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Objectives: Previous studies have suggested a relationship between outdoor air pollution and the risk of 

coronavirus disease 2019 (COVID-19). However, there is a lack of data related to the severity of disease, 

especially in China. This study aimed to explore the association between short-term exposure to outdoor 

particulate matter (PM) and the risk of severe COVID-19. 

Methods: We recruited patients diagnosed with COVID-19 during a recent large-scale outbreak in eastern 

China caused by the Delta variant. We collected data on meteorological factors and ambient air pollution 

during the same time period and in the same region where the cases occurred and applied a generalized 

additive model (GAM) to analyze the effects of short-term ambient PM exposure on the risk of severe 

COVID-19. 

Results: A total of 476 adult patients with confirmed COVID-19 were recruited, of which 42 (8.82%) had 

severe disease. With a unit increase in PM 10 , the risk of severe COVID-19 increased by 81.70% (95% con- 

fidence interval [CI]: 35.45, 143.76) at a lag of 0–7 days, 86.04% (95% CI: 38.71, 149.53) at a lag of 0–14 

days, 76.26% (95% CI: 33.68, 132.42) at a lag of 0–21 days, and 72.15% (95% CI: 21.02, 144.88) at a lag of 

0–28 days. The associations remained significant at lags of 0–7 days, 0–14 days, and 0–28 days in the 

multipollutant models. With a unit increase in PM 2.5 , the risk of severe COVID-19 increased by 299.08% 

(95% CI: 92.94, 725.46) at a lag of 0–7 days, 289.23% (95% CI: 85.62, 716.20) at a lag of 0–14 days, 234.34% 

(95% CI: 63.81, 582.40) at a lag of 0–21 days, and 204.04% (95% CI: 39.28, 563.71) at a lag of 0–28 days. 

The associations were still significant at lags of 0–7 days, 0–14 days, and 0–28 days in the multipollutant 

models. 

Conclusions: Our results indicated that short-term exposure to outdoor PM was positively related to the 

risk of severe COVID-19, and that reducing air pollution may contribute to the control of COVID-19. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In December 2019, coronavirus disease 2019 (COVID-19), caused 

y SARS-CoV-2, was first reported in Wuhan and escalated into a 

lobal pandemic. 17 , 32 There is no doubt that COVID-19 poses a se- 

ere threat to global health. Patients with COVID-19 can be catego- 

ized as mild, moderate, severe, or critical based on their condition. 

he prognosis of severe and critical patients is poor, 29 and the risk 

actors for these categories include older age and hypertension. 10 

Levels of particulate matter (PM), which are produced by the 

ombustion of biomass, diesel and spark-ignited vehicle emissions, 
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s highly correlated with environmental pollution. 3 In particular, 

M with an aerodynamic diameter of ≤10 μm (PM 10 ) or ≤2.5 μm 

PM 2.5 ) has attracted widespread public attention, as particles of 

his size are inhalable. 19 , 23 PM was found to be positively asso- 

iated with the risk of communicable and noncommunicable dis- 

ases. 8 , 13 , 26 A global time-series study showed that short-term PM 

xposure contributed to increased mortality due to cardiovascular 

nd respiratory disease. 11 Recently, several studies have revealed 

he possible links between PM exposure and the risk of develop- 

ng COVID-19. 21 , 35 For example, a multicity study in China found 

hat for each 10 μg/m 

3 increase in PM 10 and PM 2.5 , the risk of

OVID-19 increased by 5% and 6%, respectively. 22 Another study in 

ermany showed that every 1 μg/m 

3 increase in PM 10 and PM 2.5 

as associated with 52.38 and 199.46 more confirmed COVID- 

9 cases per 10 0,0 0 0 inhabitants, respectively. 20 The associations 
ion Association. This is an open access article under the CC BY-NC-ND license 
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Fig. 1. The geographic locations of the four cities in Jiangsu Province. 
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etween ambient PM exposure and the risk of COVID-19 have been 

rdently discussed. In Italy, COVID-19 cases in the most polluted 

reas had higher rates of intensive care unit (ICU) admissions and 

ortality rates, indicating a possible link between air pollution and 

evere COVID-19. 5 Nevertheless, studies on the effects of outdoor 

M exposure on the severity of COVID-19 are insufficient, notably 

n China. 

On July 20, 2021, Nanjing Lukou International Airport identified 

ine domestic COVID-19 cases through regular screening. Subse- 

uently, the disease spread rapidly to surrounding cities, resulting 

n hundreds of confirmed cases in four cities in Jiangsu Province, 

ncluding Nanjing, Yangzhou, Huaian, and Suqian. The scale of this 

pidemic in China was second only to the Wuhan epidemic in 

020. Genome sequencing confirmed that the pathogen causing 

his epidemic was the SARS-CoV-2 B1.617.2 (Delta) variant, which 

nitially appeared in India. 2 Thus, we collected data from COVID-19 

atients identified in this outbreak and data on meteorological fac- 

ors and air pollutant concentrations during the same time period 

nd in the same region where the cases occurred, aiming to eval- 

ate the relationships between short-term ambient PM exposure 

nd COVID-19 severity. 

aterials and methods 

tudy population 

We collected data from COVID-19 patients admitted to Nan- 

ing Public Health Medical Center from July 20, 2021 to August 

7, 2021. All of the cases came from Nanjing, Yangzhou, Huaian, 

r Suqian and were related to the recent outbreak of COVID-19 

hat originated in Nanjing Lukou International Airport. The loca- 

ions of the four cities are shown in Fig. 1 . The inclusion crite-
685 
ia were as follows: (1) patients aged ≥18 years and (2) patients 

nfected with the Delta variant. We collected data on the general 

haracteristics of patients, including city, sex, age, current or past 

ypertension (yes or no), current or past diabetes (yes or no), cur- 

ent or past heart disease (yes or no), current or past carcinoma 

yes or no), current or past COPD (yes or no), current or past 

sthma (yes or no), current or past autoimmune disease (yes or 

o), vaccination status (unvaccinated, partially vaccinated, or fully 

accinated), and number of days between onset and hospitaliza- 

ion. Patients were defined as fully vaccinated if they had received 

wo doses of a vaccine with an interval between the two doses of 

21 days and a disease onset date of ≥14 days from the second 

ose. 7 

The diagnosis and classification of COVID-19 was based on the 

Guidelines for Diagnosis and Treatment of COVID-19 (Trial Eighth 

dition)" issued by the National Health Commission ( http://www. 

hc.gov.cn/ ). Patients were categorized as mild, moderate, severe, 

nd critical based on their symptoms. In the current study, we 

ombined the severe and critical categories, referred to as “se- 

ere”. 6 

ata on meteorological factors and air pollutant concentrations 

We extracted data on meteorological factors, including daily av- 

rage temperature ( °C) and daily average wind speed (m/s) in four 

ities between June 15, 2021 and August 15, 2021 from the China 

eteorological Data Sharing Center ( http://data.cma.cn/ ), as well as 

aily average concentrations of six ambient air pollutants, includ- 

ng PM 10 , PM 2.5 , SO 2 , NO 2 , CO, and O 3 (the concentration of O 3 

as the maximum 8-hour moving average) in four cities during 

he same period from the National urban air quality real-time re- 

ease platform ( http://106.37.208.233:20035/ ). Except for the unit 

http://www.nhc.gov.cn/
http://data.cma.cn/
http://106.37.208.233:20035/
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5

1

e

f CO concentration, which was mg/m 

3 , the concentration of other 

ollutants was measured in μg/m 

3 . 

tatistical analysis 

We applied the generalized additive model (GAM) with the logit 

ink function to estimate the effects of short-term PM exposure 

n the severity of COVID-19. The GAM has been widely used in 

xploring the associations between air pollutants and health out- 

omes. 11 , 24 Covariates adjusted for in the model included city, sex, 

ge, current or past hypertension, current or past diabetes, current 

r past heart disease, current or past carcinoma, current or past 

OPD, current or past asthma, current or past autoimmune dis- 

ase, vaccination status, days between disease onset and hospital- 

zation, daily average ambient temperature, and daily average wind 

peed. The thin plate spline function was applied to control for the 

onlinear effects of meteorological factors on COVID-19. 24 Previous 

tudies have shown that PM exposure might have lag effects on 

ealth. 1 , 27 Thus, we calculated the moving average concentration 

f PM to describe personal PM exposure levels according to the 

nset date of COVID-19 and city of residence. 1 , 34 For instance, if 

he onset date was August 1, we extracted the daily average con- 

entration of PM in the same city from July 4 to August 1. Then, 

e calculated the average concentration from July 25 to August 1 

s the 8-day moving average, from July 18 to August 1 as the 15-

ay moving average, and from July 4 to August 1 as the 29-day 

oving average. We used four different lag times, including lags of 

–7 days (8-day moving average), 0–14 days (15-day moving aver- 

ge), 0–21 days (22-day moving average), and 0–28 days (29-day 

oving average). 24 , 34 The strength of associated evidence was ex- 

ressed as the change in the risk of severe COVID-19 and its cor- 

esponding 95% confidence interval (CIs) for a unit increase in PM 

oncentration. 

We conducted two sensitivity analyses to examine the robust- 

ess of the relationships between PM exposure and severe COVID- 

9. First, as mentioned above, we estimated the association at dif- 

erent lag times. Second, we included data for other air pollutants 

o construct multipollutant models. We used the Spearman rank 

orrelation test to evaluate the correlation among air pollutants. 

nly pollutants with an |r| of < 0.7 were entered in the multipol- 

utant models to address the problem of multiple collinearity. 33 

oreover, to ensure the comparability of the models, only pollu- 

ants with an |r| of < 0.7 at each of the four lag times were en-

ered in the multipollutant models. For example, if the |r| between 

O 2 and PM 10 was < 0.7 at all four lag times, while the |r| be-

ween NO 2 and PM 10 were < 0.7 at only three of the lag times, then

O 2 was included in the multipollutant models, while NO 2 was 

ot. 

Additionally, we performed subgroup analyses to explore 

hether the effects of PM exposure on the risk of severe 

OVID-19 were modified by sex or age. The difference in ef- 

ects between subgroups was examined by the following formula: 

 β1 − β2 | / 
√ 

S E 1 
2 + S E 2 

2 , where β1 and β2 are the estimated ef- 

ects, and S E 1 and S E 2 are the standard errors of the estimates. The 

ifference was considered to be statistically significant if the value 

as > 1.96. 30 

Moreover, we plotted the exposure-response curve between av- 

rage wind speed and the risk of severe COVID-19 based on the 

ingle-pollutant models of PM 10 and PM 2.5 . If the curve was lin- 

ar or approximately linear, then we used a linear function to esti- 

ate the effects of wind speed on severe COVID-19. Otherwise, we 

sed a piecewise linear function to assess the effects of wind speed 

n severe COVID-19. All analyses were performed using R software 

ersion 4.0.4 ( https://www.r-project.org/ ). The significance level for 

esting was 0.05. 
686 
esults 

atient characteristics 

A total of 533 COVID-19 patients were screened, and 476 pa- 

ients who met the inclusion criteria were included in the current 

tudy, of which 273 (57.35%) came from Yangzhou, 189 (39.71%) 

ame from Nanjing, 12 (2.52%) came from Huaian, and 2 (0.42%) 

ame from Suqian ( Fig. 1 ). Among them, 42 (8.82%) were classi- 

ed as severe, 289 (60.71%) were females, 298 (62.61%) were 18–59 

ears old, 109 (22.90%) had hypertension, 43 (9.03%) had diabetes, 

1 (4.41%) had heart disease, 11 (2.31%) had carcinoma, 3 (0.63%) 

ad COPD, 9 (1.89%) had asthma, 5 (1.05%) had autoimmune dis- 

ase, and 151 (31.72%) patients were fully vaccinated ( Table 1 ). 

oncentrations of PM10 and PM2.5 in four cities 

Descriptive statistics of meteorological factors and air pollutant 

oncentrations in four cities between June 15, 2021 and August 15, 

021 are shown in Table 2 . During this period, the median (in- 

erquartile range) concentration of PM 10 was 34.00 (20.25) μg/m 

3 

n Yangzhou, 31.50 (17.25) μg/m 

3 in Nanjing, 28.00 (19.75) μg/m 

3 

n Huaian, and 34.00 (20.50) μg/m 

3 in Suqian ( Table 2 ). The me-

ian (interquartile range) concentration of PM 2.5 was 17.50 (13.25) 

g/m 

3 in Yangzhou, 15.50 (12.00) μg/m 

3 in Nanjing, 16.00 (11.25) 

g/m 

3 in Huaian, and 17.50 (12.25) μg/m 

3 in Suqian ( Table 2 ). 

M10 and severe COVID-19 

In the single-pollutant models, PM 10 was positively associated 

ith the risk of severe COVID-19 at lags of 0–7 days, 0–14 days, 0–

1 days, and 0–28 days. The maximum effect was at lag 0–14 days. 

or a unit increase in PM 10 , the risk of severe COVID-19 increased 

y 86.04% (95% CI: 38.71, 149.53). In the multipollutant models, the 

ssociations remained significant at lags of 0–7 days, 0–14 days, 

nd 0–28 days ( Table 3 ). 

M2.5 and severe COVID-19 

In the single-pollutant models, PM 2.5 was positively associated 

ith the risk of severe COVID-19 at lags of 0–7 days, 0–14 days, 0–

1 days, and 0–28 days. The maximum effect was at a lag of 0–7 

ays. For a unit increase in PM 2.5 , the risk of severe COVID-19 in-

reased by 299.08% (95% CI: 92.94, 725.46). In the multi-pollutant 

odels, the associations remained significant at lags of 0–7 days, 

–14 days, and 0–28 days ( Table 3 ). 

ubgroup analysis 

The associations between PM 10 and the risk of severe COVID-19 

emained significant in different sex or age groups at lags of 0–14 

ays and 0–21 days. For a unit increase in PM 10 at lag 0–14 days, 

he risk of severe COVID-19 increased by 108.55% (95% CI: 29.10, 

36.90) in males, 84.65% (95% CI: 22.80, 177.65) in females, 77.59% 

95% CI: 7.31, 193.89) in patients aged 18–59 years, and 81.41% (95% 

I: 18.61, 177.47) in patients over 60 years of age. The effects of 

M 10 on the risk of severe COVID-19 were not significantly modi- 

ed by sex or age ( P > 0.05) ( Table 4 ). 

The associations between PM 2.5 and the risk of severe COVID-19 

emained significant in different sex or age groups at lags of 0–21 

ays and 0–28 days. For a unit increase in PM 2.5 at a lag of 0–28

ays, the risk of severe COVID-19 increased by 648.57% (95% CI: 

3.94, 2789.41) in males, 153.17% (95% CI: 6.10, 504.09) in females, 

20.90% (95% CI: 1.29, 3706.12) in patients aged 18–59 years, and 

77.60% (95% CI: 17.00, 558.61) in patients over 60 years of age. The 

ffects of PM on the risk of severe COVID-19 were significantly 
2.5 

https://www.r-project.org/
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Table 1 

Characteristics of 476 COVID-19 patients with or without severe illness. 

Characteristics 

Non-severe illness Severe illness 

P a n (%) or median (interquartile range) n (%) or median (interquartile range) 

Sex 0.247 

Male 167 (89.30) 20 (10.70) 

Female 267 (92.39) 22 (7.61) 

Age group (years) < 0.001 

18–59 286 (95.97) 12 (4.03) 

≥60 148 (83.15) 30 (16.85) 

Medical conditions 

Hypertension 94 (86.24) 15 (13.76) 0.038 

Diabetes 35 (81.40) 8 (18.60) 0.037 

Heart disease 16 (76.19) 5 (23.81) 0.037 

Carcinoma 9 (81.82) 2 (18.18) 0.252 

COPD 1 (33.33) 2 (66.67) 0.022 

Asthma 8 (88.89) 1 (11.11) 0.568 

Autoimmune disease 4 (80.00) 1 (20.00) 0.371 

Vaccination status < 0.001 

Unvaccinated 114 (84.44) 21 (15.56) 

Partially vaccinated 170 (89.47) 20 (10.53) 

Fully vaccinated 150 (99.34) 1 (0.66) 

Days between onset and hospitalization 3.00 (4.00) 3.00 (3.00) 0.152 

a : As appropriate, a comparison between groups was made using the Chi-square test, Fisher’s exact test, or Mann-Whitney U test. 

Table 2 

Daily average of meteorological factors and air pollutant concentrations in four cities in Jiangsu between June 15, 2021 

and August 15, 2021. 

City Variable Minimum Q 25 Median Mean Q 75 Maximum 

Yangzhou Temperature ( °C) 23.20 26.48 28.10 27.94 29.50 33.70 

Wind speed (m/s) 0.80 1.48 1.85 1.92 2.40 3.50 

PM 10 ( μg/m 

3 ) 8.00 27.50 34.00 37.35 47.75 82.00 

PM 2.5 ( μg/m 

3 ) 5.00 13.00 17.50 19.39 26.25 38.00 

SO 2 ( μg/m 

3 ) 7.00 9.00 9.00 9.89 11.00 14.00 

NO 2 ( μg/m 

3 ) 4.00 10.00 18.00 18.03 24.25 38.00 

CO (mg/m 

3 ) 0.30 0.40 0.50 0.51 0.60 0.90 

O 3 ( μg/m 

3 ) 51.00 81.75 107.00 120.55 161.25 268.00 

Nanjing Temperature ( °C) 22.60 25.95 27.65 27.59 29.30 32.80 

Wind speed (m/s) 1.10 1.90 2.35 2.63 3.23 5.40 

PM 10 ( μg/m 

3 ) 6.00 24.75 31.50 33.63 42.00 71.00 

PM 2.5 ( μg/m 

3 ) 3.00 11.00 15.50 17.68 23.00 47.00 

SO 2 ( μg/m 

3 ) 3.00 5.00 5.00 5.16 6.00 7.00 

NO 2 ( μg/m 

3 ) 6.00 14.75 18.50 18.92 24.25 32.00 

CO (mg/m 

3 ) 0.30 0.48 0.50 0.56 0.70 0.90 

O 3 ( μg/m 

3 ) 48.00 84.25 105.50 116.77 146.75 207.00 

Huaian Temperature ( °C) 22.40 25.88 27.30 27.03 28.23 31.20 

Wind speed (m/s) 0.60 1.50 2.15 2.29 2.83 6.00 

PM 10 ( μg/m 

3 ) 8.00 20.75 28.00 30.44 40.50 68.00 

PM 2.5 ( μg/m 

3 ) 6.00 12.00 16.00 18.34 23.25 40.00 

SO 2 ( μg/m 

3 ) 3.00 4.00 4.00 4.37 5.00 8.00 

NO 2 ( μg/m 

3 ) 4.00 8.00 10.00 12.00 13.25 35.00 

CO (mg/m 

3 ) 0.20 0.20 0.40 0.36 0.43 1.00 

O 3 ( μg/m 

3 ) 42.00 72.75 103.50 108.76 133.00 231.00 

Suqian Temperature ( °C) 22.70 25.88 27.65 27.27 28.50 31.50 

Wind speed (m/s) 0.30 1.40 2.05 2.10 2.80 4.90 

PM 10 ( μg/m 

3 ) 9.00 26.00 34.00 36.63 46.50 78.00 

PM 2.5 ( μg/m 

3 ) 5.00 13.00 17.50 18.65 25.25 40.00 

SO 2 ( μg/m 

3 ) 2.00 4.00 5.00 5.16 6.00 9.00 

NO 2 ( μg/m 

3 ) 2.00 6.00 9.00 10.26 13.25 25.00 

CO (mg/m 

3 ) 0.30 0.40 0.40 0.47 0.60 0.90 

O 3 ( μg/m 

3 ) 44.00 84.75 108.50 116.85 145.25 259.00 

Table 3 

Changes in the risk of severe COVID-19 and their 95% CIs for a unit increase in the concentration of particulate matter. 

Lag time PM 10 PM 2.5 

Single-pollutant model a Multi-pollutant model b Single-pollutant model a Multi-pollutant model b 

Lag 0–7 days 81.70 (35.45, 143.76) 59.25 (7.82, 135.22) 299.08 (92.94, 725.46) 235.01 (68.68, 565.39) 

Lag 0–14 days 86.04 (38.71, 149.53) 98.67 (7.58, 266.92) 289.23 (85.62, 716.20) 131.34 (6.20, 403.90) 

Lag 0–21 days 76.26 (33.68, 132.42) −16.22 ( −55.36, 57.23) 234.34 (63.81, 582.40) 32.59 ( −47.09, 232.26) 

Lag 0–28 days 72.15 (21.02, 144.88) 195.35 (28.83, 577.11) 204.04 (39.28, 563.71) 464.63 (0.50, 3072.09) 

a : Adjusted for the city, sex, age, current or past hypertension, current or past diabetes, current or past heart disease, current 

or past carcinoma, current or past COPD, current or past asthma, current or past autoimmune disease, vaccination status, days 

between onset and hospitalization, and average temperature and average wind speed at the same lag time. 
b : Based on single-pollutant models, additionally adjusted for other air pollutants at the same lag time. 
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Table 4 

Changes in the risk of severe COVID-19 and their 95% CIs for a unit increase in PM 10 concentration in subgroups, based on the 

single-pollutant models. 

Lag time Sex Age 

Male Female 18–59 years ≥60 years 

Lag 0–7 days 143.85 (38.15, 330.43) 61.90 (10.67, 136.85) a 118.32 ( −33.52, 617.02) 120.10 (40.97, 243.63) a 

Lag 0–14 days 108.55 (29.10, 236.90) 84.65 (22.80, 177.65) a 77.59 (7.31, 193.89) 81.41 (18.61, 177.47) a 

Lag 0–21 days 115.07 (28.57, 259.77) 55.58 (9.78, 120.49) a 116.89 (10.84, 324.40) 67.30 (19.58, 134.05) a 

Lag 0–28 days 186.05 (44.08, 467.92) 55.72 (4.91, 131.14) a 163.14 (7.51, 544.07) 48.08 ( −1.44, 122.49) a 

a : There was no significant difference in the effects between the subgroups ( P > 0.05). 

Table 5 

Changes in the risk of severe COVID-19 and their 95% CIs for a unit increase in PM 2.5 concentration in subgroups, based on the single- 

pollutant models. 

Lag time Sex Age 

Male Female 18–59 years ≥60 years 

Lag 0–7 days 242.12 (38.39, 745.81) 341.50 (35.86, 1334.71) a 46.95 ( −49.62, 328.64) 740.65 (171.79, 2500.15) b 

Lag 0–14 days 367.39 (48.24, 1373.70) 427.51 (64.80, 1588.55) a 121.60 ( −14.65, 475.36) 781.10 (96.79, 3844.90) a 

Lag 0–21 days 398.28 (49.83, 1557.14) 179.83 (9.39, 615.80) a 454.00 (15.31, 2561.75) 141.14 (6.82, 444.33) a 

Lag 0–28 days 648.57 (93.94, 2789.41) 153.17 (6.10, 504.09) a 520.90 (1.29, 3706.12) 177.60 (17.00, 558.61) a 

a : There was no significant difference in the effects between the subgroups ( P > 0.05). 
b : The effects between the subgroups were significantly different ( P < 0.05). 

Table 6 

Changes in the risk of severe COVID-19 and their 95% CIs for a unit increase 

in average wind speed. 

Lag time Model a Model b 

Lag 0–7 days −62.44 ( −85.09, −5.37) −89.89 ( −96.92, −66.82) 

Lag 0–14 days −62.01 ( −87.54, 15.81) −58.02 ( −85.92, 25.10) 

Lag 0–21 days −56.10 ( −88.07, 61.50) −77.31 ( −93.46, −21.26) 

Lag 0–28 days −45.44 ( −85.80, 109.74) −82.39 ( −95.18, −35.72) 

a Based on single-pollutant models of PM 10 . 
b Based on single-pollutant models of PM 2.5 . 
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ifferent among different age groups at a lag of 0–7 days ( P < 0.05)

 Table 5 ). 

ind speed and severe COVID-19 

As shown in Fig. 2 , the exposure-response curves between av- 

rage wind speed and the risk of severe COVID-19 were approxi- 

ately linear at different lag times. Based on the single-pollutant 

odels of PM 10 , the wind speed was negatively associated with se- 

ere COVID-19 at all lag times but was only significant at a lag of 

–7 days. For a unit increase in wind speed at a lag of 0–7 days,

he risk of severe COVID-19 decreased by 62.44% (95% CI: −85.09, 

5.37). Based on the single-pollutant models of PM 2.5 , the wind 

peed was negatively associated with severe COVID-19 at all lag 

imes and was significant at lags of 0–7 days, 0–21 days, and 0–28 

ays. For a unit increase in wind speed at lags of 0–7 days, 0–

1 days, and 0–28 days, the risk of severe COVID-19 decreased by 

9.89% (95% CI: −96.92, −66.82), 77.31% (95% CI: −93.46, −21.26), 

nd 82.39% (95% CI: −95.18, −35.72), respectively ( Table 6 ). 

iscussion 

In this study, we conducted a time-series analysis of 476 pa- 

ients with COVID-19 caused by the Delta SARS-CoV-2 variant to 

xplore the effects of short-term PM exposure on the risk of severe 

OVID-19. We observed that short-term exposure to PM was pos- 

tively associated with the risk of severe COVID-19. To our knowl- 

dge, this is the first individual-level study to evaluate the rela- 

ionship between short-term PM exposure and the risk of severe 

OVID-19 in China. 
688 
A multicenter study in 33 European countries found that PM 2.5 

as positively related to the number of COVID-19 deaths. 9 Al- 

hough this study was qualitative and did not consider potential 

onfounding factors, it provided evidence of PM exposure con- 

ributing to a poor prognosis of COVID-19. Global research based 

n satellite data showed that approximately 15% of the global 

OVID-19 mortality (27% in East Asia, 19% in Europe, and 17% in 

orth America) was attributed to long-term PM 2.5 exposure. 18 A 

tudy in California reported that a wildfire increased the PM 2.5 

oncentration in ten counties by 220.71%, and subsequently, the 

umber of deaths from COVID-19 in these areas increased by 

48.2%. 15 Another study in London showed that environmental 

M 2.5 was positively correlated with mortality due to COVID-19. 

or a unit increase in PM 2.5 , the number of deaths due to COVID-19

ncreased by 2.3%. 16 Another study explored the relationships be- 

ween long-term exposure to PM 2.5 and COVID-19 hospitalization 

ates in Cincinnati and found that a unit increase in 10-year aver- 

ge PM 2.5 concentration was correlated with an 18% higher hospi- 

alization rate. 14 Although most of the previous studies were epi- 

emiological and focused on COVID-19 mortality or hospitalization 

ates, their findings implied that PM exposure was related to the 

everity of COVID-19. Moreover, our results showed that the effect 

f PM 2.5 seemed to be stronger than that of PM 10 . This may be at-

ributed to the smaller particle size of PM 2.5 , which can penetrate 

ore deeply into the alveoli and bronchioles and thus has more 

otent biological toxicity. 11 We also found an inverse relationship 

etween average wind speed and severe COVID-19, although this 

ssociation was only significant at some lag times. One possible ex- 

lanation is that higher wind speeds can dilute the concentration 

f PM in the environment, thereby indirectly reducing the risk of 

evere COVID-19. 

The following reasons may explain the potential links between 

M and severe COVID-19. First, PM suspended in the air, especially 

M 2.5 , may not only carry SARS-CoV-2 but also enhance the attach- 

ent and replication of the virus in the bronchus by damaging the 

ntegrity of bronchial epithelial cells. 14 Second, as pointed out by 

omingo et al., SARS-CoV-2 attached to PM may survive longer and 

ave a stronger effect on the immune system, which is triggered 

y exposure to high concentrations of air pollutants. 4 , 28 Third, as 

entioned before, PM 2.5 can reach the alveoli, thereby delivering 

ARS-CoV-2 to target type II alveolar cells. 14 Previous studies have 

hown that PM, especially PM , can stimulate activated alveo- 
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Fig. 2. The exposure-response curve between average wind speed and the risk of severe COVID-19. The x-axis represents the average wind speed, while the y-axis represents 

the contribution of the smooth term to the fitted values.A: based on the single-pollutant models of PM 10 ; B: based on the single-pollutant models of PM 2.5 . 
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ar macrophages and then induce proinflammatory cytokine pro- 

uction and release, thus triggering allergic inflammation in the 

ungs. 12 Fourth, the metals and polycyclic aromatic hydrocarbons 

hat make up PM 2.5 facilitate the production of free radicals, which 

ay oxidize alveolar cells. Excessive free radicals weaken the cellu- 

ar antioxidant capacity, leading to lipid peroxidation and increased 

ntracellular calcium concentrations, further inducing cellular dam- 

ge. 25 Finally, SARS-CoV-2 enters the cell through binding to the 

ngiotensin-converting enzyme 2 (ACE2) receptor, and this process 
689 
an be enhanced by PM exposure. 21 The binding of SARS-CoV-2 

nd the ACE2 receptor resulted in the downregulation of the latter. 

CE2 mediated the transformation of angiotensin II to angiotensin 

–7 through the G protein-coupled receptor pathway and worked 

ith angiotensin 1–7 by anti-inflammatory and antioxidant activi- 

ies to protect the body. Downregulation of ACE2 decreased its pro- 

ective effect and lessened the effect of angiotensin II. 31 Frontera 

t al. also postulated that long-term exposure to PM 2.5 resulted in 

verexpression of alveolar ACE2 receptors. This may increase the 
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2  
iral load in PM-exposed patients, weakening the defenses of the 

ost. 5 

Our study had several limitations. First, we estimated the PM 

xposure level of each patient based on the monitoring data from 

he fixed sites, which may not accurately reflect individual expo- 

ure. Second, other factors related to the severity of COVID-19, 

hich were not considered in the analysis, may affect the results. 

hird, since the epidemic was under control for a short time, the 

ample size of this study was relatively small, especially in terms 

f the number of severe patients. The association between PM and 

evere COVID-19 needs to be further confirmed in future studies. 

onclusion 

Our results showed that short-term PM exposure was positively 

orrelated with the risk of severe COVID-19. Curbing outdoor PM 

ollution will help decrease the burden of COVID-19 and improve 

atient prognosis. 
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