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Laboratory experiments have uncovered many basic aspects of
bacterial physiology and behavior. After the past century of
mostly in vitro experiments, we now have detailed knowledge
of bacterial behavior in standard laboratory conditions, but only a
superficial understanding of bacterial functions and behaviors
during human infection. It is well-known that the growth and
behavior of bacteria are largely dictated by their environment, but
how bacterial physiology differs in laboratory models compared
with human infections is not known. To address this question, we
compared the transcriptome of Pseudomonas aeruginosa during
human infection to that of P. aeruginosa in a variety of laboratory
conditions. Several pathways, including the bacterium’s primary
quorum sensing system, had significantly lower expression in hu-
man infections than in many laboratory conditions. On the other
hand, multiple genes known to confer antibiotic resistance had
substantially higher expression in human infection than in labora-
tory conditions, potentially explaining why antibiotic resistance
assays in the clinical laboratory frequently underestimate resis-
tance in patients. Using a standard machine learning technique
known as support vector machines, we identified a set of genes
whose expression reliably distinguished in vitro conditions from
human infections. Finally, we used these support vector ma-
chines with binary classification to force P. aeruginosa mouse
infection transcriptomes to be classified as human or in vitro. De-
termining what differentiates our current models from clinical in-
fections is important to better understand bacterial infections and
will be necessary to create model systems that more accurately
capture the biology of infection.
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Since the earliest days of microbiology, researchers have relied
on in vitro culture methods to grow pathogenic bacteria in

the laboratory. Blood and beef extracts were initially used to
grow bacteria to high densities, and soon researchers were using
in vitro systems to understand basic biological principles, such as
DNA replication, as well as clinically important questions, such as
antibiotic tolerance (1). Blood and beef extracts were partially
replaced by more consistent and reproducible media, and in vitro
systems have since become a cornerstone of modern microbiology.
The use of in vitro models has clear benefits. In vitro experi-

ments are typically inexpensive and allow for a relatively high
degree of control and reproducibility. However, it is unclear how
well these models mimic bacterial growth conditions during hu-
man infection. We know that there are fundamental differences
between how a bacterium behaves in a test tube and in a human
infection, but we often do not understand what causes these
differences. What are the defining features of bacterial growth in
a human infection that distinguish it from growth in common
laboratory models?

This is a difficult question, as there are obvious limitations to
human experimentation. We and others have previously used
RNA-sequencing approaches to assess gene expression of human-
associated bacterial communities, with a focus on predicting
functional traits from gene-expression data (2–7). However, these
approaches have been limited to microbial communities that
contain large numbers of microbes or samples from which mi-
crobes can be easily harvested, such as the human oral cavity and
urine collected from urinary tract infections. Here, we developed
methodology to perform RNA-seq of the opportunistic bacte-
rial pathogen Pseudomonas aeruginosa during human infection of
soft-tissue wounds and cystic fibrosis (CF) lungs. Using machine
learning approaches, we systematically identified a transcriptomic
signature of P. aeruginosa during human infection that distin-
guishes it from in vitro laboratory transcriptomes. Specifically, we
defined a limited number of genes that were sufficient to differ-
entiate a human infection transcriptome from an in vitro culture
transcriptome. Functionally, many of these genes are involved in
iron acquisition and central metabolism. Genes important for an-
tibiotic tolerance were also highly induced during human infection,
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potentially explaining the common occurrence of bacteria with low
in vitro antibiotic susceptibility displaying high tolerance in humans.
We propose that the framework provided here is an important step
toward not only identifying important features of bacterial infection,
but also in developing more biologically relevant in vitro models.

Results
In this work, we utilized P. aeruginosa RNA-seq results from
three types of samples: human infections, mouse infections, and
in vitro cultures. The human infections, which are the focus
of this paper, included CF expectorated sputum samples from
Denmark and soft-tissue infections from Denmark and the
United States. Soft-tissue infections included chronic wound
infection samples from Denmark and the United States and burn
wound infection samples from the United States. Each sample
was from a different patient, with the exception of the burn
samples, which were acquired on two separate days from dif-
ferent areas on the same patient (Supporting Information and
Dataset S1). These human infection samples were chosen not
only because they came from distinct types of infections from
different clinics, but also because the patients were treated with a
variety of therapeutic regimens and had a wide-array of coin-
fecting microbes. This diversity among samples provided the
opportunity to define the most basic ways P. aeruginosa human
infection transcriptomes differ from in vitro transcriptomes in-
dependent of the infection location, therapeutic regimen, or
coinfecting microbes. We also examined five P. aeruginosa
transcriptomes from mouse models of infection: two from sur-
gical wound models and two from burn wound infections from
previous publications in our laboratory, and a pneumonia in-
fection from another laboratory (8–12). Our in vitro data were
composed of 87 RNA-seq datasets from our and other labora-
tories using laboratory, clinical, and environmental P. aeruginosa
strains, 27 of which have not been published previously (Dataset
S1) (8–11). The main technical obstacle of this project was
obtaining sufficient P. aeruginosa reads from the human samples
to analyze them. Of 28 human samples sequenced, we chose
15 for further analysis based on genome coverage (Table 1).
Because our analysis contained samples with different strains

of P. aeruginosa, we did not have a reference genome in which to
map the sequencing reads. Additionally, many samples con-
tained bacterial species other than P. aeruginosa that could im-
pact our mapping due to orthologous genes with high sequence
similarity. To deal with these issues, we first mapped all RNA-
seq reads to 54 bacterial species that had been identified as
present in our samples by CLARK (Dataset S1) (13). We took

one or more genomes among these “decoy” species (101 in total)
to initially map against. We focused on those reads that did not
map to these other microbes to avoid falsely ascribing differences
in transcript frequencies to P. aeruginosa when another bacte-
rium was potentially responsible. Our approach was conservative
because P. aeruginosa reads that closely resemble other species
were discarded. However, it had the advantage that we could be
confident that the differences we observed were due to differ-
ences in P. aeruginosa RNA levels rather than RNA levels in
other bacteria (see flowchart in Fig. S1). We first mapped all
remaining reads to the well-studied strain P. aeruginosa PAO1,
then to a pangenome containing 28 additional P. aeruginosa
strains. At this point, the reads were collapsed onto P. aeruginosa
PAO1 orthologs (Fig. S1) (the list of such orthologs of the strains
is curated on Pseudomonas.com). This approach was reasonable
because the genome of P. aeruginosa is highly conserved between
strains (14). Throughout this paper, we focus on this collapsed
genome to make comparisons between samples.

P. aeruginosa in Human Samples and in Vitro Samples Have Distinct
Transcriptomes. After mapping all reads, most human infection
transcriptomes had several genes with zero reads that mapped
(Fig. S2). This was due to a combination of sequencing depth and
strain differences. To make preliminary comparisons between
samples without biasing results due to the presence/absence of
particular genes across strains, we restricted our analysis to sam-
ples with a common set of 1,707 genes that had at least one read in
a large number of samples (Fig. S3A). A principle component
analysis (PCA) of these data (Fig. 1A) shows that human tran-
scriptomes tend to cluster near one another, with CF sputum
transcriptomes most distinct from the other samples. The number
of genes used in Fig. 1A was too high to include two chronic
wound transcriptomes from Denmark, and we wanted to de-
termine if these samples would cluster with chronic wound sam-
ples obtained from the United States. To determine this, we used
a smaller set of 761 genes in order to include these samples (Fig.
S3B). Our results revealed that the Danish chronic wound tran-
scriptomes clustered along with the chronic wounds from patients
in the United States (Fig. 1B). These data indicate that the P.
aeruginosa transcriptome during human infection clusters dis-
tinctly from in vitro transcriptomes, despite differences in site of
infection, coinfecting microbes, therapeutic regimen, and geo-
graphical locale. Additional PCs are shown in Fig. S4, and we
included a PCA with subsampled reads in Fig. S5 to show that
clustering is not a consequence of having fewer mapped reads in
our human samples.

Table 1. The human samples used in this study

Sample Location of collection Total reads
Reads mapped to PAO1

orthologous genes

Human_Sputum_A Denmark 71,926,942 492,733
Human_Sputum_B Denmark 105,647,965 2,047,185
Human_Sputum_C Denmark 61,212,590 1,958,877
Human_Sputum_D Denmark 124,266,260 414,990
Human_Sputum_E Denmark 62,985,339 453,389
Human_Sputum_F Denmark 68,022,834 184,178
Human_Sputum_G Denmark 78,869,961 10,213,756
Lubbock_CW_15 Texas, USA 109,403,011 2,251,929
Lubbock_CW_16 Texas, USA 94,788,090 191,274
Lubbock_CW_18 Texas, USA 91,993,624 713,108
Lubbock_CW_21 Texas, USA 109,252,642 30,836
Lubbock _Burn_2_3 Texas, USA 46,780,195 682,982
Lubbock_ Burn_2_4 Texas, USA 34,878,564 105,278
Danish_Chronic_Wound_1* Denmark 106,188,256 5,112
Danish_Chronic_Wound_2* Denmark 99,773,828 10,177

*These samples were analyzed separately from the other samples in our study due to their low P. aeruginosa
read counts and were only used in Fig. 1B.
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Several classes of genes differed substantially in RNA transcript
levels between in vitro and human samples, and some were veri-
fied with quantitative PCR (Supporting Information). Fig. 2 shows
an overview of the categories enriched for differentially expressed

genes. In each of these categories, which include the TCA cycle
as well as the biosynthesis of amino acids, carbohydrates, and
nucleosides and nucleotides, most genes were expressed at a
higher level in vitro than in human infections. The majority of
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genes involved in the TCA cycle—including sdhC, sdhD, sdhA,
sucC, sucD, and acnB—were expressed at lower levels in the
human transcriptomes compared with in vitro conditions.
Additionally, several important regulons showed significant dif-
ferences in transcript levels between in vitro and human sam-
ples, including the SOS stress response (under control of lexA),
which was more highly expressed in humans. Furthermore, the
σ-factor algU, which controls genes involved in alginate syn-
thesis, was expressed at substantially higher levels in human
samples. A previous paper from our laboratory identified long-
chain fatty acid catabolism, and in particular faoA and faoB, as
being required during both the P. aeruginosa murine surgical
wound and burn wound infection, and induced in the burn in-
fection (12). These genes were induced in our human samples
as well; faoA was expressed higher in human samples than the
in vitro ones (1.6-fold higher, P = 0.06), and faoB was also more
highly expressed in our human samples (2.1-fold higher,
P = 0.002).

Quorum-Sensing Genes Are Expressed at Lower Levels in Human
Infection. Another basic question is the degree to which social
behaviors are active in infecting bacteria. The last three decades
have seen an explosion of work demonstrating the importance of
microbial social behaviors during infection including cooperation
and competition (15). Among these behaviors, cell-to-cell sig-
naling, and in particular quorum sensing (QS), has received
special attention (16). Although considerable work has gone into
elucidating the properties of QS in vitro, little is known about its
activity in human infection. One of the main QS systems in
P. aeruginosa (referred to as the las system) regulates transcrip-
tion of over 5% of the organism’s genome (17). The las system is
composed of LasI, which synthesizes the AHL signal molecule
3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), which then
binds to the transcriptional regulator LasR, enabling transcrip-
tional regulation of a variety of genes.
A previous paper identified a core set of 42 genes that were

regulated by the P. aeruginosa las system across seven P. aeru-

ginosa isolates (18). We performed a differential expression
analysis of all genes to determine whether this “core las QS
regulon” was differentially induced in human infections and in
vitro conditions. In doing this comparison, for each of the
42 genes, we ignored transcriptomes that did not have at least
three reads for that gene to ensure the presence of the gene in
the human samples. Our rationale was to avoid falsely classifying
clinical isolates that may lack a particular QS-regulated gene,
instead having very low expression of it. We chose the three read
cut-off as a conservative compromise between ensuring that a
given gene was not incorrectly mapped by a single read and not
having to discard samples. The median number of excluded
samples was 3 for human samples and 1 for in vitro samples. We
found that mRNA levels for genes controlled by the las QS
system were considerably lower in the human transcriptomes
than in vitro transcriptomes (Fig. 3A). The QS regulon is
enriched for decreased gene expression in humans (Fisher’s ex-
act test, P = 3.1e-6, odds ratio = 5.1). We looked further to see if
there were in vitro conditions that most contributed to this dif-
ference in gene expression and discovered that on average, in
vitro transcriptomes in which P. aeruginosa was grown as biofilms
or aggregates expressed the core QS regulon the highest. When
the in vitro data are split into biofilm/aggregate samples versus
planktonic (Fig. 3B), the genes in general have higher expression
among biofilm/aggregates compared with human samples
(Fisher’s exact test, P = 1.8e-9, odds ratio = 18.1), but with this
comparison approach there is no such difference with the
planktonic samples (Fisher’s exact test, P > 0.05).

P. aeruginosa Antibiotic Tolerance Determinants Are Induced During
Human Infection. Our initial analysis indicated that two antibiotic
efflux genes (mexX and mexY) were expressed highly in our
human transcriptomes, so we decided to perform a more rigor-
ous test to identify other antibiotic resistance determinants that
were induced in these samples. To answer this question, we first
identified genes that were both transcribed in humans and had
previously been shown to be important for P. aeruginosa antibiotic
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tolerance when mutated (19). To determine which genes increased
in expression among the human samples compared with in vitro
samples, in contrast to our first differential expression anal-
ysis (Fig. 2), we examined all genes, even those that had no
mapped reads in some transcriptomes. Our rationale was that this
approach may give false positives for genes that have reduced
expression in the human samples, but it should still be conserva-
tive in identifying genes that had increased expression. Table 2
shows, for each infection type, the genes that were both induced in
the human samples compared with in vitro conditions and also
important for growth in the presence of antimicrobials (19). We
also verified that these differences were significant even if we
eliminated in vitro samples with zero counts for any of these
genes. Our results reveal that efflux pumps associated with toler-
ance to aminoglycosides and other antimicrobial classes, in addi-

tion to SOS response genes, were induced in multiple human
infections. mexX, mexR, and mexY were induced in the sputum
samples;mexX andmexY were induced in the chronic wounds; and
armZ (a mexZ antirepressor) was induced in the burn wound
(Table 2). The sputum and burn wound transcriptomes included
induction of recN and lexA, indicating activation of the SOS DNA-
damage response. Other antibiotic tolerance-associated genes,
from a range of functions, were induced as well. Among the CF
sputum samples, ftsH, which encodes a membrane protease known
to be important in aminoglycoside resistance, was induced (20).
Also in the CF sputum, znuA, znuB, and znuC were induced. This
is consistent with a previous microarray study on human CF
samples, and further, mutating these genes reduces bacterial
growth in animal models (21, 22). The clinically important β-lactamase
ampC, was also induced in the sputum samples, as well as various

Table 2. P. aeruginosa genes induced in human samples that are also important for antimicrobial tolerance (19)

The above genes were both expressed higher in our human infections than in vitro samples (log2 fold-change > 1.5, FDR < 0.05) and
were fitness determinants when grown in the presence of antimicrobials [log2 fold-change < −1.5, FDR < 0.05 (19)]. Blue boxes shade
genes up-regulated in human CF sputum, yellow shade genes up-regulated in human chronic wounds, and green shade genes up-
regulated in human burn wounds. Also included is whether these genes were induced in mouse burn or surgical wounds [fold-change > 2,
P value < 0.05 (12)] and induced by any of 14 antimicrobials in vitro [log2 fold-change > 0, FDR < 0.05 (19)]. AMP, ampicillin; BLCH, bleach;
CAR, carbenicillin; CFP, cefoperazone; CIP, ciprofloxacin; GEN, gentamicin; NEO, neomycin; PMB, polymyxin B; TOB, tobramycin.
*Gene appears in all three infection types.
†Gene appears in two of the three human infection types in the table.
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other resistance genes (Table 2). In addition to the efflux pumps, in
the chronic wound samples, hudR, a virulence factor that also confers
tolerance to gentamicin was induced (23). The human burn wound
showed induction of mvaT, which is a resistance determinant for
gentamicin (19). Several of the resistance determinants induced in
human infections were hypothetical proteins (Table 2). For example,
hypothetical protein PA1414 was highly induced in all three infection
types (between 5- and 34-fold higher in human samples) and was
shown to be important for fitness in the presence of gentamicin (19).
PA5469 was highly induced in two infection types as well and was also
a resistance determinant for gentamicin (19). Both of these genes were
also induced in at least one mouse model (24). It is also worth noting
that the genes oprD and oprF, which encode for porins known to fa-
cilitate antibiotic uptake, had significantly decreased expression across
our human samples.
We also asked the question of whether any of these genes were

induced in the reference P. aeruginosa strains PA14 or PAO1 in
mouse infection models in which no antibiotics had been ad-
ministered (12), or if they were induced in vitro by the addition
of any of 14 antimicrobials (19). This information is revealing as
it provides clues as to whether increased expression of these
genes in humans was a result of the growth environment or due
to therapeutics administered to the patient. For example, mexX
and mexY are critical determinants of aminoglycoside tolerance
that were highly induced in human samples but not mouse in-
fection models; they are, however, induced by the antibiotic
polymixin B (Table 2). Because most of the patients included in
this study were administered polymixin E (colistin) (Dataset S1),
it is likely that induction of these genes was due to antibiotic
treatment. Four genes, including PA5469 and mvaT, were highly
induced in human and mouse infection but not by antimicrobial
addition (Table 2), suggesting that induction of these genes may
be a response to the in vivo infection environment. Finally,
12 genes including znuABC are induced in human infection but
not in mouse infection models or by antimicrobial addition
(Table 2), thus these genes may be responding to a human
infection-specific cue.

A P. aeruginosa Transcriptional Signature of Human Infection. Exam-
ining differences in average gene expression between human and
in vitro samples provides an initial glimpse into how these envi-
ronments impact P. aeruginosa physiology and behavior; however,
machine learning approaches are better suited to determining
what signatures most reliably differentiate these groups. To ini-
tiate these studies, we reduced the dimensions of our dataset
by removing redundant information and noise. We used the
DaMirSeq R package to determine a set of genes whose PCs best
correlated with in vitro or human growth, by performing backward
variable elimination with partial least-squares regression, and re-
moving redundant features by eliminating those that were very
highly correlated (25). Repeating this process 20 times, we chose
the top 30 genes identified here as input into our support vector
machine (SVM) models. We then used an SVM with a linear
kernel in the Caret R package to determine how accurately simple
rules could distinguish human from in vitro transcriptomes (26).
We trained our model with human and in vitro transcriptome
data, excluding the mouse samples. We conducted a leave-one-out
cross-validation of both the feature selection and SVM training
processes, repeating 20 times to account for stochasticity in the
feature selection step, which yielded a mean 98.9% accuracy and a
Cohen’s κ of 95.4%, indicating that this approach is highly accu-
rate for differentiating human from in vitro transcriptomes. When
we trained the model with in vitro data excluding all samples from
any one of the four other laboratories that generated the data, the
SVM correctly identified all samples from the omitted laboratory
as being in vitro, except in the case of one laboratory (8), all of
whose experiments were conducted in media specifically designed
to mimic CF sputum in differing oxygen levels (27); four of these
samples were designated as “human.” When we trained the SVM
with all of the United States chronic wounds omitted, or all of the

Denmark transcriptomes omitted, the SVM correctly identified
the left-out transcriptomes as being human.
The genes used by the SVM to differentiate human and in

vitro P. aeruginosa transcriptomes in a single iteration are shown
in Table 3. It is important to note that these are not necessarily
all of the important genes that can differentiate sample type, but
rather a subset of them selected using a nondeterministic algo-
rithm. Furthermore, they are not necessarily the most differentially
expressed (Dataset S2), but they are effective in discriminating
human from in vitro transcriptomes when used together. These
genes encode proteins that localize in a range of cell compart-
ments, but are predominantly in the cytoplasm and cytoplasmic
membrane (28). Table 3 also shows the fold-change, calculated by
DESeq2 (29). Most of the features that distinguish human infec-
tions from in vitro transcriptomes, like the efflux pump mexY,
pathways for Psl exopolysaccharide production, siderophores
(pvdF, pchR), heme uptake (phuR, phuS), and lldA (L-lactate de-
hydrogenase), were transcribed more highly in human samples.
However, a few of the strongest signature genes showed reduced
mRNA levels in humans, including gcbA (involved in flagellar
motility and biofilm formation) (30, 31). In principle, a gene may
be important to distinguish human from in vitro transcriptomes
even if it only can distinguish between in vitro growth and one of
our two classes of infection (CF sputum or soft tissue). However,
we see in Table 3 that the majority of the highest-ranking genes are
indeed substantially different in the in vitro samples compared with
both human infection types. Some genes though, like phuR, were
clearly more distinct between in vitro conditions and CF sputum in
comparison with in vitro versus soft tissue.

Surgical Wound Infection Mouse Models Are Classified as “Human,”
While Other Mouse Models Are Classified as “in Vitro.” In the previous
section, we trained an SVM model to distinguish between human
infections and in vitro transcriptomes. In doing so, we omitted the
five mouse transcriptomes. As an example of the type of question
one can begin to address with our comparative methods, we next
asked the simple question: Where do the mice fall in this classi-
fication—as human infections or as in vitro models? Because the
feature (gene) selection process of our SVM model is stochastic,
we ran it 50 times and took the average of these runs. Because we
used an SVM with binary classification, each mouse sample was
forced into one of the two categories in each run. Table 4 shows
the average assigned “probability” score calculated by the Caret
package from the distance to the SVM decision boundary (32).
We found that the P. aeruginosa murine surgical wound tran-
scriptomes tended to be classified as human rather than in vitro,
while murine burn transcriptomes and the murine pneumonia
transcriptome were more strongly classified as in vitro. We next
asked where these mice would be categorized when classified by
an SVM trained to reliably distinguish soft-tissue infection tran-
scriptomes (chronic wounds, burn) from CF sputum tran-
scriptomes. All of the murine transcriptomes were classified as
soft-tissue infections.

Discussion
Determining the behavior of bacteria during human infection is
one of the most basic and important questions in infectious dis-
ease microbiology (12, 24). To address this question, we per-
formed RNA-seq analysis on a diverse set of 15 human infection
samples containing P. aeruginosa and analyzed these data in the
context of 87 in vitro transcriptomes and 5 murine infection
transcriptomes (Table 1 and Dataset S1). The in vitro samples
differed widely from one another, while human soft-tissue wound
infections (chronic wound and burn) were more similar to each
other, and human CF sputum samples were varied but clearly
distinct from the other samples (Fig. 1). Several metabolic gene
categories were significantly down-regulated in human tran-
scriptomes compared with in vitro conditions (Fig. 2), as well as
the core QS regulon (Fig. 3). We also found that a small set of
genes (Table 3) could be used to reliably determine which tran-
scriptomes are from human infections and which are from in vitro
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samples. Using this signature of human growth, some mouse
models were classified as human and others in vitro.
Several pathways, including the pyoverdine synthesis pathway,

several efflux systems, and the SOS response regulon were in-
duced more in human infections compared with in vitro condi-
tions. Consistent with previous work, mRNA for the important P.
aeruginosa fatty-acid catabolism genes faoA and faoB were in-
creased in human samples (12). Several other metabolic path-
ways, including the TCA cycle, had lower expression in human
samples than in the in vitro samples. The fact that efflux systems

and DNA damage stress-response regulons were expressed sig-
nificantly higher in the human infections motivated us to look for
other genes with high expression in human infections that may
also be antibiotic-resistance determinants. In addition to several
efflux-related and DNA damage-response genes, many other P.
aeruginosa resistance genes were induced as well, including those
involved in zinc transport, the heat-shock response, and other
virulence factors (Table 2). Furthermore, two porins (oprF and
oprD) implicated in antibiotic import into the cell were down-
regulated. Some of these genes, including mexXY, appear to be

Table 4. Classification of P. aeruginosa transcriptomes from mouse models of infection as:
human or in vitro, and human soft tissue or CF sputum

Sample

Human vs. in vitro Soft tissue vs. CF sputum

Mean probability human SD Mean probability soft tissue SD

Mouse burn 1 0.07 0.04 0.73 0.17
Mouse burn 2 0.15 0.08 0.72 0.19
Mouse surgical 1 0.72 0.15 0.68 0.19
Mouse surgical 2 0.75 0.12 0.68 0.21
Mouse pneumonia 0.08 0.08 0.67 0.25

For both distinctions (human vs. in vitro and soft tissue vs. CF sputum), feature (gene) selection and model
training were repeated 50 times. The mean probability according to the SVM model and its SD were calculated
using the Caret package (26). Mean probability is the likelihood that a mouse transcriptome is human (for the
human vs. in vitro) or soft tissue (for the soft tissue vs. CF sputum) based on the SVM model as calculated by the
Caret package. For example, a mean probability of 1 would indicate that the sample is unambiguously catego-
rized as human for the human vs. in vitro.

Table 3. Genes used to distinguish P. aeruginosa human infection transcriptome from in vitro transcriptome

Locus tag Gene name
Human infection vs. in
vitro (log2 fold-change)

Soft tissue infection vs. in
vitro (log2 fold-change)

CF sputum vs. in vitro
(log2 fold-change)

PA2911 4.1 3.8 4.2
PA2914 3.2 3.1 3.2
PA5535 4.1 3.7 4.4
PA1414 4.6 5.4 3.2
PA0781 2.9 2.6 3.2
PA2382 lldA 4.9 2.1 5.7
PA4835 2.8 2.2 3.1
PA2943 3.2 1.8 3.7
PA3598 3.5 2.3 4.0
PA4063 2.9 2.0 3.4
PA1797 2.8 3.2 2.5
PA4570 2.8 2.0 3.2
PA3237 7.0 4.0 7.9
PA2018 mexY 2.3 2.0 2.5
PA4495 4.0 1.5 4.8
PA4709 phuS 2.4 1.9 2.8
PA4710 phuR 3.4 0.8 4.2
PA2662 3.7 1.7 4.4
PA4843 gcbA −3.2 −2.6 −3.9
PA4470 fumC1 1.8 0.6 2.3
PA2931 cifR 2.2 1.7 2.6
PA2562 1.7 0.3 2.3
PA2396 pvdF 1.7 1.1 2.1
PA4227 pchR 1.6 0.5 2.1
PA2386 pvdA 1.0 −0.1 1.5
PA3418 ldh −0.5 −0.1 −0.9
PA0865 hpd −2.6 −3.5 −2.1
PA3691 −0.1 0.8 −2.6
PA2291 −2.8 −2.6 −2.9
PA2553 −2.3 −2.8 −2.0

Genes were ranked according to their ROC importance score in a trained SVMmodel (26). Also shown is the DESeq2 log2 fold-changes when
in vitro samples were compared with all human infections (human infection vs. in vitro), human soft-tissue infections (soft tissue infection vs. in
vitro) and CF sputum (CF sputum vs. in vitro) (29). Positive values indicate genes up-regulated in human infection.
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induced by the therapeutics being administered to the patient,
although many have not been shown to be induced by antimi-
crobials (Table 2). Three genes (PA0140, PA5469, PA4315) were
induced in human and mouse infections but not by antimicrobial
addition, and 13 other genes were induced in human infection
but not in mouse infections or by antimicrobial addition. The
prevalence of genes that were induced in human infections but
not inducible by antibiotics suggests a possible explanation for
why clinical antimicrobial susceptibilities often overestimate the
drug efficacy seen in patients. Standard media may not induce
several important resistance factors that are induced in humans,
and therefore may overestimate the bacterium’s sensitivity to an
antibiotic. It is worth noting that the above tally of genes is in
some ways conservative because it includes a larger set of anti-
microbials than any particular patient was exposed to, and also
two genes were induced only by bleach, which is not adminis-
tered to patients.
We were also able to address the important question of QS

gene expression during human infection. Although considerable
work has gone into characterizing P. aeruginosa QS, almost
nothing is known about its activity during human infection. The
P. aeruginosa las QS system is known to regulate a suite of vir-
ulence factors and over 5% of the bacterium’s genome (20). To
explore this issue, we focused on a set of 42 genes that were
previously shown to be conserved across a wide variety of isolates
(18). Our data indicate that overall, genes in the core “QS reg-
ulon” of P. aeruginosa had a considerably lower expression in
human transcriptomes compared with in vitro transcriptomes
(Fig. 3A). However, when we dug deeper, we discovered that the
in vitro samples that were most highly induced were those
growing in colony biofilms and media that promotes aggregation
(Fig. 3B). These results suggest that some laboratory growth
environments may inflate the expression of QS and other social
traits compared with human infection. It is important to re-
member that our data represent a single snapshot of gene ex-
pression; so even though these genes are relatively low in
expression during human infection, they may still be important
for bacterial fitness and could have been expressed at higher
levels in earlier stages of infection. In addition, bacteria in
chronic infections may acquire mutations that lower expression
of genes encoding social behaviors.
In an effort to determine the rules for distinguishing human

infection transcriptomes from in vitro transcriptomes, we trained
an SVM to classify the samples. Our SVM performed well in
cross-validation, which is somewhat surprising given that the
human samples and in vitro samples contained different P.
aeruginosa strains and the human infections contain a wide array
of coinfecting microbes. When we extracted the genes most re-
sponsible for the differentiation, many were either involved in
nutrient acquisition and metabolism or were hypothetical pro-
teins (Table 3). This suggests that human infections are a distinct
growth environment that likely require a unique suite of meta-
bolic pathways. Although the mexY gene was also shown to be
important for discriminating in vitro from human (Table 3), it is
likely that the transcriptional response to antibiotic administra-
tion in human infections has a minor impact on the discrimi-
nating genes as only four other genes of the 30 are inducible by
antimicrobials (PA4063, PA1797, PA1414, PA2883) (19).
For over 80 y, laboratory mice have been used as a model to

understand human infection (33). Recently, researchers have
begun asking to what degree laboratory mice recapitulate the
immune system of wild mice (33). With our human and mouse
transcriptomes, we have begun to ask the next question: to what
extent do mouse infection models recapitulate the bacterial
physiology of that in human infections? Not only are mice fun-
damentally different from humans biologically, but the P. aeru-
ginosa infection models themselves, particularly inoculation
procedures, have a significant in vitro component. A first hint
about the relation between P. aeruginosa mouse infections and
our other categories is given in the PCA in Fig. 1, wherein the
mice cluster between the human and in vitro samples. To address

this question more directly, after training our machine learning
model to distinguish human from in vitro transcriptomes, we
asked whether our mouse transcriptomes would be classified as
human or in vitro transcriptomes. We found that P. aeruginosa
murine surgical wound transcriptomes were classified as human
infections rather than as in vitro samples, while the murine
pneumonia and burn wound transcriptomes were classified as in
vitro rather than human (Table 4). It is worth cautioning that the
SVM classification we used inherently forces the mouse tran-
scriptomes into one of two categories (e.g., in vitro or human)
based on the genes it used to differentiate between those cate-
gories. As a result, it is difficult to know whether mice were in
some sense intermediate between the two categories, or if they
are very distinct and were being forced into a dissimilar class due
to the nature of binary classification. This said, the mice, on
average, have transcription levels that are intermediate between
in vitro and human samples among the SVM genes in Table 3
(Fig. S6), with burn mice consistently closer to in vitro samples
among our SVM gene set, but there is more ambiguity for the
pneumonia and surgical wound samples. With the above caveat
in mind, it seems reasonable that the P. aeruginosa surgical
wound transcriptome, which is from a self-limiting infection
model intended to mimic chronic infection, would be more
similar to our human transcriptomes since all but the burn
samples were from chronic infections. In contrast, the murine
burn and pneumonia transcriptomes are more acute mouse in-
fections and likely involve a rapid proliferation of P. aeruginosa,
which may in some ways resemble typical in vitro growth con-
ditions. It is also interesting that the murine pneumonia tran-
scriptome tended to be classified as a human chronic wound
transcriptome more than as a transcriptome from human lungs
(CF sputum) (Table 4).
Performing RNA-seq on clinical samples is a powerful ap-

proach to study natural infections because it does not require
special preparation before sampling that would disturb the bac-
terial community. This allows researchers to examine bacterial
behaviors and functions in a relatively undisturbed environment.
However, in contrast to laboratory models, neither the genetics
of the infecting bacterium nor the genetics of the host can be
manipulated. For example, although we expect most of the shifts
in expression to be caused by environmental differences, some
expression differences may be caused by bacterial mutations.
The alternative σ factor encoding gene algU, for example, was
induced in many CF sputum transcriptomes, and this could be
because mutations that induce its expression are common in
long-term infections (34). This said, many of the effects are
clearly not entirely genetically determined as chronic wound
transcriptomes from Denmark samples clustered closely with
chronic wound samples from the United States (Fig. 1B). Ad-
ditionally, the same strain often clustered differently on the PCA
(Fig. S7A), and media seemed to have a substantial impact on
clustering (Fig. S7B). Future work should begin to uncover the
interplay between bacterial genetics and environmental effects.
Although the lack of manipulative control makes teasing out
particular features of gene expression difficult, it also demon-
strates the robustness of the “human biomarkers” that we dis-
covered. Even with large differences between strains, differing
coinfecting bacteria, and variations in patient genetics, comor-
bidities, drugs, and diet, there were clear patterns across sam-
ples. Similarly, our in vitro data came from different laboratories
using different protocols for sample preparation before se-
quencing, which might impact results (Fig. S7C); however, this is
difficult to know with our data because many of the experimental
conditions differed by laboratory as well. However, even though
the samples we used were from different experiments conducted
in different laboratories, there were still underlying similarities
across the in vitro samples that made it possible to distinguish
sample types from one another. So the approach we used here is
a double-edged sword: while providing less control over partic-
ular genetic or environmental factors, it provides a more robust
assessment of the most salient features in human infections.
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Besides the issues common to any nonmanipulative experi-
ment, there are a couple caveats specific to interpreting RNA-seq
data. Recent work has demonstrated that within the lungs of
CF patients, clonally related strains of P. aeruginosa differ func-
tionally and genetically, depending on location in the lung (35).
RNA-seq only provides an average expression of the bacteria in our
sample, and so differences between subpopulations are ignored.
Although we cannot know whether specific subpopulations are re-
sponsible for the differential expression we identified, we can say
that at the population level, P. aeruginosa had high expression of
particular genes. Also, as mentioned above, RNA-seq experiments
represent only a snapshot of the population at one point in time. It
may well miss important dynamics that occurred before sampling.
Laboratory models have been essential for the progress of mi-

crobiology over the last century, but there is still a large gap between
our knowledge of bacterial growth in laboratory conditions and in
humans. It is clear that the environment in a human infection differs
fundamentally from in the laboratory. These differences include the
presence of immune cells, different nutritional sources, and the
presence of coinfecting bacteria (36). However, we know relatively
little about how these differences impact bacterial physiology in in-
fection. As more laboratories begin to conduct RNA-seq of human
infections, we will get a better understanding of bacterial physiology
and behaviors during infection. The machine learning framework we
use here will become increasingly accurate as more data are pub-
lished, providing an increasingly clear description of the transcrip-
tional signature of P. aeruginosa and other species during infection.
As acute infection data become available, it will be interesting to
compare the characteristically induced genes of these infections to
chronic infections. Future transcriptomic data will bridge the current
chasm between laboratory experiments and human infection, and will
help inform the development of more accurate in vitro models.

Methods
Bacterial Strains and Growth Media. The following strains were used in this
study: P. aeruginosa strains PAO1 (37), UCBPP-PA14 (PA14) (38), LESB58-SE021
(39), Acinetobacter baumanii strain 5075 (AB5075) (40), Staphylococcus aureus
strains TCH70 (TCH70; GenBank accession ACHH00000000.2) and LAC* (41),
Staphylococcus epidermidis (SK135; GenBank accession ADEY00000000.1), and
Micrococcus luteus SK58 (SK58; GenBank accession ADCD00000000.1). S. aureus
TCH70 and LAC* are methicillin resistant strains. Isolates were routinely grown on
tryptic soy agar incubated at 37 °C in ambient air. SCFM2 was prepared as pre-
viously described (24). Chemically definedmedia (CDM) was prepared as previously
described (19, 42). Planktonic cultures were grown at 37 °C with shaking at
225 rpm. For CDM agar plates, 2× CDM was combined with equal volumes of 3%
Noble Agar. Mops-succinate was prepared as previously described (27).

Colony Biofilms. Bacteria were grown on CDM supplemented with 20 mM
glucose (19, 42). Isolates were grown overnight in CDM glucose at 37 °C with
shaking at 250 rpm. The OD600 of the overnight culture was measured. Each
isolate was adjusted to OD600 = 1 in 200 μL of overnight culture supernatant,
which was prepared by centrifuging a 1-mL aliquot of overnight culture at
maximum speed on a tabletop centrifuge for 2 min. Isolates were combined
1:1 in the following coculture combinations: PA14 and AB5075, PA14 and
TCH70, PA14 and SK135, and PA14 and SK58. PA14 in monoculture was used
as a control. Colony biofilms were formed by spreading 40 μL of coculture or
monoculture onto a 0.2-μm nuclepore track-etch membrane (Whatman)
placed on a CDM glucose agar plate. The combined final cell concentration
was ∼2 × 107 colony forming units per strain. Cocultures were incubated at
37 °C for 5 h. Five biofilm filters were combined for each RNA-seq experi-
ment and placed in 5 mL RNAlater (Thermo Fisher Scientific).

Growth in SCFM2. P. aeruginosa was grown in SCFM2 as previously described
(24). Briefly, 500 μL of SCFM2 in four-well microchamber slides from Nunc (900 μL
per chamber) was inoculated at an OD of 0.05 of P. aeruginosa PAO1 or
LESB58-SED21, grown for 7 h, and then an equal volume of RNA later was
immediately added. Four technical replicates were combined for each bio-
logical replicate. The PA14 samples in SCFM2 were grown the same way,
except with two technical replicates combined for each biological replicate.

Datasets from Previous Studies. Datasets from several previously published
studies from our laboratory were used, including murine surgical wounds
(12), murine burn wounds (12), PAO1 planktonically grown in Mops-

succinate (12), and PA14 planktonically grown in CDM (19). Additionally,
we used data from other laboratories (8–11).

RNA Extraction and Preparation of Sequencing Libraries for RNA-Seq. In vitro
and human samples were prepared as previously described (19) with a few
modifications for the human samples. The burn sample was removed from
RNAlater and immediately placed into 1 mL RNA-Bee in bead-beating tubes
containing 0.1-mm beads (MP Biomedical). For the human chronic wounds,
large pieces of tissue were removed and placed in 2 mL RNA-bee in bead-
beating tubes and the remaining debrided tissue was spun at 14,000 × g. The
pellet of debrided tissue was resuspended in 1 mL RNA-bee and combined
with the large pieces of tissue, resulting in a total of 3 mL RNA-bee. In vitro
cultures stored in RNAlater were pelleted, resuspended in 1 mL RNA Bee,
and transferred to bead-beating tubes. Cells were lysed by bead beating
three times for 60 s, and the tubes placed on ice for 1 min between each
homogenization. Amounts of 200 μL of chloroform per 1 mL of RNA-bee
were added, and the tubes were shaken vigorously for 30 s and incubated on
ice for 5 min. Samples were centrifuged at 12,000 × g for 15 min at 4 °C to
separate the aqueous and organic phases. The top aqueous phase from each
tubewas transferred to a newmicrocentrifuge tube to which 0.5 mL isopropanol
per 1 mL of RNA-bee was added, and the tubes were incubated at room tem-
perature for 10 min. Amounts of 20 μg of linear acrylamide were added to the
tubes, and the samples were centrifuged at 12,000 × g for 5 min at 4 °C. The
pellets were washed with 1 mL 75% ethanol, air dried for 10 min, and resus-
pended in 25 μL of RNase-free water. The RNA concentration for each sample was
determined with a NanoDrop spectrophotometer (Thermo Fisher Scientific). Ri-
bosomal RNA was depleted using the RiboZero bacteria kit (Epicentre) for the in
vitro samples and the RiboZero epidemiology kit (Epicentre) for the human sam-
ples and then purified by ethanol precipitation using 12.5 μg linear acrylamide to
precipitate the RNA. The depleted RNA was fragmented for 4 min for in vitro
samples and 2 min for human samples and cDNA libraries were prepared as de-
scribed previously (39). Libraries were sequenced at the Genome Sequencing and
Analysis Facility at the University of Texas at Austin on an Illumina HiSeq. 4000
50 bp, an Illumina HiSeq. 2500 100 bp, or NextSeq. 500 75 bp single-end run.

Bioinformatic Analyses. RNA-seq readswere trimmedusing Cutadapt 1.13, using
aminimum read length threshold of 25 bases (43). The non-P. aeruginosa species
from our samples were identified using CLARK 1.2.3 (using an abundance cut-
off of 2% in at least one human sample), and we built a metagenome by
downloading from the National Center for Biotechnology Information at least one
genome from each of these 53 species, in addition to S. epidermidis. This list likely
overestimates the bacterial species in our samples, and some species identified are
likely different, but closely related species, to what actually was in the sample. This
said, non-P. aeruginosa reads should map to the similar decoy species better than
to P. aeruginosa. For all samples, reads were mapped to this metagenome using
Bowtie 2.2.6 with the default parameters for end-to-end alignment (44). We re-
moved the reads that mapped from our trimmed reads files using Seqtk (45), and
mapped the remaining reads to a pangenome of 28 additional P. aeruginosa
strains. These strains were from the P. aeruginosa PAO1 ortholog database curated
by Pseudomonas.com (46). Reads were then tallied for each gene using Rsubread
1.26.1 (47). We chose a subset of 1,707 genes such that each gene had least one
read mapping to it for a large set of our samples (Fig. S2). This set of genes was
used in our analyses unless stated otherwise.

The PCA plots included only the 1,707 genes mentioned above that were
shared by all our selected samples, while the differential expression analysis
used in the antibiotics and QS comparisons used all PAO1 genes. These data
were normalized with DESeq2’s rlog function. Differential expression was then
determined with DESeq2 (29). The enriched pathway analysis was conducted
using the BioCyc P. aeruginosa database through the BioCyc website, with P
values input without an additional multiple-comparison correction (48). This
provided enriched categories based on a Fisher’s exact test, using Grossmann’s
parent–child-union variation, which corrects for hierarchical effects in gene
sets (49). Plotted in Fig. 2 are genes with a P-adjusted value of <0.05. In de-
termining the differential expression of the core QS regulon of P. aeruginosa
between in vitro and human transcriptomes, we calculated the ratio of the
geometric means in relative expression for each gene. In calculating the mean
for each QS gene, we omitted samples that had fewer than three reads, and for
consistency, when calculating the relative expression of each QS gene in each
sample, we omitted counts of other genes with fewer than three mapped reads.

For the machine learning component of the paper, gene selection and
normalization was performed using the R package DaMIRSEq. 1.2.0 (25). For
distinguishing in vitro samples from mouse samples, we used a correlation
cutoff of 0.5 for the partial least-squares feature selection (FSelect), and the
default correlation coefficient for the redundant feature removal (FReduct).
For distinguishing sputum from soft tissue, we used a correlation threshold
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of 0.4 for FSelect. We chose nondefault values for the FSelect threshold
because this value is limited by the correlation between PC’s and class in the
data; however, this parameter did not impact our results qualitatively. The
gene-selection process was repeated 20 times, and the top 30 scoring genes
were used to train the SVM. We then used the R package Caret 6.0-78 for
SVM model training and prediction, using SVMLinear2 (from the e1071 package
implementation) for our kernel (26, 50). When determining how the mice were
classified, we repeated the above process, except iterating it 50 times for each of
the two comparisons in Table 4; runs where too few features were identified
were discarded. Using the model fit from each trained run, we determined the
probability score from the 50 classifications.

Ethical Statement. For United States chronic wound samples, patients were
enrolled in this study at the Southwest Regional Wound Care Center in
Lubbock, Texas, and provided consent under a protocol that was approved
by the Western Institutional Review Board (WIRB PRO NUM: 20062425). For
burn wound samples, this study was approved by the Texas Tech University
Health Sciences Center Institutional Review Board (IRB#L13-092). Written
consent was obtained upon the patient’s admission to the Timothy A. Harnar
Burn Unit at University Medical Center, Lubbock, Texas, by a staff member of
the Clinical Research Institute at the Texas Tech University Health Sciences
Center in compliance with ethical practices. If the patient was unable to pro-

vide written consent, written consent was obtained from designated next of
kin by a Clinical Research Institute staff member according to the protocol
approved by the Institutional Review Board. No children were involved in this
study. For Denmark CF sputum samples, the sampling was approved by the
Regional Ethics Committee of Copenhagen, Denmark (H-15008060) and with
permission by signed informed consent of the patients. For Denmark chronic
wound samples, the sampling was approved by the Regional Ethics Committee
of Copenhagen, Denmark (H-15020632) and with permission by informed
consent of the patients.

ACKNOWLEDGMENTS. We thank Sophie Darch for help with SCFM2 cultures;
Rebecca Gabrilska, Camilla Stavnsbjerg, and Blaine Fritz for help acquiring
clinical samples; the contribution of the Texas Tech University Health Sciences
Center Clinical Research Institute and the Burn Center of Research Excellence
for their assistance with this study; and the Texas Advanced Computing Center
at The University of Texas at Austin for providing HPC resources that have
contributed to the research results reported within this paper. This study was
funded by National Institutes of Health Grant R01GM116547-01A1 (toM.W.); a
Human Frontiers Science grant (to M.W.); Cystic Fibrosis Foundation Grant
WHITEL16G0 (to M.W.); Lundbeck Foundation Grant R204-2015-4205 (to T.B.
and M.W.); and Lundbeck Foundation Grant R105-A9791 (to T.B.). D.M.C. and
C.B.I. were supported by Cystic Fibrosis postdoctoral Fellowships CORNFO15F0
and IBBERS16F0, respectively.

1. Lagier J-C, et al. (2015) Current and past strategies for bacterial culture in clinical
microbiology. Clin Microbiol Rev 28:208–236.

2. Bielecki P, et al. (2014) In vivo mRNA profiling of uropathogenic Escherichia coli from
diverse phylogroups reveals common and group-specific gene expression profiles.
MBio 5:e01075–14.

3. Gangaiah D, et al. (2016) Haemophilus ducreyi seeks alternative carbon sources and
adapts to nutrient stress and anaerobiosis during experimental infection of human
volunteers. Infect Immun 84:1514–1525.

4. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL (2010) Escherichia coli global gene
expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187.

5. Subashchandrabose S, et al. (2014) Host-specific induction of Escherichia coli fitness
genes during human urinary tract infection. Proc Natl Acad Sci USA 111:18327–18332.

6. Xu Y, et al. (2016) In vivo gene expression in a Staphylococcus aureus prosthetic joint infection
characterized by RNA sequencing and metabolomics: A pilot study. BMC Microbiol 16:80.

7. Jorth P, et al. (2014) Metatranscriptomics of the human oral microbiome during
health and disease. MBio 5:e01012-14.

8. Tata M, et al. (2016) RNASeq based transcriptional profiling of Pseudomonas aeru-
ginosa PA14 after short-and long-term anoxic cultivation in synthetic cystic fibrosis
sputum medium. PLoS One 11:e0147811.

9. Gifford AH, et al. (2016) Use of a multiplex transcript method for analysis of Pseudomonas
aeruginosa gene expression profiles in the cystic fibrosis lung. Infect Immun 84:2995–3006.

10. Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M (2016) Dual-seq tran-
scriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine
pneumonia. Sci Rep 6:39172.

11. Dötsch A, et al. (2015) The Pseudomonas aeruginosa transcriptional landscape is
shaped by environmental heterogeneity and genetic variation. MBio 6:e00749-15.

12. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M (2014) Requirements for
Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS
Genet 10:e1004518.

13. Ounit R, Wanamaker S, Close TJ, Lonardi S (2015) CLARK: Fast and accurate classification of
metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236.

14. Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeru-
ginosa. Microbiol Mol Biol Rev 74:621–641.

15. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of mi-
crobes. Annu Rev Ecol Evol Syst 38:53–77.

16. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in
quorum-sensing bacterial populations. Nature 450:411–414.

17. Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M (2009) Global position analysis
of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol
Microbiol 73:1072–1085.

18. Chugani S, et al. (2012) Strain-dependent diversity in the Pseudomonas aeruginosa
quorum-sensing regulon. Proc Natl Acad Sci USA 109:E2823–E2831.

19. Murray JL, Kwon T, Marcotte EM, Whiteley M (2015) Intrinsic antimicrobial resistance
determinants in the superbug Pseudomonas aeruginosa. MBio 6:e01603-15.

20. Hinz A, Lee S, Jacoby K, Manoil C (2011) Membrane proteases and aminoglycoside
antibiotic resistance. J Bacteriol 193:4790–4797.

21. Son MS, Matthews WJ, Jr, Kang Y, Nguyen DT, Hoang TT (2007) In vivo evidence of
Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic
fibrosis patients. Infect Immun 75:5313–5324.

22. Cerasi M, Ammendola S, Battistoni A (2013) Competition for zinc binding in the host-
pathogen interaction. Front Cell Infect Microbiol 3:108.

23. Kim S-H, Park S-Y, Heo Y-J, Cho Y-H (2008) Drosophila melanogaster-based screening
for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of
a virulence-attenuating factor, HudA. Infect Immun 76:4152–4162.

24. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M (2015) Essential genome of
Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci USA 112:4110–4115.

25. Chiesa M, Colombo GI, Piacentini L (2018) The DaMiRseq package-data mining for RNA-
Seq data: Normalization, feature selection and classification. Bioinformatics 34:1416–1418.

26. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw
28:1–26.

27. Palmer KL,Mashburn LM, Singh PK,WhiteleyM (2005) Cystic fibrosis sputum supports growth
and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277.

28. Yu NY, et al. (2010) PSORTb 3.0: Improved protein subcellular localization prediction
with refined localization subcategories and predictive capabilities for all prokaryotes.
Bioinformatics 26:1608–1615.

29. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biol 15:550.

30. Petrova OE, Cherny KE, Sauer K (2015) The diguanylate cyclase GcbA facilitates Pseu-
domonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol 197:174–187.

31. Petrova OE, Cherny KE, Sauer K (2014) The Pseudomonas aeruginosa diguanylate cyclase
GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but
not biofilm formation, via regulation of motility. J Bacteriol 196:2827–2841.

32. Kuhn M (2012) Variable selection using the caret package. Available at https://r-forge.
r-project.org/scm/viewvc.php/*checkout*/pkg/caret/inst/doc/caretSelection.pdf?revision=
77&root=caret&pathrev=90. Accessed March 2, 2018.

33. Yang H, et al. (2011) Subspecific origin and haplotype diversity in the laboratory
mouse. Nat Genet 43:648–655.

34. Firoved AM, Deretic V (2003) Microarray analysis of global gene expression in mucoid
Pseudomonas aeruginosa. J Bacteriol 185:1071–1081.

35. Jorth P, et al. (2015) Regional isolation drives bacterial diversification within cystic
fibrosis lungs. Cell Host Microbe 18:307–319.

36. Ibberson CB, et al. (2017) Co-infecting microorganisms dramatically alter pathogen
gene essentiality during polymicrobial infection. Nat Microbiol 2:17079.

37. Whiteley M, et al. (2001) Gene expression in Pseudomonas aeruginosa biofilms.
Nature 413:860–864.

38. Rahme LG, et al. (1995) Common virulence factors for bacterial pathogenicity in
plants and animals. Science 268:1899–1902.

39. Darch SE, et al. (2015) Recombination is a key driver of genomic and phenotypic diversity
in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 5:7649.

40. Jacobs AC, et al. (2014) AB5075, a highly virulent isolate of Acinetobacter baumannii, as a
model strain for the evaluation of pathogenesis and antimicrobial treatments. MBio 5:
e01076-14.

41. Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in
polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5:e10146.

42. Socransky SS, Dzink JL, Smith CM (1985) Chemically defined medium for oral micro-
organisms. J Clin Microbiol 22:303–305.

43. Martin M (2011) Cutadapt removes adapter sequences from high-throughput se-
quencing reads. EMBnet J 17:10–12.

44. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat
Methods 9:357–359.

45. Li HS (2015) A toolkit for processing sequences in FASTA/Q formats. Available at
https://github.com/lh3/seqtk. Accessed March 2, 2018.

46. Winsor GL, et al. (2016) Enhanced annotations and features for comparing thousands
of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res
44:D646–D653.

47. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: Fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Res 41:e108.

48. Caspi R, et al. (2007) The MetaCyc database of metabolic pathways and enzymes and
the BioCyc collection of pathway/genome databases. Nucleic acids Res 36:D623–D631.

49. Grossmann S, Bauer S, Robinson PN, Vingron M (2007) Improved detection of over-
representation of Gene-Ontology annotations with parent child analysis. Bioinformatics
23:3024–3031.

50. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2011) e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien. R package Version 1.5-27. Available
at CRAN.R-project.org/package=e1071. Accessed March 2, 2018.

E5134 | www.pnas.org/cgi/doi/10.1073/pnas.1717525115 Cornforth et al.

https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/caret/inst/doc/caretSelection.pdf?revision=77&root=caret&pathrev=90
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/caret/inst/doc/caretSelection.pdf?revision=77&root=caret&pathrev=90
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/caret/inst/doc/caretSelection.pdf?revision=77&root=caret&pathrev=90
https://github.com/lh3/seqtk
http://CRAN.R-project.org/package=e1071
www.pnas.org/cgi/doi/10.1073/pnas.1717525115

