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L-Ergothioneine (EGT) is a natural antioxidant derived from microorganisms, especially in
edible mushrooms. EGT is found to be highly accumulated in tissues that are susceptible
to oxidative damage, and it has attracted extensive attention due to its powerful antioxidant
activity and the tight relationships of this natural product with various oxidative stress-
related diseases. Herein, we 1) introduce the biological source and in vivo distribution of
EGT; 2) review the currently available evidence concerning the relationships of EGT with
diabetes, ischemia-reperfusion injury-related diseases like cardiovascular diseases and
liver diseases, neurodegenerative diseases, and other diseases pathogenically associated
with oxidative stress; 3) summarize the potential action mechanisms of EGT against these
diseases; 4) discuss the advantages of EGT over other antioxidants; and 5) also propose
several future research perspectives for EGT. These may help to promote the future
application of this attractive natural antioxidant.
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1 INTRODUCTION

L-Ergothioneine (EGT) is a natural thiourea derivative of histidine and exists in two forms: thiol and
thione forms (Figure 1A). It was first discovered by Tanret in Claviceps purpurea in 1909 (Tanret, 1909).
As a lowmolecular weight (LMW) thiol, the presence of the sulfhydryl group endows it with a wide range
of beneficial effects such as anti-oxidation, anti-inflammatory, and detoxification, thereby preventing
biomolecular damage (Sao Emani et al., 2019). Therefore, it exhibits possible protective effects in various
oxidative stresses of organisms. Its unique physical and chemical properties (these are also explained in
detail below) have made it a research hotspot since its discovery. It has been widely used as a dietary
supplement and cosmetic additive (Han et al., 2021). A novel food, synthetic EGT, was proved to be safe
under the expected use conditions by the European Food Safety Authority Panel on Dietetic Products,
Nutrition andAllergies, and is recommended as a food supplement at the recommended dosage of 30mg/
day for adults and 20mg/day for children (Turck et al., 2016; Turck et al., 2017).

This paper mainly discusses the basic antioxidant properties of EGT in animals and its close
relationship with oxidative stress diseases, and summarizes the possible therapeutic or protective
mechanisms of EGT, which may provide implications for future research directions and promote
further application of EGT.

1.1 Biological Sources of L-Ergothioneine
The synthesis of LMW thiol compounds is widespread in prokaryotic and eukaryotic organisms (Sao
Emani et al., 2019). But so far, EGT is synthesized only by certain microorganisms such as

Edited by:
Gokhan Zengin,

Selcuk University, Turkey

Reviewed by:
Ulrike Lindequist,

University of Greifswald, Germany
Emanuel Vamanu,

University of Agricultural Sciences and
Veterinary Medicine, Romania

*Correspondence:
Liang Shen

shen@sdut.edu.cn

Specialty section:
This article was submitted to

Ethnopharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 19 January 2022
Accepted: 25 February 2022
Published: 18 March 2022

Citation:
Fu T-T and Shen L (2022)

Ergothioneine as a Natural Antioxidant
Against Oxidative Stress-

Related Diseases.
Front. Pharmacol. 13:850813.

doi: 10.3389/fphar.2022.850813

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8508131

MINI REVIEW
published: 18 March 2022

doi: 10.3389/fphar.2022.850813

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.850813&domain=pdf&date_stamp=2022-03-18
https://www.frontiersin.org/articles/10.3389/fphar.2022.850813/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.850813/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.850813/full
http://creativecommons.org/licenses/by/4.0/
mailto:shen@sdut.edu.cn
https://doi.org/10.3389/fphar.2022.850813
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.850813


FIGURE 1 |Antioxidant properties and potential actionmechanisms of ergothioneine. (A). Chemical structure of ergothioneine; (B). Themain antioxidant properties
and cytoprotective effects of ergothioneine; (C). Potential mechanisms underlying the relationships between ergothioneine and oxidative stress-related disease
conditions.
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Actinomycetales (Genghof, 1970), Mycobacteria (Genghof and
Vandamme, 1964; Sao Emani et al., 2013), Cyanobacteria
(Pfeiffer et al., 2011; Narainsamy et al., 2016; Liao and
Seebeck, 2017), and other bacteria, and Neuropora crassa (Hu
et al., 2014), non-yeast fungi (related to asexual spores) (Genghof,
1970). Especially edible fungi, mushrooms, have been proven to
be the highest dietary source of EGT, accounting for about 95% of
dietary intake (Ito et al., 2011; Weigand-Heller et al., 2012;
Kalaras et al., 2017). The EGT content varies between different
mushroom species. In previous test reports, the measurement
results were slightly different due to differences in assay methods
and conditions, but generally Pleurotus genus (including P.
citrinopileatus, P. ostreatus, P. salmoneostramisus, etc.)
contained high levels of EGT [0.22–3.94 mg/g dry weight
(dw)], followed by Lentinus genus, Grifola genus and Agrocybe
genus (~3 mg/g dw) (Dubost et al., 2007; Ito et al., 2011; Chen
et al., 2012; Lo et al., 2012; Kalaras et al., 2017; Tsiantas et al.,
2021). This may be related to the content and bioavailability of
the material bases for EGT synthesis, such as histidine, cysteine,
and methionine, contained in different mushroom species
(Tsiantas et al., 2021). It has been found that the EGT level of
porcini in Boletus edulis can be as high as 7.27 mg/g dw (Kalaras
et al., 2017).

There may be a high correlation between the synthesis of EGT
and glutathione (GSH). The GSH synthesis genes gshA and gshB
could be used in the synthesis process of EGT, at the same time,
EGT could also promote the synthesis of GSH through the Nrf2/
ARE pathway (Ito et al., 2011; Narainsamy et al., 2016; Kalaras
et al., 2017). It seems to indicate that these two antioxidants may
interact to protect organisms during oxidative stress. However, in
the seminal plasma of boar, it was found that EGT had nothing to
do with the level of GSH, suggesting that EGTmay not depend on
the redox cycle of GSH at least in this extracellular environment
(Nikodemus et al., 2011). It is therefore speculated that the
relationship between EGT and GSH may be related to the
different oxidative stress states of the environment, which
requires more experimental verification. Interestingly, although
some bacteria, such as Actinobacteria, Mycobacterium, are also
present in large quantities in the intestinal tract, EGT synthesis
has never been found in animals. Themystery has not been solved
so far. (Cheah and Halliwell, 2021) proposed that the EGT
contained in the intestinal flora may be absorbed and
accumulated from the external environment, because the EGT
precursors labeled by isotope did not show signs of synthesis
(Cheah and Halliwell, 2021). In view of the close the relationships
between intestinal microbes and health and diseases, the
correlation between intestinal microbes and EGT tissue levels
becomes particularly important (Gamage et al., 2018; Cheah and
Halliwell, 2021), which merits further investigation.

1.2 In vivo Distribution of L-Ergothioneine
Although EGT cannot be synthesized by animals, it has been
shown to be widely taken up and transported into cells and tissues
by the specific carnitine/organic cation transporter OCTN1 [also
known as ergothioneine transporter (ETT)] on the cell membrane
from food (such as mushrooms, grains, internal organs)
(Gründemann et al., 2005; Ey et al., 2007; Nakamura et al.,

2008; Gründemann, 2012). Food-derived EGT can be
effectively absorbed by OCTN1 in the intestinal tract with the
lowest metabolism and quickly distributed to cells and tissues in
contact with blood (Pfeiffer et al., 2011; Gründemann, 2012;
Turck et al., 2016). OCTN1 gene (SLC22A4) knockout (Kato
et al., 2010; Pfeiffer et al., 2015) and overexpression (Jong et al.,
2011; Tschirka et al., 2018) studies demonstrated the complete
dependence of EGT on OCTN1. Due to the different expression
of OCTN1 in different tissues, the content of EGT in different
tissues also varies greatly, and it is not accumulated in cells and
tissues lacking OCTN1 (Melville et al., 1954; Gründemann et al.,
2005; Kato et al., 2010; Gründemann, 2012; Tang et al., 2018).
According to previous studies, basal EGT levels are the highest in
liver and erythrocytes (Heath, 1953; Kato et al., 2010; Weigand-
Heller et al., 2012; Halliwell et al., 2018; Tang et al., 2018), and
also massively accumulated in intestines, semen, testis, bone
marrow, kidney, spleen, lung, eye, and the brain in human
body (~0.1–1 mM) (Heath, 1953; Melville et al., 1954; Mayumi
et al., 1978; Kawano et al., 1982b; Shires et al., 1997; Gründemann
et al., 2005; Kato et al., 2010; Halliwell et al., 2018; Tang et al.,
2018). Especially in the tissues and organs that are susceptible to
oxidative stress and inflammation, EGT interestingly maintains a
high level (Kato et al., 2010; Halliwell et al., 2018). These evidence
supports that EGT should be an important biologically active
substance in the body. There is no significant correlation between
EGT and gender, while studies on the correlation between EGT
and age showed that during growth, liver and red blood cell EGT
levels increased with age (Mackenzie and Mackenzie, 1957;
Kawano et al., 1982b; Kumosani, 2001). Among the middle-
aged and elderly, the levels of whole blood and plasma EGT
decrease with age, which is considered to be related to changes of
dietary habits or SLC22A4 gene expression (Sotgia et al., 2014;
Cheah et al., 2016a). Although there are no symptoms related to
EGT deficiency in the healthy model (Kawano et al., 1982b; Kato
et al., 2010; Pfeiffer et al., 2015), whichmay be due to the existence
of compensatory defense pathways (Cheah and Halliwell, 2021),
the plasma level of patients with mild cognitive impairment is
significantly reduced (Cheah et al., 2016a). This phenomenon
implies that EGT deficiency may be related to neuropathy and
aging, which may increase the risk of aging-related oxidative
stress diseases in the elderly. In 2017, a study of oral EGT and its
uptake and pharmacokinetics in healthy volunteers confirmed for
the first time that EGT could be strongly absorbed and retained in
the body, and showed a significant increase in plasma and whole
blood concentrations. On the contrary, the biomarkers of
oxidative damage and inflammation showed a downward
trend (Cheah et al., 2017). This further indicates that EGT
could play a physiological role as an important antioxidant in
human body.

1.3 The Antioxidant Properties and
Cytoprotective Effects of L-Ergothioneine
It is well known that EGT is an effective physiological antioxidant
(Akanmu et al., 1991; Chaudière and Ferrari-Iliou, 1999; Cheah
and Halliwell, 2012; Gründemann, 2012; Halliwell et al., 2018)
and its antioxidant effect is mainly manifested by several
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following mechanisms (Figure 1B). Firstly, EGT can not only
prevent the formation of free radicals such as OH, but also
directly scavenge free radicals and reactive oxygen species
(ROS) such as hypochlorite acid (HClO) and peroxynitrite
(Akanmu et al., 1991; Aruoma et al., 1997; Franzoni et al.,
2006; Cheah and Halliwell, 2012; Asahi et al., 2016). EGT also
shows a higher rate of inactivating singlet oxygen than other
thiols under physiological pH (Rougee et al., 1988; Stoffels et al.,
2017). Secondly, EGT can interact with other natural antioxidant
defense systems in the body, such as activating the intracellular
antioxidant pathway involving MAPKs and regulating the levels
of peroxidases and antioxidant enzymes like superoxide
dismutases (Kawano et al., 1983; Chaudière and Ferrari-Iliou,
1999; Colognato et al., 2006). Thirdly, EGT chelates a variety of
divalent metal cations, e.g., Fe, Cu, Zn, Ni, and Co. Unlike other
thiol compounds, the chelation of EGT results in the formation of
the redox-inactive ergothioneine-metal complex which
constrains the reactivity of metal ions (Hanlon, 1971; Zhu
et al., 2011). At the same time, EGT can also selectively
inhibit the activity of some Zn- and Cu-requiring
metalloenzymes, thus inhibiting the oxidation of these metal
ions and preventing them from participating in the formation
of ROS in the body (Paul and Snyder, 2010).

Owing to its antioxidant properties, EGT plays a powerful
cytoprotective role in some important cells and tissues (Paul and
Snyder, 2010; Rajesh and Dash, 2018). In the myocardium, EGT
could reduce ferryl myoglobin by coupling GSH to prevent the
accumulation of the hypervalent state of Fe (Arduini et al., 1990).
In the erythrocyte, EGT could inhibit the peroxidation of the
mixture of H2O2 and hemoglobin on arachidonic acid (Akanmu
et al., 1991). EGT also has the ability to inhibit nitrite-induced
oxyhemoglobin oxidation by scavenging nitrogen dioxide, which
postpones or reverses the form of ferryl hemoglobin and
methemoglobin (Spicer et al., 1951; Arduini et al., 1992).
Moreover, it protects erythrocytes from neutrophils damage by
removing HClO (Cheah and Halliwell, 2012). In addition, some
studies have also demonstrated that OCTN1 can be expressed in
large amounts in mitochondria, allowing EGT to enter
mitochondria and inhibit the generation of free radicals and
ROS in the electron transport chain (Lamhonwah and Tein, 2006;
Paul and Snyder, 2010). Thus, EGT exerts the cytoprotective
effect to protect DNA, proteins, lipids, and other components
from oxidative damage and protect cells from ROS-induced
apoptosis (Paul and Snyder, 2010; Halliwell et al., 2016).

2 RELATIONSHIPS OF L-ERGOTHIONEINE
WITH OXIDATIVE STRESS-RELATED
DISEASES
Oxidative stress and inflammation are key pathogenic factors in
many diseases. High levels of EGT can be detected inmany tissues
or cells and accumulating studies support the preventive or
therapeutic potentials of EGT in a series of oxidative stress-
related diseases through antioxidation. Therefore, we summarize
the relationships of EGT with several oxidative stress-related
diseases, and discuss its possible action mechanisms (Figure 1C).

2.1 Diabetes
Firstly, type 2 diabetes is closely related to obesity and diet.
Supplementing the diet with EGT-rich mushrooms may be
beneficial to diabetics (Lam-Sidun et al., 2021). For example,
in a dietary treatment for patients with early diabetes, eating
standard white button mushroom (EGT 3.2 mg/100 g) daily for
16 weeks could reduce systemic oxidative stress and
inflammatory markers (Calvo et al., 2016). In addition,
oxidative stress-associated endothelial dysfunction during
hyperglycemia is closely related to the pathogenesis of diabetes
and its complications, and it is mediated by the sirtuin signal
(Félétou and Vanhoutte, 2006; Albiero et al., 2014). The
antioxidant effect of EGT has been proven to improve
endothelial cell senescence and vascular relaxation damage
caused by the pro-oxidative effect of hyperglycemia in diabetes
(Lam-Sidun et al., 2021). The protective and antioxidant effects of
EGT treatment on endothelial cells exposed to hyperglycemia and
its possible dependent mechanisms were studied by establishing
the model of hyperglycemia-induced endothelial cell toxicity and
senescence. Its antioxidant effect might mainly work through
interaction with other antioxidant defense systems in the body.
On the one hand, EGT regulates other antioxidant pathways. For
example, EGT could up-regulate sirtuin 1 and sirtuin 6 as well as
down-regulate p66Shc and NF-κB in vivo (D’Onofrio et al., 2016).
At the same time, EGT could also regulate other antioxidant
enzymes like glutathione synthetase to increase the intracellular
level of GSH, and finally inhibit the production of free radicals
and ROS (Servillo et al., 2017b). On the other hand, a study
in vitro explored the effect of EGT on rat vascular reactivity, and it
was concluded that EGT could protect nitric oxide from damage
and maintain its activity by reducing superoxide anions (Gokce
and Arun, 2014). Thus, EGT can prevent cells damage from
hyperglycemia-dependent oxidative stress, and then protect
endothelial integrity and maintain endothelial cell and vascular
function.

2.2 Ischemia-Reperfusion Injury
Ischemia-reperfusion (IR) injury triggers the massive production
and accumulation of ROS and oxidative stress-mediated injury,
which occurs in almost all organs, such as the heart, liver, and
intestines (Zhou et al., 2018; Lam-Sidun et al., 2021). Many
studies have proved the accumulation of EGT in different
tissues during IR, which also suggests that supplementation of
EGT may be a potential therapeutic approach for IR in various
tissues (Tang et al., 2018).

2.2.1 Cardiovascular Diseases
IR is considered to be an important pathogenic factor of
atherosclerosis and other cardiovascular diseases (Libby et al.,
2011). Transition metal iron and copper catalyze the formation of
oxygen free radicals after myocardial IR (Spencer et al., 1998). It
was observed that external intake of EGT could quickly
accumulate in the heart through the blood (Tang et al., 2018),
which might imply its possible protective effect on the
cardiovascular system. A long-term follow-up survey study
including 3,236 participants found that of 112 plasma
metabolites, EGT had the most significant and positive

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8508134

Fu and Shen Ergothioneine Against Oxidative Stress-Related Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


association with healthy conscious food patterns. EGT could
reduce the mortality of patients with cardiovascular diseases
and the risk of healthy people suffering from cardiovascular
diseases (Smith et al., 2020). Moreover, the EGT incubation
experiment of myoglobin exposed to H2O2 and the EGT
supplementation experiment on rat heart reperfusion after
transient ischemia revealed the protective mechanisms of EGT
on the heart. That is, EGT could couple GSH to reduce ferryl
myoglobin, chelate transition metal iron to scavenge ROS/RNS
and free radicals generated during IR, regulate proinflammatory
cytokines like interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α), and ultimately prevent myocardial injury (Arduini
et al., 1990; Servillo et al., 2017a).

2.2.2 Liver Diseases
The damage of IR to the liver is also extremely significant.
Excessive accumulation and degeneration of lipids cause
oxidative stress and inflammation in the liver, leading to
chronic liver diseases such as nonalcoholic fatty liver
disease (NAFLD). Research on the role of EGT in the liver
is limited. It has been shown that the liver is the main site to
accumulate EGT, and a previous animal study found that
supplementation of EGT [70 mg/kg body weight (bw)] in
rats for 7 days before injection of ferric-nitrilotriacetate
could protect the liver from the injury of lipid peroxidation
(Deiana et al., 2004). The indexes detection of the NAFLD
animal model established by cholesterol showed that under
stress, the liver could up-regulate the expression of OCTN1 to
increase the uptake and accumulation of EGT, and there was a
significant correlation between the liver level of EGT and
cholesterol and iron, although there was no difference in
the diet content of EGT (Cheah et al., 2016b). It was
speculated that one of the possible protective mechanisms
of EGT was to inhibit the Fenton reaction and reduce
oxidative stress by chelating ferrous ions (Cheah et al.,
2016b). Another mechanism of EGT was found by
constructing the animal model of liver IR injury. It could
promote the overexpression of heat shock protein 70 to
improve liver injury tolerance and inhibit subsequent lipid
peroxidation, thereby protecting the liver and improving the
survival rate (Bedirli et al., 2004). Similarly, this protective
mechanism was also affirmed in the experiment of EGT
treatment on rat mesenteric IR (Sakrak et al., 2008).

2.3 Neurodegenerative Diseases
The prevalence of neurodegenerative diseases, including
Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s
disease, and so on, in the elderly has increased steadily in
recent years. It has been widely accepted that oxidative stress is
one of the main causes of neurodegenerative diseases. For
instance, oxidative stress caused by the deposition of β-
amyloid protein (Aβ) plays an important role in the
pathogenesis of AD (Schubert et al., 1995), and the
neurotoxicity of cisplatin to neuronal cells has also been
confirmed and recognized (Troy et al., 2000). The toxicity
of these two substances is mainly mediated by ROS (Ravi et al.,
1995; Schubert et al., 1995; Troy et al., 2000). In addition, gut

microbiota dysbiosis is found to be closely related to
neurodegenerative diseases (Shen et al., 2017; Brown and
Goldman, 2020).

Detection of OCTN1 expression in the brain indicates that
EGT can penetrate the blood-brain barrier and enter the brain to
play a role (Kaneko et al., 1980; Lamhonwah et al., 2008; Tang
et al., 2018). EGT has been found to promote the proliferation
and differentiation of neuronal cells and relieve depressive
symptoms in mice at a reasonable daily intake level (120 mg
EGT/100 g diet) (Nakamichi et al., 2016). Recently, a community-
based cross-sectional in Singapore also found that eating
mushrooms (more than 2 times a week) contributes to
improving the cognitive level and extending the life of patients
(Feng et al., 2019). However, in the elderly, especially in patients
with neurodegenerative diseases, the level of EGT is significantly
decreased in the brain and plasma (Cheah et al., 2016a). All these
findings hint that supplementation of EGT might be necessary to
maintain neuronal cells function and prevent its
neurodegeneration to some extent.

Studies of cells and animals that suffered neuronal injury
confirmed that the potential action mechanisms of EGT for
neurodegenerative diseases should be multiple. Firstly, EGT
could directly inhibit the accumulation of bacteria and Aβ in
the hippocampus and lipid peroxidation in neuronal cells
(Yang et al., 2012). Secondly, EGT could affect other
antioxidants, such as maintaining the GSH/GSSG ratios and
the superoxide dismutase activity, and restore
acetylcholinesterase activity in the brain (Song et al., 2010;
Yang et al., 2012). Thirdly, EGT could prevent the formation of
peroxynitrite (Jang et al., 2004). Thereby, it protects or
decreases neuronal cells from Aβ-induced apoptosis and
cisplatin-induced neuronal injury in a dose-dependent
manner (Jang et al., 2004; Song et al., 2010; Yang et al.,
2012). Furthermore, diabetes is closely related to
neurodegeneration, and hyperglycemia induces
neurotoxicity and neuronal cells apoptosis in the
hippocampus (Grillo et al., 2003). It was found that EGT
could directly reduce ROS levels and inhibit the
transcription pathway of NF-κB, and it could also prevent
the production of proinflammatory cytokines to inhibit
neuroinflammation in the brain. Finally, EGT could protect
neuronal cells from hyperglycemia-induced cytotoxicity (Song
et al., 2017).

2.4 Other Diseases
Oxidative damage caused by overactivation of the immune
response is the key pathogenic factor of chronic inflammation
conditions, such as Crohn’s disease (CD), rheumatoid
arthritis, and the inflammatory bowel diseases (Hussain
et al., 2016; Cheah and Halliwell, 2020). In addition, mass
spectrometry-based metabolomics studies found that
abnormal lipid and amino acid metabolism, which
associated with gut microbes, had also become the feature
of inflammatory diseases (Lai et al., 2019; Lavelle and Sokol,
2020). At the same time, circulating EGT levels were detected
to be significantly lower in CD patients than in healthy
individuals, which seems to make it a potential biomarker
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for CD (Lai et al., 2019). One study showed that the functional
expression of OCTN1 in the small intestine could promote the
gastrointestinal absorption of EGT, thereby inhibiting
intestinal inflammation (Shimizu et al., 2015), but whether
this protective mechanism is related to gut microbiota has not
been studied. Moreover, the gene SLC22A4, which encodes
OCTN1, is located near the genes regulating inflammation,
and it was found that the expression of OCTN1 mRNA in the
immune cells was increased in some patients with chronic
inflammation (Taubert et al., 2006, 2009). It is speculated that
when inflammation occurs, the body may consciously cope
with inflammation by catalyzing the expression of OCTN1 and
increasing the level of EGT in immune cells, thereby exerting
anti-inflammatory or antioxidant to prevent further
aggravation of inflammation (Maeda et al., 2007; Cheah and
Halliwell, 2020). However, Petermann et al. (2009) found
another phenomenon that CD patients with variant OCTN1
L503F allele, which can improve the transportability of
OCTN1, were more susceptible to mushrooms containing
EGT. Mushroom intake showed lower beneficial effects on
these patients, on the contrary, adverse effects accounted for a
higher proportion (Petermann et al., 2009). This suggests that
excessive intake of EGT may exhibit negative effects on some
CD patients. Therefore, the beneficial effect of EGT may be
related to its dose and its dose-effect should be investigated by
more studies.

Pre-eclampsia is a hypertensive disease of pregnancy, which
causes the placenta to be exposed to oxidative stress.
Mitochondrial dysfunction is the main pathological feature
of pre-eclampsia (McCarthy and Kenny, 2016). EGT treatment
has been found to significantly improve certain phenotypic
characteristics of pre-eclampsia and reduce the production of
H2O2 in the mitochondria of the kidney (Williamson et al.,
2020). The mechanism is that EGT directly reduces the
production of mitochondrial ROS and improves the
placental expression of ROS detoxification enzymes and its

transcriptional regulators to improve mitochondrial function
(McCarthy and Kenny, 2016; Kerley et al., 2018). This
indicates that EGT may have a certain therapeutic potential
in pre-eclampsia.

3 ADVANTAGES OF L-ERGOTHIONEINE
OVER OTHER ANTIOXIDANTS

The antioxidant activity of EGT has many advantages over other
antioxidants such as GSH and ascorbic acid (Nielsen et al., 2015;
Cheah and Halliwell, 2020). Firstly, as a natural antioxidant, EGT
can accumulate millimolar concentrations in certain tissues
without toxicity (Shires et al., 1997; Ey et al., 2007; Tang et al.,
2018). According to the analysis of the source and use level of
EGT, the combined intake of EGT is 1.7 mg/kg bw per day for
adults and 3.7 mg/kg bw per day for children (Turck et al., 2016).
High-dose or acute experiments in animals and cells did not show
the toxic effects of EGT. For example, 5,000 μg/ml EGT did not
induce genotoxicity and chromosomal aberration in the Chinese
hamster lung cell study (Schauss et al., 2011). A large number of
acute (2-weeks) or long-term (90-days) oral EGT
supplementation (0.9% concentration) experiments conducted
on Sprague-Dawley rats did not show reproductive and
developmental toxicity (CiToxLAB France, 2012; CiToxLAB
France, 2013a; CiToxLAB France, 2013b; Forster et al., 2015;
Turck et al., 2016); even if the rats were orally administered to
their maximum dose (1,600 mg/kg/d), and no adverse reactions
occurred (Schauss et al., 2011; Nielsen et al., 2015; Marone et al.,
2016). The EFSA has also provided the intake and safety
assessment of synthetic EGT in supplementary diets,
considering that it is safe under the recommended maximum
intake (daily intake of 2.82 mg/kg bw for infants, 3.39 mg/kg bw
for young children, and 1.31 mg/kg bw for adults including
pregnant and lactating women) (Turck et al., 2017). Secondly,
EGT can be ingested through diet and quickly distributed in most

TABLE 1 | Summary of human survey studies on the association of ergothioneine or mushrooms with health and diseases.

Authors Types of subjects Meal planning Detection indicators Main outcomes

Calvo et al.
(2016)

37 patients with early
diabetes

100 g/d for 16 weeks
Agaricus bisporus (EGT
3.2 mg/100 g)

The serum of EGT, some specific
protective and oxidative stress
biomarkers

Frequent consumption of mushrooms in patients with
diabetes may yield potential anti-inflammatory and
antioxidant health benefits

Cheah et al.
(2017)

45 healthy young male
volunteers

5 or 25 mg/d for 1 week EGT The blood and urine level of EGT and
some oxidative damage biomarkers

Supplemental EGT could be strongly absorbed and
retained by the body, and at the same time, the
oxidative damage and inflammatory biomarkers
showed a significant decrease trend

Feng et al.
(2019)

663 volunteers aged 60
and above

Number of times
mushrooms are eaten per
week

Correlation between mushroom
consumption and mild cognitive
impairment (MCI)

Mushroom consumption (more than 2 times a week)
may reduce the odds of developing MCI.

Cheah et al.
(2016a)

Aged Asian population
over 60 with MCI and
healthy

Normal diet Relationship of EGT whole blood
level with age and MCI

The low blood EGT levels may be a risk factor for
neurodegeneration in the elderly

Smith et al.
(2020)

3,236 volunteers Normal diet 112 plasma metabolites The high level of EGT may signal a lower risk of
developing cardiometabolic disease and lower
mortality

Petermann
et al. (2009)

449 patients with CD and
370 controls

Normal diet Correlation between genotype and
dietary

OCTN1 variant single nucleotide polymorphisms may
increase the risk of adverse symptoms associated
with mushroom consumption
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tissues by the specifical transportation of OCTN1 (Gründemann
et al., 2005; Nakamura et al., 2008). At the same time, in
comparison with the rapid metabolism of other antioxidants,
EGT maintains a low level of metabolism and a high level of
accumulation in the body (Gründemann, 2012; Cheah et al., 2017;
Borodina et al., 2020). Thirdly, under physiological conditions,
EGT mainly exists in the form of thione, which renders it ideal
thermal stability and pH stability. Therefore, it does not auto-
oxidize and does not promote the Fenton reaction of H2O2 with
ferrous ions (Hand et al., 2005; Cheah and Halliwell, 2012; Cheah
et al., 2016b; Cheah and Halliwell, 2021). In addition, previous
studies also found that EGT had other biological functions, such
as directly inhibiting the replication of certain viruses (Xiao et al.,
2006), participating in erythrocyte proliferation and energy
regulation (Kawano et al., 1982a; Dransfeld et al., 2005),
catalyzing carboxylation or decarboxylation reactions
(Brummel, 1989), regulating histamine and thyroid effects
(Astwood and Stanley, 1947). However, whether these
physiological functions play certain auxiliary roles in better
exerting the protective effect of EGT merits further exploration.

4 CONCLUSION AND PERSPECTIVES

To summarize, more and more in vitro and in vivo experiments
proved that the antioxidant function of EGTwas superior to some
other natural antioxidants. As a non-toxic natural antioxidant,
the antioxidant function of EGT makes it have the huge
therapeutic or preventive potential for many oxidative stress-
mediated diseases. Therefore, synthetic EGT has gradually
attracted people’s attention and has been widely used in the
food and cosmetics industry (Borodina et al., 2020; Han et al.,
2021).

However, many unresolved questions may limit its further
application in the prevention and treatment of diseases. Firstly,
although there are many associations between dietary
mushrooms and diseases (Martel et al., 2017; Wong et al.,
2017), in addition to EGT, mushrooms also have other possible
beneficial ingredients which have been shown to have certain

antioxidant and anti-inflammatory activities (Muszyńska
et al., 2018; Tsiantas et al., 2021). Table 1 summarized
human studies on the possible associations of dietary
mushrooms or EGT supplementation with health and
diseases (Table 1), and more in vivo and clinical studies
concerning the prevention or treatment of oxidative stress-
related diseases by EGT supplements are strongly encouraged.
Secondly, there are no substantial research on the correlation
between the therapeutic dose of EGT and diseases. Thirdly, the
expression level of OCTN1 plays an important role in the
intake and accumulation of EGT and the exertion of its
function in different tissues and cells (Kato et al., 2010;
Sugiura et al., 2010; Tang et al., 2018). Therefore, it is of
significance to pay much attention to the regulation of OCTN1
expression. Furthermore, there should be other undiscovered
action mechanisms of EGT, which may complement its
antioxidant function. For instance, the therapeutic benefits
of many natural antioxidants were reported to be associated
with their effects to modulate gut microbiota (Shen and Ji,
2019; Sun et al., 2021), while there are few studies on the
influence of EGT on gut microbiota at present (Cheah and
Halliwell, 2021). Therefore, it is of interest to further study the
modulate effect of EGT on gut microbiota, which may
potentially reveal other benefits of EGT. Understanding
these mechanisms will provide important implications for
future rational application of EGT.
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