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Abstract: Staphylococcal enterotoxins are the most common cause of foodborne intoxications
(staphylococcal food poisoning) and cause a wide range of diseases. With at least six variants
staphylococcal enterotoxin C (SEC) stands out as particularly diverse amongst the 25 known
staphylococcal enterotoxins. Some variants present unique and even host-specific features. Here, we
review the role of SEC in human and animal health with a particular focus on its role as a causative
agent for foodborne intoxications. We highlight structural features unique to SEC and its variants,
particularly, the emetic and superantigen activity, as well as the roles of SEC in mastitis and in dairy
products. Information about the genetic organization as well as regulatory mechanisms including the
accessory gene regulator and food-related stressors are provided.

Keywords: staphylococcal food poisoning; SEC; superantigen; emesis; host specificity

Key Contribution: We summarize recent findings on SEC with a particular focus on protein structure,
emetic activity, and superantigenic properties. Special attention is given to the large number of
host-specific variants of this toxin.

1. Introduction

Foodborne illnesses are one of the world’s leading health issues. They are estimated to cause
420,000 deaths every year and generate health costs and economic losses in the range of 110 billion USD
worldwide [1]. One of the most common causative agents for food intoxications are staphylococcal
enterotoxins (SEs). These exotoxins are preformed by Staphylococcus aureus in food and cause intoxication
upon ingestion. In the EU alone, 114 cases of foodborne outbreaks were attributed to these heat-stable
SEs in 2018 [2]. Symptoms of staphylococcal food poisoning (SFP) include violent vomiting, diarrhea,
fever, and unspecific symptoms like headache and nausea. Due to the generally-quick recovery of
patients, the number of cases is likely being underestimated [3,4].

SEs are produced by S. aureus during growth, alongside a number of other virulence factors.
The organism can not only cause food intoxications but also various infectious diseases including
toxic shock syndrome (TSS) [5–7]. Staphylococcal virulence factors include exopolysaccharides,
surface-associated protein adhesins, immune modulators, and exoproteins including a variety of
toxins [8]. Staphylococcal virulence factors [9,10] and their role in both infectious diseases [6,11] and
food intoxications [12,13] have been previously reviewed. The most relevant secreted toxins are SEs,
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hemolysins, leukotoxins, exfoliative toxins, and toxic shock syndrome toxin (TSST-1) [14]. So far, 25
SEs (SEA–SElZ) have been described, excluding variants and TSST-1 (formerly SEF), but new types
are frequently discovered [12]. Non-emetic toxins or not-yet-tested ones are referred to as SE-like
(SEl) [15]. These peptides are all classified as pyrogenic toxin superantigens (SAgs) and have the
ability to mobilize large proportions of T-cells (20–30%) [16–18]. The first enterotoxin SEA was isolated
in 1959 [19,20], shortly followed by SEB and SEC [21,22]. All newly-discovered enterotoxins have
subsequently been named alphabetically. The genetic location of SEs differs greatly between toxins and
can even vary within the same type of SE (Table 1). SEA–SEE are considered "classical enterotoxins",
while SEG–SElZ are termed "new enterotoxins". Historically, classical toxins were demonstrated to be
emetically active in rhesus monkey feeding assays, while new toxins were either not emetic or had not
been tested in monkeys [12,23]. However, this distinction has become obsolete since many new toxins
were later recognized as emetically active in rhesus monkey feeding assays [24], and new toxins were
found as causative agents for SFP [25,26]. Additionally, smaller mammals such as ferrets or the house
musk shrew were proposed as models to simplify testing [27,28]. So far, commercial antibodies can
only be obtained for classical SEs.

Originally, SEs were differentiated by immunological methods, whereas today it is recommended
to identify the relationship of new toxins via sequence homology (where >90% sequence homology
equals a toxin variant and <90% homology determines a new toxin) [15]. SEC takes on a special role in
this terminology, since several variants, often even host-specific ones, have been described [29,30]. In
particular, the ruminant-adapted toxin variants SECbovine and SECovine show the exceptional ability of S.
aureus to adapt to different niches. SEC is by far the most-frequently-isolated toxin in animals suffering
from mastitis [31–34]. Additionally, SEC alone was shown to cause inflammation, proinflammatory
cytokine production, and tissue damage in mammary glands. SEC might therefore play an important
role in the development of mastitis associated with S. aureus infection. [31]. There are some reports
of SEC also being involved in human post-partum mastitis. [35]. Contaminated ruminant milk can
also provide an entry-point for S. aureus or its toxins into the food-chain. In addition to TSS, mastitis,
and food intoxication SEC seems to play a critical role in the development of infective endocarditis
and atopic dermatitis [36,37]. Other diseases that are associated with SEs in general include severe
nasal polyposis, perineal erythema, desquamative inflammatory vaginitis, and sudden infant death
syndrome [38].

An overview of different SEC variants and their relationships is given in Table 1 and Figure 1.
While other Staphylococcus species can produce SEC and variants such as SECcanine [39], this review
will focus exclusively on S. aureus SECs. The great variety of SEs and their genomic location further
complicates the intricately-intertwined regulatory pathways of S. aureus virulence factors. Previously,
SEs in general [4,16,40,41], as well as SEB specifically and its role as a potential bioweapon [42,43]
have been reviewed in depth. Information on SEC and its pathogenic role in food intoxication and
infection is, however, limited. Potential differences in virulence and toxicity for SEC variants further
obscure research efforts. Here, we provide an overview of the role of SEC in foodborne intoxications
and clinical manifestations and summarize recent findings in SEC characterization with special regard
to the many facets of its variants.
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Figure 1. (A) Similarity tree based on staphylococcal enterotoxins (SE) sequences including signal peptides—close-up of SEC sequences. The tree was constructed
with CLC genomics workbench 12. Colors indicate phylogenetic pyrogenic toxin superantigen (Sag) groups according to Wilson et al., 2018 [92]. * SEH has been
assigned to group III or separately in group IV. (B) Similarities between SEC variants including signal peptides. The upper right half shows similarity in %. The lower
left half shows amino acid differences in absolute numbers. Colors indicate sequence similarity with red = low and blue = high. a Protein sequences are available
under the accession numbers indicated in Supplementary Table S1. (C) Ribbon diagram of SEC2. The N terminal domain is colored in light blue, the C-terminal
domain in orange. The disulphide bridge and loop are colored in yellow. Binding sites are labelled. The two zinc ions are indicated with black spheres. α-helices and
β-sheets are numbered from N to C terminus. PDB file accession number is indicated in Supplementary Table S1.
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Table 1. Staphylococcal enterotoxin gene location and emetic activity. Adapted from [4,12,44,45]. nd =

not determined.

Enterotoxin/Enterotoxin-Like
SAg

Emetic
Activity Associated Genetic Element References

SEA +
Prophage (ϕSa3ms, ϕSa3mw, ϕ252B,

ϕNM3, ϕMu50a) [19,46–49]

SEB +
SaPIs (SaPI1, SaPI2, SaPI3, SaPI4, SaPImw2,

SaPIrki4)
Plasmid (pZA10)

[50–54]

SEC +
SaPIs

Plasmid [55–57]

SEC1 + SaPINuSAα2 a, pZA10 [53]

SEC2 + SaPITokyo a [58]

SEC3 + SaPIn1/SaPIm1 b [59,60]

SEC4 nd SaPImw2 [61]

SECbovine nd SaPIbov1 [30,62]

SECovine nd SaPIbov5 a, SaPIov1 [30,62,63]

SED + Plasmid (pIB485-like) [64–66]

SEE + Prophage(hypothetical) [67,68]

SEG +
egc (egc1–4)

Prophage (ϕSa3ms) [61,69–72]

SEH + Transposon (MGEwm2/mssa476 seh/∆seo) [61,73–75]

SEI + egc (egc1–3) [69,70,76]

SElJ nd Plasmid (pIB485-like, pF5) [27,77,78]

SEK +
SaPIs (SaPIbov1, SaPI1, SaPI3, SaPI5)

Prophage (ϕSa3ms, ϕSa3mw) [24,61,71,79,80]

SEL +
SaPIs (SaPIbov1, SaPI3, SaPIn1, SaPIm1,

SaPImw2) [24,57,80–82]

SEM + egc (egc1–2) [24,69,70,80]

SEN + egc (egc1–4) [24,69,70,80]

SEO +
egc (egc1–4)

Transposon (MGEwm2/mssa476 seh/∆seo) [24,69,70,80]

SEP + Prophage (ϕSa3n, ϕN315, ϕMu3A) [24,83]

SEQ +
SaPIs (SaPI1, SaPI3, SaPI5)

Prophage (ϕSa3ms, ϕSa3mw) [24,84,85]

SER + Plasmid (pIB485-like, pF5) [77,86]

SES + Plasmid (pF5) [86]

SET + Plasmid (pF5) [86]

SElU nd egc (egc2–3) [87,88]

SElU2
c nd egc (egc4) [88]

SElV nd egc (egc4) [88]

SElW nd Chromosome [89]

SElX nd Chromosome [90]

SElY nd Chromosome [91]

SElZ nd Chromosome [92]
a S. aureus pathogenicity islands (SaPIs) were determined via NCBI nucleotide BLAST, accession numbers can be
found in Table S1. b SaPIm1 (MU50) and SaPIn1 (N315) are identical [93]. c SElU2 was suggested to be renamed
into SElW but since sequence similarity with SElU is 94% we recommend using SElU2 [94], this also facilitates
discrimination from chromosomal SElW [89].

2. SEC in Food Intoxication

A striking feature of SEs is their emetic activity. It provokes vomiting, the key symptom in SFP.
Some SEs, but not SEC also cause diarrhea [95]. The exact biological purpose of these properties is
still unclear. A function in pathogen spread through emesis or diarrhea seems unlikely since S. aureus
survives very poorly in gastric juice [96]. Still, it has been suggested that S. aureus intestinal carriage
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rate ranges from 8–31% in the healthy population [97]. It is therefore possible that the gastric activity
of enterotoxins supports persistence or epithelial barrier invasion of S. aureus.

Most SFP outbreaks are attributed to SEA, although there might be some bias since enterotoxins
other than SEA–SEE cannot be detected using commercial kits. Many strains produce multiple
toxins and it is often unclear which enterotoxin was the cause for SFP. Synergistic effects of different
toxins are also likely. Some outbreaks could be traced back to SEC presumably being the only SE
involved [4,98–100]. SFP can occur with any food that provides sufficient carbon and amino acid
sources for S. aureus growth. The pathogen is usually introduced by food handlers and produces SEs
if conditions allow bacterial growth in the food matrix [12]. Most cases of SFP can be prevented by
adequate hygiene measures and intact cooling chains [101]. Due to the heat tolerance of SEs, reheating
foods may eliminate S. aureus but SEs remain emetically active [3]. SEs are generally very resilient
towards external stressors such as heat, acidity, and gastric enzymes [16]. Once SEs reach the small
intestine, they enter the lamina propria through mucus-producing goblet cells or epithelial cells [102].
This process may be facilitated in the presence of other S. aureus virulence factors [103]. SEA was shown
to stimulate 5-hydroxytryptamine (serotonin) and histamine release from mast cells [104,105]. However,
it is generally assumed that this principle applies for all emetic SEs in possession of the disulphide
loop (see chapter 4). Serotonin acts on the vagus nerve by evoking an emetic response [106]. The role
of T-cell and neutrophil activation is unclear, but may be a contributing factor in gut epithelial invasion
of S. aureus [45]. The involvement of the vagus nerve was demonstrated in very early experiments
showing that monkeys did not present emetic symptoms upon SE ingestion after a vagotomy [107].
The basic principle of SE-induced emesis is illustrated in Figure 2.

Figure 2. Mechanism of SE emetic activity as proposed by Fisher et al., 2018 [45]. Enterotoxins enter
through epithelial or mucus producing goblet cells. The activation of mast cells leads to release
of serotonin. Serotonin stimulation of the vagus nerve provokes an emetic response. T-cells and
neutrophils are activated as well but their role remains unclear. The figure was adapted from the original
publication. Schematic illustrations were created using Servier medical art: https://smart.servier.com.

Whether SEC variants have a different emetic potential is unclear. SEC1 [108], SEC2 [21], and
SEC3 [60] have been tested in the monkey-feeding assay, but administered amounts varied, and different

https://smart.servier.com
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extraction methods were applied. SEC2 was also tested in the house musk shrew [27]. Therefore, the
results cannot be directly compared.

SEC in Milk and Dairy Products

Intoxications caused by SEs are the most common cause of food poisoning after consumption of
raw milk or products made thereof. SEC and SEA are the most-commonly-occurring SEs in milk and
dairy products [13,109–112]. In raw milk samples from Sweden, S. aureus was found with a prevalence
of up to 71% [113]. This likely stems from the frequent occurrence of SEC in intramammary infections
in milk-producing animals [31].

The effect of milk on SE production has been investigated experimentally. When S. aureus was
grown in milk the expression of SEC was significantly reduced. Downregulation of the agr system
(see chapter 5) likely contributed to the observed reduction, but other factors are also expected to be
involved [114]. The effect of heat treatment on the activity of staphylococcal enterotoxins of type A, B,
and C in milk was investigated for pasteurization temperatures [115] and higher temperatures [116].
The amount of detectable SEC could be reduced by heat treatment at 100 ◦C and above. Another
study investigated the production of SECbovine in milk and during cheesemaking. S. aureus numbers
increased during cheesemaking but did generally not reach the >108 CFU/mL required for SECbovine

detection in this food matrix. The influence of the added starter culture was not investigated in
detail [117]. Recently, the impact of Weissella paramesenteroides GIR16L4 or Lactobacillus rhamnosus
D1 or both together used as starter cultures on the expression of S. aureus SEC was examined. The
starter cultures were not able to reduce S. aureus growth, but they influenced toxin expression in
some strains [118]. Lactic acid bacteria or their metabolites could impact quorum sensing of S. aureus
and therefore influence agr-regulated SEs. In another trial, Staphylococcus vitulinus was used as a
starter culture to successfully inhibit SEC-producing S. aureus growth in a barbeque cheese production
facility [119].

3. Superantigenic Activity of SEC

All SEs are classified as SAgs. In contrast to normal antigens, they bind to MHCII in a location
adjacent to the peptide groove. They thus stimulate T-cell receptors (TCRs) in a non-specific way by
cross-bridging them with major histocompatibility complex class II (MHCII) on antigen-presenting
cells (APC). The resulting global overstimulation of T-cells interferes with immune system functions
that normally counteract bacterial infections [38]. In infectious diseases SAgs therefore contribute
substantially to transcytosis and immune system evasion [120]. In addition, SEC activation of
T-lymphocytes has been exploited for anti-cancer drug development [121]. In spite of advances in
SEC research and related drug development, the role of superantigenic activity in food intoxications
remains unknown.

The exact location of MHCII binding varies, depending on the SE. Group II antigens, including
SEC, bind to the low-affinity α-chain [94]. The resulting mobilization efficiency is 10–100-fold lower
for these SAgs than for group III or V SAgs. This is compensated for by the considerably-higher
production of these compounds by S. aureus [38].

TCR binding is specific to the variable region Vβ of the receptor [17,122] (Figure 3). This
results in massive Vβ-dependent T-cell proliferation and subsequent release of pro-inflammatory
cytokines [38,94]. Which Vβ subfamilies are stimulated, again depends on the SAg and can even
vary between different variants [92]. The following human Vβ-specificity was found for variants
SEC1–3: C1: 3.2, 6.4, 6.9, 12, 15.1; C2: 12, 13, 14, 15, 17, 20; and C3: 5.1, 12 [123–125]. SECbovine has
been shown to specifically activate the Vβ repertoire of cattle [126]. Furthermore, when different SEC
variants were compared, SECovine strains showed a particularly-strong response in cattle peripheral
blood mononuclear cells (PBMCs) [30]. This adaptation of SAgs to mobilize specific T-cell populations
contributes to the capacity of S. aureus to adapt to different host species [92]. Even in variants not linked
to different hosts, functional differences are apparent. When compared in an MHCII-deficient cell line,
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SEC1 was able to still induce T-cell proliferation, but SEC2 and SEC3 were not. A few specific amino
acids near the NH2-terminus seem to be responsible for this difference [127]. However, many of the
specific differences between variants with regard to the interferon response are not fully understood.
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Figure 3. (A) Schematic representation of superantigenic activity of SEC. Schematic illustrations are
from Servier medical art: https://smart.servier.com. (B) Model of SEC3 bound to MHC II α1 and TCR
Vβ. SEC3 is colored in green, TCR in blue, MHC II in cyan, and the normal antigen in red. The model
was composed with pyMOL v2.4.0 from two separate models of SEC3 complexed to MHC II, and SEC3

complexed to TCR. PDB accession numbers can be found in Supplementary Table S1.

Another factor adding to the immunostimulatory properties of SEs is their ability to co-bind CD28
on T-cells [128]. This has only been demonstrated for SEB [129] but the structural resemblance with
SEC suggests that these findings may also apply to SEC.

One of the consequences of the overshooting T-cell proliferation is potentially fatal toxic shock
syndrome (TSS). TSS was originally attributed to toxic shock syndrome toxin (TSST-1) and the use of
high-absorbing tampons [130]. However, it was demonstrated that non-menstrual TSS can also be
caused by SEC and other SEs [81,131]. Long-term exposure to SEs and their superantigenic activity has
reportedly been associated with auto-immune diseases such as psoriasis, atopic dermatitis, systemic
lupus erythematosus, and, potentially, Kawasaki disease [94]. Food intoxication symptoms like fever
and malaise can be attributed to superantigenic activity.

4. Physical and Chemical SEC Protein Properties

All SEs share almost identical structural features, although their amino acid sequences vary. In
addition, they are structurally related to streptococcal SAgs such as streptococcal pyrogenic exotoxins
(SPEs). They are water-soluble peptides with a length of 220–270 aa and have a molecular weight of
~22–29 kDa [4]. Mature SEC, specifically, is 239 aa in length (not including the 27 aa signal peptide at
the N-terminus) and has a molecular weight of 27.5–27.6 kDa, depending on the variant.

https://smart.servier.com
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Sequence similarity of SEs ranges from ~20% to >95%, whereby 15% of amino acids mostly located
on the central and C-terminal portions are entirely conserved [16,40]. In regard to its sequence, SEC is
most similar to SEB [3]. Within SEC, variants SEC2 and SEC4 are almost identical with only two aa
differences, while SEC3 and SECovine differ the most with 18 aa. Sequence similarity amongst SEC
variants is at least 93% (Figure 1, Figure S1). Interestingly, the signal peptide of SEC3 is identical to the
one of SEB and therefore differs substantially from the other SEC variants. However, to date there is no
indication of a different secretion mechanism [132–135].

As for many other SEs, the crystal structure of some SEC variants has been resolved [136–139].
The peptide consists of two unequal domains. The larger one contains a β-grasp fold formed by five
β-sheets and an α-helix (β6–β12 & α5). The smaller one comprises a Greek key motif of β-sheets, also
known as the oligosaccharide/oligonucleotide fold (OB-fold) found in numerous other bacterial toxins
and small α-helixes (β1–β5 and α3, α4, and α6) [4]. The binding sites involved in superantigen activity
of SEs have been partially identified [140,141]. The shallow cavity between the two domains binds
TCR while major histocompatibility complex class II (MHCII) binding is guided by a region in the
N-terminal domain (Figure 1) [4]. It is believed that subtype-specific antigenic epitopes are determined
by the N-terminus of SECs, while conserved C-terminal regions define antigenic epitopes shared with
other pyrogenic toxins [59].

Like some other SEs and SPEs, SECs have two zinc-binding domains close to the MHCII binding
site possibly involved in dimerization and MHCII binding mode [137–139]. However, SEC can
bind to MHC class II molecules outside the groove on the flanking helix from the α chain via the
zinc-independent MHCII binding site [16,138,142].

A distinct disulphide loop (also termed cystine loop) present in all emetic SEs and absent in some
weakly- or non-emetic types has been implicated in the toxin’s emetic activity (in the N-terminus
between β4 and β5). Structural analyses in SEC have confirmed the important role of the disulphide
loop in emesis. Substitution of the two cysteines to alanine in SEC1 resulted in loss of emetic activity,
however changing the residues to serine did not [143]. This was explained by the ability of serine
hydrogen bonds to stabilize the critical loop structure as in the case of the disulphide bond [143]. These
findings highlight the importance of the structural conformation, while the chemical makeup itself
seems not to be crucial. Therefore, it is the tertiary structure rather than the disulphide bond itself that
is responsible for emesis induction.

Mutational analysis in SEA revealed that emetic and superantigenic properties can be attributed
to different regions of the peptide, hence separating emesis and superantigenic activity as two different
functions of SEs [144,145]. In the case of SEC, it was shown that a lack of the disulphide bond did
not affect superantigen activity in an early experiment [143]. However, some articles suggest that
even though emetic and superantigen properties are localized in two different regions, they still partly
correlate with each other [145]. In particular, superantigen activity seems to depend on multiple
domains whereas emetic activity can be allocated more clearly to a specific region [13]. A later study
found that regions 21–51 and 81–100 were essential for both emesis and superantigenicity in SEA [146].
To what extent these finding apply to SEC is unclear.

5. Genetic Localization and Regulation of SEC

Genes coding for SEC (sec) are generally located on a S. aureus pathogenicity islands (SaPIs), but
plasmids carrying sec have also been described [30,55,57]. SaPIs are mobile genetic elements that
harbor many virulence factors and likely contribute to S. aureus evolution via horizontal gene transfer.
They derived from prophages and require helper phages for transmission [93]. The sec gene has been
described in SaPIbov1, SaPIn1/m1, SaPImw2, SaPIov1, and SePI1. Moreover a BLAST search resulted
in SaPINuSaα2, SaPITokyo, and SaPIbov5 (Table 1) [56]. Incidentally, NCBI GenBank contains multiple
WGS that include sec in regions containing SaPI-related features although they may not be annotated as
such. It is often co-localized with tst-1, the gene coding for toxic shock syndrome toxin-1 (TSST-1) [57].
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The expression of SEC is highest at late exponential to stationary phase [147]. It is regulated by
the quorum-sensing system of the accessory gene regulator (agr) that uses autoinducing peptides (AIP).
It acts on toxin transcription indirectly via RNAIII that represses the repressor of toxins (rot) [148–152].
Additionally, SarA, σB, and SaeRS may play a role in regulation of SEC when environmental factors
change (Figure 4) [45,153,154]. Food-related stressors such as glucose or NaCl have been shown to
influence SEC expression. In an early study, glucose led to reduced extracellular SEC concentrations.
Furthermore, an intact agr system was not required for the effect of glucose on sec expression [149]. In
a later study, the expression of sec was shown to be regulated in response to high NaCl concentrations.
The results demonstrated that osmoregulation of SEC occurs at the level of mRNA independently of
an intact agr allele. Osmoprotective compounds did enhance SEC expression [148]. In an older study
on the effect of NaCl and pH on SEC production it was not possible to demonstrate SEC production in
broths with 12% NaCl and a pH range of 4.50 to 8.55 [155].
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Figure 4. Regulatory pathways involved in sec transcription. The quorum-sensing Agr system acts
on sec transcription indirectly. AgrA induces RNAIII which represses the repressor of toxins (Rot),
consequently allowing transcription of the sec gene. SarA, σB, and SaeRS might play an additional role
in transcriptional regulation when environmental stress signals act on the cells.

In conclusion, under both glucose and NaCl stress sec mRNA and SEC protein levels were
considerably reduced [148,149,155]. It is unclear whether the different genetic locations of SEC variants
influence transcriptional regulation. Many external stressors and their influence on SEC expression
have not yet been investigated.

6. Challenges and Future Prospects

Many challenges arise from the great variety of SEs. Firstly, new SEs cannot yet be detected
by commercial assays. Therefore, reports on the frequency of SEs associated with intoxication and
disease are likely biased towards classical SEs. Secondly, the influence of the food matrix and host
factors can influence toxin expression in strain-specific, toxin-specific, and even variant-specific ways.
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Additionally, the genetic location of SEs may play a role in genetic regulation. Nonetheless, many
studies do not account for these aspects. Legislative documents limiting S. aureus occurrence by
CFU/gram food, regardless of the respective toxin expression, reflect these shortcomings.

For SEC variants in particular, it remains unknown whether genetic location or external stressors
result in variant-specific responses in genetic regulation. Furthermore, although agr undoubtedly plays
an important role in SEC regulation, additional regulatory elements should be considered in future
studies. Whether SEC variants differ in their effects on human and animal health has not been resolved.
The different Vβ-specificities of SEC variants likely trigger slightly different superantigenic responses.
Hence, some variants might be more relevant in acute diseases while others could be implicated with
chronic or persistent progressions. Additionally, variants have never been compared directly with
respect to their emetic activity. Therefore, correlations between variants and emetic dosage cannot
be provided.

In conclusion, aspects such as toxin variants, strain-specific responses, and influences of external
stressors should be considered when investigating SEC expression in the future, and results should
not be generalized. Taking all of these factors into consideration will contribute to predicting and
maintaining high food safety standards and improving human and animal health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/9/584/s1,
Table S1: Accession numbers; Figure S1: SEC protein sequence alignments.
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