunastri5 Trebouxia excentrica Legaz et al., 2004

Secreted arginase of
Xanthoria (SAX)

Xanthoria parietina1 Trebouxia sp.? Molina et al., 1993;
Molina and Vicente, 2000

Xanthoria parietina1 Pseudotrebouxia
aggregata

Legaz et al., 2004

Xanthoria-protein Glycoprotein May have role in initiation of lichen
resynthesis and discriminate
between photobionts

Xanthoria parietina1 Trebouxia sp. Bubrick and Galun,
1980; Bubrick et al.,
1981

Variospora aurantia1 Pseudotrebouxia sp. Bubrick and Galun, 1980

Flavoplaca citrina1 Pseudotrebouxia sp. Bubrick and Galun, 1980

Produced by the photobiont

Chitinase Hydrolytic enzyme Regulates controlled parasitism
between the symbionts

Cladonia rangiferina6 Asterochloris sp. Athukorala and
Piercey-Normore, 2015

Cyclo-L-leucyl-L-tyrosyl
(CLT)

Cyclic dipeptide* Not known Romjularia lurida8 Asterochloris sp. Meessen et al., 2013

Cyclo-L-tryptophyl-L-
tryptophyl (CTT)

Cyclic dipeptide* Promotes the germination rate of
mycobiont in vitro after 30 days

Gyalolechia bracteata 1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Gyalolechia fulgens 1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Thalloidima sedifolium 7 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Xanthoria elegans1 Trebouxia sp. Meessen et al., 2013

Indole-3-carbaldehyde (ICA) Phytohormone precursor Decreases the germination rate of
mycobiont in vitro

Gyalolechia bracteata 1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Gyalolechia fulgens 1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Thalloidima sedifolium 7 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Not known Xanthoria elegans1 Trebouxia sp. Meessen et al., 2013

Rhamnose Deoxy sugar Decreases the germination rate of
mycobiont in vitro

Gyalolechia bracteata1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

Ribitol Sugar alcohol Acts as pre-/post-contact signal
molecule

Cladonia grayi6 Asterochloris sp. Joneson et al., 2011

Overcomes the growth arrest of the
mycobiont and promotes mycelium
growth#

Gyalolechia bracteata 1 Trebouxia sp., Cl.1,
sbgr.1

Meessen et al., 2013

(Continued)
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TABLE 1 | Continued

Molecule Chemical class Proposed role Mycobiont Photobiont◦ References

Urease Hydrolytic enzyme Serves as a ligand for different lichen
lectins

Xanthoria parietina1 Pseudotrebouxia
aggregata

Millanes et al., 2004

Evernia prunastri1 Trebouxia excentrica Millanes et al., 2004

Produced by the symbiosis as a whole
(The experiment settings did not allow to attribute the compound to either the mycobiont or the photobiont)

1-aminocyclopropane-l-
carboxylic acid
(ACC)

Phytohormone precursor Affects differentiation and regulates
interactions in the lichen thallus

Cladonia rangiferina6 Unidentified Ott et al., 2000

Not known Usnea longissima5 Unidentified Ott et al., 2000

Not known Parmelia saxatilis5 Unidentified Ott et al., 2000

Not known Usnea sphacelata5 Unidentified Ott et al., 2000

Not known Peltigera polydactyla2 Unidentified Ott et al., 2000

Not known Peltigera canina2 Unidentified Ott et al., 2000

Not known Nephroma
resupinatum3

Unidentified Ott et al., 2000

Not known Scytinium palmatum4 Nostoc sp. Vivas et al., 2010

Abscisic acid (ABA) Phytohormone Affects differentiation and regulates
interactions in the lichen thallus

Cladonia rangiferina6 Unidentified Ott et al., 2000

Not known Cladonia arbuscula6 Unidentified Ott et al., 2000

Not known Cetraria islandica5 Unidentified Ott et al., 2000

Indole-3-acetic acid (IAA) Phytohormone Affects differentiation and regulates
interactions in the lichen thallus

Cladonia rangiferina6 Unidentified Ott et al., 2000

Not known Peltigera hymenina2 Unidentified Ott et al., 2000

Not known Cetraria islandica5 Unidentified Ott et al., 2000

Not known Cladonia arbuscula6 Unidentified Ott et al., 2000

Not known Ramalina duriaei7 Trebouxia sp. Epstein et al., 1986

◦Trebouxia, Pseudotrebouxia, and Asterochloris are eukaryotic algae (Chlorophyta, Trebouxiophyceae) and Nostoc is a prokaryotic alga (cyanobacteria).
Fungal lineages are as follows: 1 Ascomycota, Lecanoromycetes, Teloschistales, Teloschistaceae; 2 Ascomycota, Lecanoromycetes, Peltigerales, Peltigeraceae; 3

Ascomycota, Lecanoromycetes, Peltigerales, Nephromataceae; 4 Ascomycota, Lecanoromycetes, Peltigerales, Collemataceae; 5 Ascomycota, Lecanoromycetes,
Lecanorales, Parmeliaceae; 6 Ascomycota, Lecanoromycetes, Lecanorales, Cladoniaceae; 7 Ascomycota, Lecanoromycetes, Lecanorales, Ramalinaceae; 8 Ascomycota,
Lecanoromycetes, Lecideales, Lecideaceae.
#Ribitol in these pre-contact experiments (mycobiont and photobiont separated by a membrane) was added in concentrations of 0.05, 0.8, and 2.0%w/v to the culture
media (water agar and malt yeast agar). Ribitol was not identified as photobiont exudate in these experiments, as seen in other studies (Richardson et al., 1968).
*Belong to the class of diketopiperazines (DKPs) with potential applications as antitumor, antiviral, antifungal, and antibacterial properties.

movement towards mycobiont lectin (Diaz et al., 2011). Upon
cell contact of photobiont and mycobiont, desensitisation occurs
and photobiont contractile motility stops. It is yet unknown if a
similar type of chemotaxis applies to chlorolichens.

It is speculated that mycobionts of some lichens not only
rely on lectin-ligand recognition mechanisms for establishing
the initial photobiont contact, but that these mechanisms
might also be involved in further replication and growth
of young photobiont cells within the lichen thallus (Díaz
et al., 2016a). The factors triggering the initiation of symbiont
recognition through lectin-ligand binding and the ways in
which symbionts increase the probability of association have
been poorly understood, although several hypotheses have been
proposed (Díaz et al., 2016a). For example, the photobiont
could secrete a yet unknown diffusible compound that is
sensed by a compatible mycobiont to trigger mycobiont
lectin biosynthesis. Mycobionts may also produce multiple
lectins with competing specificities for different photobionts,
which may also be a strategy for rejecting incompatible
photobionts. We could test some of these hypotheses using a
systems biology approach, for example, through time-course

analysis of coupled gene expression and metabolome profiles
of lichen co- and mono-cultures to identify candidate genes
and molecules with potential signalling roles. Armaleo et al.
(2019) recently pursued a transcriptome study exploring
the differential expression of genes involved in symbiosis
and signalling between Cladonia grayi and its algal partner
Asterochloris glomerata. While only a snapshot in time, this
work provided unprecedented insights into the complexity of
responses underlying lichen symbioses.

Exudates Signalling in Lichens
Carbohydrate release and translocation from photobiont to
mycobiont of a lichen was first proposed in the mid-1960s by
Drew and Smith, who used radioactive isotope tracing to estimate
the proportion of labelled carbon in sodium [14C]-bicarbonate
fixed to [14C]-glucose by the cyanobacterial symbiont (Nostoc) of
Peltigera polydactyla compared with its free-living and cultured
forms (Drew and Smith, 1967a,b). Carbohydrate movement from
photobiont to mycobiont has been investigated for more than
30 additional lichens and is reviewed elsewhere (Smith et al.,
1969). The results of these studies showed that glucose and
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FIGURE 3 | Proposed exudate-based recognition and signalling for Fulgensia bracteata (adapted from Meessen et al., 2013). The bi-directional and multi-step
recognition process (i.e., pre-contact stage) is initiated by a compatible photobiont through secretion of an exudate, which is speculated to be species-dependent
but has yet to be identified for most lichen species (A). The exudate induces the production and secretion by the mycobiont of a yet unknown signalling molecule
that stimulates ribitol release by the photobiont (B). Ribitol then triggers fungal growth by relieving hyphal growth arrest (C), and allowing hyphal branching, and the
engulfment of the photobiont cell by the mycobiont (D). The two last steps may be accompanied by the secretion of a mucilage in some lichens (Meessen et al.,
2013; Meessen and Ott, 2013). (Image created with BioRender.com).

sugar alcohols are the main forms of carbohydrates released
by cyanobacterial and microalgal photobionts, respectively, and
that they are translocated to the respective mycobionts. In the
absence of a symbiotic relationship, the levels of carbohydrate
released by the photobionts decline significantly or drop to zero.
Following these initial studies, the importance of carbohydrate
release by lichen photobionts gained a renewed interest in efforts
to uncover the molecular mechanisms behind the early stage
of lichenisation (Joneson et al., 2011; Meessen et al., 2013;
Meessen and Ott, 2013; Athukorala et al., 2014; Athukorala
and Piercey-Normore, 2014; Armaleo et al., 2019). A possible
exudate signalling model based on the release and movement
of ribitol is shown in Figure 3, and is largely based on
independent studies observing ribitol release in the cultures
of Gyalolechia bracteata (Meessen et al., 2013; Meessen and
Ott, 2013) and Cladonia grayi (Joneson et al., 2011). Although
the exact nature of the secreted molecules in this exudate-
signalling model has not been fully elucidated, it is speculated
that an exchange of carbon and nitrogen could be the driver
for uniting symbionts in the first place. Hom and Murray (Hom
and Murray, 2014) showed that co-culturing of model fungi

Saccharomyces cerevisiae, Aspergillus nidulans, or Neurospora
crassa with the alga Chlamydomonas reinhardtii could facilitate
mutualistic interactions through exchanging carbon and nitrogen
under specific growth conditions; their results also suggest that
carbon released by mycobiont respiration (as CO2) could be
recaptured by the photobiont for efficient carbon recycling within
the lichen symbiosis (Schwartzman, 2010). Thus, the need for
nutrient exchange between species could trigger the initiation of
symbiotic interaction in lichens. Signalling network modelling,
discussed in the following section, is one approach to generate
insights on how specific exudate compounds could play a role
in the overall flow of signals through the proposed ‘exudates
signalling’ mechanism.

Signalling Network Modelling:
Challenges and Opportunities for the
Lichen Symbiosis
A signalling network consists of a series of ‘signals’ and ‘receptors’
whose relationships are determined by the signal transduction
mechanisms governing the network. These signals and receptors
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could be any or combination of enzymes (e.g., kinases), organic
substances (e.g., ATP), inorganic molecules (e.g., phosphates),
or other proteins or biomolecules. Reactions connecting these
molecules frame the underlying signalling mechanisms and the
goal of signalling network modelling would be to predict such
interactions and the emergent cascade of signalling events that
can explain or predict the behaviour of the signalling network.
Signalling network models are often divided into descriptive
and predictive subtypes. Descriptive models are usually simpler
and provide a qualitative overview of the signalling pathway
structure (i.e., topology of signal molecules and reactions),
whereas predictive models may capture kinetics of the signalling
pathway (i.e., reaction rates) and be capable of estimating system
behaviours under new perturbations. The application of diverse
descriptive and predictive modelling to signalling networks has
been reviewed elsewhere (Hyduke and Palsson, 2010; Morris
et al., 2010; Terfve and Saez-Rodriguez, 2012; Rother et al.,
2013; Lavrik and Samsonova, 2016; Antebi et al., 2017). The
scope and choice of signalling network modelling approach
vary with the complexity of the network being explored. For
example, some of the most detailed and comprehensive predictive
signalling models have been developed for complex but known
signalling networks of human B-cells (Papin and Palsson, 2004),
prostate cancer cells (Dasika et al., 2006; Vardi et al., 2012),
and Toll-like receptors (TLRs) functioning in immune system
(Li et al., 2009).

In symbiotic systems, signalling pathways have been a
topic of particular focus for legumes-rhizobia and plants-root
fungi (mycorrhiza) symbioses (Bonfante and Genre, 2010;
Bonfante and Requena, 2011; Oldroyd, 2013; Venkateshwaran
et al., 2013; Mohanta and Bae, 2015; Martin et al., 2017;
Poole et al., 2018; Clear and Hom, 2019). However, modelling
the signalling networks in these systems has not received
much attention, perhaps due largely to the knowledge
gap in certain key signalling steps. For example, in the
common symbiotic signalling “SYM” pathway, which shares
similar signalling steps between arbuscular mycorrhizal
and rhizobial symbioses, it remains unclear how symbiosis
receptor kinases (SYMRK) transmit signals to downstream
cation channelling proteins (i.e., CASTOR/POLLUX) located
in the nucleus (Huisman and Geurts, 2020). Moreover,
the precise mechanisms for how plants discriminate between
arbuscular mycorrhiza and rhizobia symbionts are still unknown,
although signalling pathways functioning in parallel to the SYM
seem likely to be involved. Modelling signalling networks
could represent a complementary approach to fill such gaps
by simulating system behaviours with proposed/candidate
mechanisms implemented by which symbionts transduce signals
and communicate.

Faced with the paucity of detailed mechanistic knowledge on
signalling networks in lichens (despite several potential signal
molecules identified; see Table 1), the modelling of signalling
networks in lichens suffers from similar challenges as those of
other symbiotic systems and no models have yet been reported.
Nevertheless, given the recent availability of ‘omics’ data for a
variety of lichens (Mittermeier et al., 2015; Wang et al., 2015;
Armaleo et al., 2019), there are now new opportunities to

develop signalling models of lichens. For instance, a proteomics
approach could enable measuring lectin and urease levels of
lichen cultures at pre- and post-contact stages informing the
relative abundances of these proteins. The proteome profile of
such cultures could also indicate the presence/absence of other
specific proteins at the corresponding stages of lichenisation that
may correlate with lectin/urease activity levels and provide deeper
insights into how the recognition process initiates. A signalling
pathway model could be developed to explore the link between
putrescine biosynthesis and lectin production in repression
of cell wall disruption of compatible photobiont as described
in Figure 3.

METABOLIC INTERPLAY IN THE LICHEN
SYMBIOSIS

The literature on lichen metabolism has been largely focused on
understanding the exchange of key nutrients between symbionts
(Lines et al., 1989; Kono et al., 2020; ten Veldhuis et al., 2020) and
identifying lichen secondary metabolites and their biosynthetic
pathways (i.e., metabolite profiling) (Fahselt, 1994; Aubert et al.,
2007; Elix and Stocker-Worgotter, 2008; Mittermeier et al., 2015;
Bertrand et al., 2018b; Brakni et al., 2018; Calcott et al., 2018;
Kuhn et al., 2019; Goga et al., 2020; Figure 4). In the 1960s,
observations of carbohydrate storage and translocation between
the symbionts of Peltigera polydactyla (Smith and Drew, 1965;
Drew and Smith, 1967a,b) together with a series of similar studies
on other lichens (Smith et al., 1969) established the foundations
for studying the metabolic interplay in lichens. The primary aim
of those studies was to identify the form of carbon translocated
between lichen symbionts, as explained in the previous sections.
Next to nothing is known about the metabolic program and
gene expression in lichen symbionts following carbohydrate
exchange and assimilation. Most metabolic studies in lichens have
concentrated on understanding the overall carbon and nitrogen
economy in lichens, mainly with respect to overall carbon
fixation, carbon sinks, lichen growth, and nitrogen fixation
by cyanolichens (Honegger et al., 1993; Dahlman et al., 2004;
Nash, 2008b; Palmqvist et al., 2008). Eisenreich and colleagues
(Eisenreich et al., 2011) suggested that using ‘omics’ methods
together with isotope labelling experiments (increasingly referred
to as ‘fluxomics’) could enhance our understanding of lichen
metabolic pathways, although this has yet to be fully realised to
study lichen metabolism at a systems-level.

Thus, despite of being broadly recognised that carbohydrates
and inorganic molecules are exchanged between lichen
symbionts, a systems-level molecular understanding of
metabolism is still lacking for lichens, including their primary
symbionts and auxiliary partners. This lack has left key
features of metabolism unexplored, including, for example,
central aspects of carbon metabolism with respect to lichen
compartmentalisation or the role of cell wall components and
biosynthesis on the growth and metabolite exchange between
symbionts. A systems-level understanding of lichen metabolism
will become more likely in near future in light of the recent
insights on lichen microbiota composition and functions within
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FIGURE 4 | Simplified illustration of a lichen symbiosis showing our current understanding of the metabolic interactions between lichen symbionts. Dotted line
indicates knowledge gaps that may not be generalisable to all lichens. Atmospheric carbon is fixed to carbohydrates by the photobiont at the expense of ATP, which
is generated by photosynthesis. Chlorolichens convert carbohydrate to polyols and transport it to their respective mycobionts, whereas cyanolichens (cyan
pathways) translocate carbohydrate in the form of glucose to their mycobionts. Mycobiont metabolism is fuelled by such carbohydrate translocation, which results in
the provisioning of nitrogen for the photobiont (in case for chlorolichens). Recent studies also suggest coupled metabolisms for lichen symbionts with respect to the
supply of oxygen (in addition to carbohydrates) by photobionts in return for carbon dioxide from their mycobionts (Schwartzman, 2010; Hom and Murray, 2014; ten
Veldhuis et al., 2020). The production of lichen substances (mainly by mycobionts) and the production of phytohormones and/or carbohydrates by photobionts are
believed to play key roles in the recognition of symbionts. The proposed functions of auxiliary lichen bacteria and fungi during the symbiosis are also indicated based
on comprehensive multi-omics studies (blue and purple rectangles). It is speculated that the lichen microbiome forms a biofilm on the surface of the mycobiont,
through which they communicate (Image created with BioRender.com).

the lichen symbiosis (Spribille et al., 2016; Cernava et al., 2017;
Smith et al., 2020).

Rhizobiales have been found to be a dominant bacterial
order in the microbiome of various terrestrial or marine
lichens examined to date (Grube et al., 2009; Hodkinson
and Lutzoni, 2009; Hodkinson et al., 2012; Erlacher et al.,
2015). Specifically, Rhodospirillales were found to be common
in chlorolichens, and Sphingomonadales and Bacteroidetes in
cyanolichens (Hodkinson et al., 2012; Graham et al., 2018;
West et al., 2018). Several factors are believed to influence lichen-
associated bacterial community composition and diversity.
These include the nature of lichen secondary metabolites
(driven mainly by the type of primary mycobiont), large-scale

geography, growth type, and the type of primary lichen
photobiont (Grube et al., 2009; Hodkinson et al., 2012;
Aschenbrenner et al., 2016). Some of these auxiliary bacteria
were thought to be able to fix atmospheric nitrogen and,
as cyanobacterial photobionts, might play an important role
as a nitrogen source for the lichen symbiosis (Hodkinson
and Lutzoni, 2009). Additionally, cyanobacterial lichens, which
often grow in nitrogen-limited environments, were shown
to harbour a diversity of bacteria that would otherwise
not grow in such nitrogen-limited environments (Hodkinson
et al., 2012). Apart from nitrogen fixation, meta-omics (e.g.,
meta-genomics, meta-transcriptomics, and meta-proteomics)
studies have revealed functional roles for the microbiome of

Frontiers in Microbiology | www.frontiersin.org 9 May 2021 | Volume 12 | Article 667864

https://biorender.com/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-667864 April 30, 2021 Time: 16:22 # 10

Nazem-Bokaee et al. Systems Biology of Lichen Symbiosis

the lichen Lobaria pulmonaria, including: nutrient recycling
in the decaying parts of the lichen thallus, pathogen defence,
detoxification processes, protection against oxidative stress,
biosynthesis of vitamins, cofactors, and hormones, activation
of ketone metabolism during dehydration, and upregulated
transcription of transport systems, tRNA modification and
various porins during hydration (Cernava et al., 2015; Grube
et al., 2015; Aschenbrenner et al., 2016; Sigurbjornsdottir et al.,
2016; Cernava et al., 2017; Cernava et al., 2019). The role of
these auxiliary bacteria is thus critical to the maintenance and
functioning of the lichen symbiosis.

The large diversity of lichen-associated fungi has been revealed
through culture-dependent methods first (Petrini et al., 1990;
Arnold et al., 2009), then meta-omics data analyses (Spribille
et al., 2016; Smith et al., 2020). The low biomass of these auxiliary
fungi relative to the primary mycobiont and the inability to
culture them have prevented a detailed analysis of their functional
roles in the lichen symbiosis. However, based on the analysis
of meta-genome of the lichen Alectoria sarmentosa, a recent
study showed that auxiliary fungi (two basidiomycete yeasts) may
play roles in producing secreted extracellular polysaccharides,
lichen nutrient acquisition, and secondary metabolite production
(Tagirdzhanova et al., 2021). They are therefore also likely to play
an important role in the maintenance and functioning of the
lichen symbiosis.

Although meta-omics analyses of lichen microbiomes have
provided invaluable insights on the diversity and function
of multi-species lichen symbioses, constraint-based metabolic
modelling could potentially enable a deeper understanding of
the multi-species metabolic interplay. For example, by applying
a systems biology approach using genome-scale metabolic
reconstructions for 773 human gut bacteria (AGORA), a more
sophisticated understanding of the interactions between the
host and gut microbiome was achieved, revealing how system
responses depended upon the metabolic potential of each
component species and the nutrients available (Magnusdottir
et al., 2017). The AGORA framework confirmed that a high
fibre diet (usually linked to a healthy microbiome) would result
in higher proportion of commensal and mutualistic pair-wise
interactions between gut microbes. This framework was able
to show how the host-microbiome operates mechanistically
and indicate how many positive interactions are sufficient
to maintain a healthy gut community. A similar systems-
level understanding of lichens could help in understanding
the metabolic interdependency for symbiotic establishment
and maintenance, and in predicting the role of associated
lichen microbes and lichen responses to environmental changes
or likely environmental niches. This would also aid in re-
creating/re-synthesizing lichens in vitro and using them for
biotechnological applications.

Genome-Scale Metabolic Flux Modelling:
Challenges and Opportunities for the
Lichen Symbiosis
Genome-scale metabolic network models simulate the
metabolism of a living cell as a collection of hundreds to

thousands of biochemical reactions (forming metabolic
pathways of an organism) and enable quantitative and gene-
grounded predictions of phenotypes under different growth
conditions (Varma and Palsson, 1994; Covert et al., 2001).
This set of reactions is framed as a set of ordinary differential
equations, in which the number of variables and equations
are defined by the number of metabolites and reactions,
respectively. Solving this system of equations under a given set
of assumptions (e.g., net zero system flux or “flux balance”)
allows for determining optimal fluxes for each reaction in
the metabolic network. Specific constraints describing the
physico-chemical, environmental, regulatory, and/or topological
conditions of the metabolic network can be imposed to identify
optimal flux distributions consistent with these assumptions
(Price et al., 2004). Such constraint-based metabolic modelling
enables a wide range of applications including, but not limited
to, predicting cellular functions (e.g., energy production)
(Edwards et al., 2001; Orth and Palsson, 2012; Bordbar et al.,
2014), identifying optimal strains and culture media conditions
for specific applications (Pharkya et al., 2004; Nazem-Bokaee
and Senger, 2015), formulating metabolic/strain engineering
strategies (Burgard et al., 2003; Chung et al., 2010; Kim and Reed,
2010; Ranganathan et al., 2010; Rocha et al., 2010; McAnulty
et al., 2012; Yen et al., 2013; Kim et al., 2019), identifying
drug targets (Kim et al., 2011, 2012; Angione, 2019; Gu et al.,
2019), producing natural/non-natural chemicals and precursors
(Yim et al., 2011; Ye et al., 2014; Nazem-Bokaee et al., 2016;
Wei et al., 2017; Nazem-Bokaee and Maranas, 2018; Biz et al.,
2019; Gu et al., 2019), creating knowledgebases of metabolic,
genomic, and biodiversity information (Kumar et al., 2012;
Pabinger et al., 2014; King et al., 2016; Nazem-Bokaee et al.,
2017; Norsigian et al., 2020), and studying syntrophic/symbiotic
communities (see below). Table 2 lists select examples of
two-species metabolic models that have been studied.

Techniques developed for the characterisation of metabolic
interactions among members of microbial communities based
on genome-scale metabolic modelling can be classified into
two main groups: lumped (also called enzyme soup, mixed
bag, or metagenome-scale modelling (Chan et al., 2017a)) and
compartmentalised (Biggs et al., 2015; Henry et al., 2016;
Zomorrodi and Segre, 2016). The analysis of interactions in a
microbial community can be performed under steady-state or
dynamic conditions. While an extensive description of these
techniques and their implementation can be found elsewhere
(Biggs et al., 2015; Zomorrodi and Segre, 2016; Chan et al.,
2017a; Ang et al., 2018; Garcia-Jimenez et al., 2021) and is
beyond the scope of this review, it is worth broadly covering
the general aim of each technique. The lumped modelling
approach seeks to find optimal conditions that benefits the
whole community (e.g., mutualistic symbiosis) by neglecting
boundaries between members of the community (Taffs et al.,
2009; Henry et al., 2016). The compartmentalised modelling
approach, on the other hand, retains boundaries between
members while also allowing individual members to share
a compartment and transfer metabolites. For example, the
compartmentalised modelling approach enables considering a
member-level objective towards achieving a community-level
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TABLE 2 | Select two-species metabolic network models that have been constructed and analysed1.

Partners/symbionts2 Community modelling
approach3

Key outcomes of the study References

Desulfovibrio vulgaris
(r: 89)
Methanococcus maripaludi
(r: 82)

Compartmentalised;
steady-state

This is the first study on modelling mutualistic interactions between a sulphate-reducing
bacterium and a methanogen using a compartmentalised approach. Using relatively small
metabolic networks of the two microbes, a syntrophic methanogenesis was simulated
when D. vulgaris produced hydrogen, carbon dioxide, and acetate, which were utilised by
the methanogen.

Stolyar et al.,
2007

Geobacter sulfurreducens
(c: 2, g: 588, r: 727)
Rhodoferax ferrireducens
(c: 2, g: 744, r: 762)

Compartmentalised;
dynamic

This work analysed the dynamics of growth between two bacteria competing for uranium
bioremediation.

Zhuang et al.,
2011

Scheffersomyces stipites
(c: 3, g: 814, r: 1371)
Saccharomyces cerevisiae
(c: 8, g: 904, r: 1412)

Lumped; dynamic
(s: 3588)

In this study a co-culture simulating lignocellulosic feed breakdown for biofuel production
was analysed using metabolic models of S. cerevisiae converting hexose and S. stipites
converting pentose part of the synthetic feed into ethanol.

Hanly and
Henson, 2013

Geobacter metallireducens
(c: 2, g: 987, r: 1284)
Geobacter sulfurreducens
(c: 2, g: 837, r: 1085)

Compartmentalised;
steady-state
(t: 36)

A multi-omics approach was used in this study to understand electron flow mechanisms
between the two bacteria. Results suggested that while G. metallireducens could respond
only to syntrophic changes at transcriptomic level, G. sulfurreducens responded at both
transcriptomic and genomic levels.

Nagarajan et al.,
2013

Bifidobacterium adolescentis
(g: 452, r: 699)
Faecalibacterium prausnitzii
(g: 484, r: 713)

Compartmentalised,
steady-state

This study demonstrated that through modelling only two representatives of human gut
microbiome, B. adolescentis and F. prausnitzii, the growth of the latter is severely affected
when acetate production by the first microbe became limited.

El-Semman
et al., 2014

Salmonella enterica
Escherichia coli K12 strain

Compartmentalised;
dynamic

Community modelling confirmed growth of E. coli on lactose minimal media was feasible
only in co-culture with S. enterica, which received acetate and produced methionine in
return.

Harcombe
et al., 2014

Escherichia coli K strain
(c: 3, g: 1260, r: 2073)
Escherichia coli L strain
(c: 3, g: 1260, r: 2073)

Compartmentalised;
dynamic
(t: 2)

Auxotrophy was studied using two mutants of E. coli, in which one grew with leucine and
produced lysine that was assimilated by the other strain.

Zhang and
Reed, 2014

Ketogulonicigenium vulgare
(c: 3, g: 663, r: 2073)
Bacillus megaterium
(c: 3, g: 1055, r: 2073)

Compartmentalised;
steady-state
(t: 453)

In this study an artificial consortium was constructed to analyse the production of vitamin
C and other metabolites (e.g., 2-keto-l-gulonic acid) during two-step fermentation process

Ye et al., 2014

Leptospirillum ferriphilum
(r: 87)
Ferroplasma acidiphilum
(r: 71)

Compartmentalised;
steady-state

In this work, a bacteria-archaea mixed culture was modelled to study bioleaching
(oxidizing iron)

Merino et al.,
2015

Chlamydomonas reinhardtii
(c: 10, g: 1080, r: 2191)
Saccharomyces cerevisiae
(c: 8, g: 750, r: 1266)

Compartmentalised;
dynamic
(t: 2)

The goal of this study was to feed process models with metabolic models of algal-fungal
co-culture for optimizing biodiesel production. The alga produced oxygen for the yeast
and in return received carbon dioxide secreted by the yeast. This study is an example of
creating artificial symbiosis through exchange of key metabolites between an alga and a
fungus, which could lead to higher biodiesel production compared with single cultures of
the alga.

Gomez et al.,
2016

Thermosynechococcus
elongatus BP-1
(g: 583, r: 917)
Meiothermus ruber strain A
(g: 729, r: 1163)

Lumped and
compartmentalised;
steady-state
(s: 1707)

The lumped model showed highest overall consistency between predicted fluxes and
measured gene expression data. However, this approach provided no information on the
potential interactions between the two members of consortia. The gap-filled
compartmentalised model provided the best performance among all models with respect
to predicting key metabolites interacting between the two bacteria.

Henry et al.,
2016

Medicago truncatula
(c: 8, g: 3403, r: 2909)
Sinorhizobium meliloti

Compartmentalised;
steady-state
(t: 20)

The community model predicted the preferred uptake of ammonia over nitrate when both
present in excess. At dark and when ammonia is limiting, the model predictions were in
favour of nitrate uptake. The symbiotic model predicted amino acid cycling which is shown
to be essential for nitrogen fixation for some rhizobial strains.

Pfau et al., 2018

Nitrosomonas europaea
(g: 578)
Nitrobacter winogradskyi
(g: 579)

Compartmentalised;
dynamic
(t: 25)

Aerobic co-culture of two model nitrifying bacteria was used to study the dynamics of
nitrification in agricultural settings

Mellbye et al.,
2018

Phaeodactylum tricornutum
(c: 6, g: 1027, r: 4456)
Pseudoalteromonas haloplanktis
(c: 2, g: 721, r: 1322)

Lumped; dynamic
(s: 3588)

This work demonstrates the advantages of using metabolic models to simulate a
diatom-bacteria co-culture to study the effect of changes in growth parameters on the
co-culture to represent ocean food ecosystem. Using a linear community-level biomass
objective function, a multi-compartment model was built, and then, converted into a
dynamic, constraint-based, model of co-culture. Simulating this synthetic ecosystem
revealed that the growth of the diatom was negatively affected by the growth of the
bacterium due to the shortage of phosphate and sulphate.

Fondi and Di
Patti, 2019

1 Community metabolic models developed to study interactions among more than two organisms in any microbiota was excluded in this table for simplicity. For further
information on larger communities of microbes the reader is referred to the text and these reviews (Zomorrodi and Segre, 2016; Ang et al., 2018; Chan et al., 2017a; Gu
et al., 2019).
2 Numbers in parenthesis indicate the number of compartments (c), genes (g), and reactions (r), if available, captured in the respective metabolic model of the symbiont.
3 Numbers in parenthesis indicate the number of inter-species transporters (t) or shared reactions (s), when available, captured in the respective community
metabolic model.
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objective by imposing a constant growth rate across all members
for a community to ensure co-existence and stability (Chan
et al., 2017b). Although computationally more expensive, the
compartmentalised modelling approach also allows for the study
of different types of species-species interactions (e.g., parasitism)
(Zomorrodi and Maranas, 2012). A dynamic modelling approach
enables predictions of changes in metabolites and biomass
over time within the community and relies on kinetic data
of uptake reactions. The dynamic approach has been extended
to enable spatial analysis of communities, as in the COMETS
(Computation Of Microbial Ecosystems in Time and Space)
framework, which coupled metabolic with diffusion modelling
and was applied to understand metabolite exchange within a
three-member microbial community (Harcombe et al., 2014).

To our knowledge, no genome-scale metabolic network model
has yet been constructed for any lichen association or its
symbionts. With the first genomes of mycobionts (Park et al.,
2013a,b, 2014a,b; Armstrong et al., 2018; Bertrand et al., 2018a;
Wang et al., 2018) and photobionts (Armaleo et al., 2019)
of several lichens assembled and more foreseen to come, it
is a timely opportunity to understand the lichen symbiosis
through the lens of genome-scale metabolic models. Since
little is known about the metabolic response of lichens to
different environmental conditions (e.g., light intensity, water
content, nutrient availability, etc.), developing a metabolic
network model could shed invaluable insights on symbiosis at
the molecular level. Furthermore, the available computational
tools for modelling community interactions could allow for
predicting the role of a specific symbiont on the performance
of a lichen under a known environmental perturbation (e.g.,
nutrient limitation). A lichen metabolic model could be
used as the framework for the integration of ‘omics’ data
obtained for lichens to test multiple hypotheses including,
for example, the regulatory effect of different carbohydrates
on the growth and exchange of metabolites between lichen
symbiont. Since in vitro lichen re-synthesis is still hampered
by the complexity of the lichenisation process, metabolic
modelling could highlight potential metabolites that may need
to be exchanged between symbionts as well as the metabolic
pathways that may lead to successful differentiation and growth.
Moreover, metabolic modelling could be used to examine
the potential for symbiosis between various combinations of
mycobionts and photobionts, and provide insights into the
evolution of the lichen symbiosis. Validating predictions of
flux distribution by community metabolic models could be
a challenge, due to multi-compartmental nature of lichen
symbiosis and difficulties in measuring fluxes through each
compartment in vivo. However, recent advances in the field
of metabolic flux analysis now make it possible to resolve
fluxes by carefully designing the isotope labels and tracing
them across different compartments (Schwechheimer et al.,
2018). Another practical challenge for the development of
lichen metabolic models may pertain to the characterisation
of the cellular composition of individual lichen symbionts.
For example, many lichen mycobionts grow slowly, making it
experimentally difficult to obtain sufficient cell mass needed
to formulate a ‘biomass’ reaction in a metabolic model
representing cellular growth. Moreover, due to the lack of

data specific to the metabolic pathways of lichens, the model
curation process may be patchy, with irreconcilable gaps
and network disconnects. However, metabolic models for
lichens could be reconstructed by leveraging the ever-increasing
number of high-quality metabolic models becoming available
for not-too-distantly related filamentous fungi, microalgae, or
cyanobacteria (Brandl and Andersen, 2015; Gomez et al., 2016;
Santos-Merino et al., 2019).

CONCLUSION AND FUTURE
PERSPECTIVES

Lichens, although historically well-known and iconic symbioses,
still bear a sense of mystery as our understanding of the
signalling networks and pathways responsible for their symbiotic
establishment and maintenance is still in its infancy. Two
signalling mechanisms were reviewed in this article but
many more could be explored with the aid of techniques
such as untargeted metabolomics. Signalling/metabolic network
modelling approaches could support the field of experimental
lichenology by providing insights into: (1) the signalling
molecules and the roles they play at different stages of
lichenisation, (2) how lichen symbionts benefit from the
symbiosis with regards to carbon, nitrogen, and other limiting
nutrients or environmental conditions, (3) which conditions
allow lichens to produce secondary metabolites and the genes
that are involved, and (4) how lichens manage to accumulate
and tolerate high levels of toxic metals. Advances in DNA
sequencing technologies in recent years have significantly
reduced the cost of generating genome sequences. At the
same time, improvements in high performance computing and
development of more biologist-friendly tools for modelling and
analysing ‘genome-scale’ metabolic networks have enabled the
exploration of metabolically-coupled microbial communities.
Combining these genome resources and systems biology tools
could open up a whole new era for the study of the
lichen symbiosis.
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