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LETTER TO TH E EDITOR

Single-cell co-expression analysis using computational
machine learning reveals oxidative, immunopathologic, and
myocardial responses for multi-organ failure in COVID-19

Dear Editor,
Since more than half of the hospitalized coronavirus dis-
ease 2019 (COVID-19) patients died of multi-organ failure,
it suggested severe challenges to COVID-19 management
in terms of currently limited knowledge.1 Herein, tak-
ing advantage of bulk RNA-seq data (GSE162113 and
GSE164805) and single-cell RNA-seq data (GSE165080),
this study identified potential gene modules representing
‘Oxidative impairment’, ‘Immunopathological response’,
and ‘Myocardial responses’ in COVID-19 using R language
programming. Also, drug candidates formultiorgan failure
in COVID-19 were indicated (Figure 1A).

1. Functional gene modules representing “oxidative
impairment”, “immune-pathological response”, and
“myocardial dysfunction” in multi-organ failure
of COVID-19 have been identified by single-cell
co-expression analysis using machine learning

2. The pseudo time of FCGR3A+ monocytes to dendritic
cells might be prior to FCGR3A+ monocytes-derived
pro-inflammatory macrophage in COVID-19.

3. FDA-approved 20medicines are potentially repurposed
for COVID-19 management

For co-expression analysis, using the R package
WGCNA, those genes (3702 genes, Data S1) in GSE162113
with expression variances greater than the 90th percentile
of the whole genome were involved in hierarchical
clustering (Figure 1B).2 The scale-free soft threshold
was determined by the criteria of approximating scale-
free topology (Figure S1A). The co-expressed genes
among modules were shown in Figure 1C. Finally, 12
co-expression modules were clustered into six modules
(Figure S1B,D). The adjacency matrix-based pairwise
relationships among modules were shown in Figure
S1C. In addition, we further quantified the correlation
profiles between modules by calculating the Module
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Eigengene (ME)-dependent Pearson’s r and p-value
(Figure 1E), suggesting that ME-magenta was strongly
linked with ME-blue andME-brown (p< .001 vs. ME-blue
or ME-brown). Since intramodular genes cannot be the
intermediate ones, the Venn (Figure 1E right panel)
and 3D scatter plot (Figure 1F) indicated that genes in
each module were independent of other modules. In
Figure 1G, highly-correlated key genes (Top 70) in these
three modules were obtained in terms of intramodular
soft-connectivity analysed and visualised by “dplyr” with
“ggplot2” (Data S4). Thus, ME-magenta, ME-blue, and
ME-brown may exert specific functions in COVID-19
progression.
For functional analysis in gene modules, ME-magenta

were mainly enriched in the graphene oxide (GO)-term
0055114: Oxidation-reduction process “(p = 1.67 × 10−32)”
and KEGG-term “Hsa00190: Oxidative phosphorylation
(p = 4.10 × 10−56)” (Figure 2A,D). The imbalance of
oxidation-reduction status may cause the disruption of the
redox homeostasis and immune dysfunctions, which may
result in higher susceptibility to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection.3 Thus,
ME-magenta may classify as “Oxidative impairment in
SARS-CoV-2”. As for the ME-brown (Figure 2B,D), the
enriched GO-term are “0045214: Sarcomere organization
(p = .0031)” and cardiac functions. While the KEGG-
term was “Hsa05412: Arrhythmogenic right ventricular
cardiomyopathy (p = .0038)” and “Hsa05414: Dilated
cardiomyopathy (p = .0083)”. These findings revealed the
functional role of ME-brown was “myocardial dysfunc-
tion”, a disease accounting for 60% of patients in hospitals
with late-stage COVID-19.4 As for ME-blue (Figure 2C,D),
the enriched GO-term was “0045944: Positive regulation
of transcription fromRNA polymerase II promoter (p= 2.8
× 10−5)”, while KEGG-term was “Hsa04062: Chemokine
signalling pathway (p = .0044)”. Herein, the functional
profile of ME-blue may be “immunopathological response
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F IGURE 1 Co-expression analysis for hub modules and genes for coronavirus disease 2019 (COVID-19). (A) Schematic of single-cell
co-expression analysis for gene modules and drug repurposing for COVID-19. There are 41 bulk RNA-seq samples (29 multi-organs, Mus
musculus; 12 pluripotent stem cells, Homo sapiens) from GSE162113; while 15 bulk RNA-seq samples (peripheral blood mononuclear cell
[PBMCs], Homo sapiens) were retrieved from GSE164805; Also, 55850 single-cell RNA-seq data were obtained from GSE165080 (B)
Hierarchical clustering of genes in multiorgan samples (heart, kidney, lung, spleen). (C) Gene clustering dendrogram consists of hierarchical
clustering and heatmap (adjacency-based dissimilarity). The below various colours stand for the gene modules. (D) Highly-correlated gene
modules were merged in terms of the value of Module Eigengene. (E) A pairwise scatterplot of module eigengenes was in the left panel. The
Venn diagram in the right panel represented the intermediate genes between modules. (F) Geometric interpretation of gene expression in 3D
scatter plot. (G) Highly-correlated hub genes (top 70) in modules ranked by Soft-connectivity (ME-magenta, ME-brown, and ME-blue)
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F IGURE 2 Functional and differential expression analysis of gene modules. (A–D) GO and KEGG functional enrichment analysis for
genes (Top 70) in each module (ME-magenta, ME-brown, and ME-blue). (E) Network and differential expressions (coronavirus disease 2019
[COVID-19]/non-COVID-19) for the Top 10 co-expressed hub genes in each module. (F, G) Volcano visualization represents the differential
expressions (COVID-19/non-COVID-19) and correlation analysis of hub genes in Homo sapiens datasets (GSE164805 and GSE162113)
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F IGURE 3 Single-cell analysis for genes from peripheral blood mononuclear cells (PBMCs) of coronavirus disease 2019 (COVID-19)
patients. (A) A UMAP analysis of 55850 cells from 42 COVID-19 patients in various cell types (left panel), including CD14+monocytes
(VCAN, CD14, LYZ), Natural killer cell (GNLY, NKG7), Dendritic cell (CD83, TYMP), Macrophage (CD68, CD163, IL1B), CD4+ T cell (CD4,
CD3D, CD3E), FCGR3A+monocytes (FCGR3A, CD68, MS4A7), CD8+ T cell (CD8A, CD3D, CD3E), B cell (MS4A1, CD19, CD79A, Memory T
cell (IL7R, LTB, CD3D, CD3E), Megakaryocyte (PPBP, NRGN), Platelets (PPBP, GP9, ITGA2B), Neutrophil cell (CD177, LYZ). A heatmap of
key gene expression in ME-blue on a principal component (right panel). (B) The ridge plot of protein tyrosine phosphatase receptor type C
(PTPRC) expression across cell types. (C) A UMAP-related feature plot for genes in ME-blue. (D) A dotplot showing the feature expression of
genes in ME-blue across cell types. (E) Cell-cell communication atlas in MIF and type II interferon (IFN-II) pathways. (F) Constructing
trajectories in cell populations sorted by cell type and pseudotime. (G) Pseudotime trajectory in cell populations expressing PTPRC
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F IGURE 4 The proposed gene module-related pathological mechanism and drug repurposing for coronavirus disease 2019 (COVID-19).
(A) The estimated pathological mechanisms of the top 10 genes in gene modules (ME-magenta, ME-brown, and ME-blue) in COVID-19. (B)
Food and Drug Administration (FDA)-approved medicines as candidates for drug repositioning against COVID-19. The value of the
Interaction Score mainly depends on the evidence from publications (brown columns), while Query Score (various colours except brown in
columns) represents the specific relationship between the given drugs with genes. The larger value of both Interaction Score and Query Score
points to more possibility of the FDA-approved drug for the corresponding targets

in COVID-19”. The most highly-correlated genes (Top 10)
in each module were shown in Figure 2E. Moreover, as
shown in Figure S2A–C, the functional results (GO and
KEGG terms) were almost identical to that of 70 genes
in each module, showing the high representativeness

of the Top 10 genes for each module (Supplementary
Figure). Since the profile of peripheral blood mononu-
clear cell (PBMC) can reflect the host immune and
oxidative responses in COVID-19,5,6 transcriptional pro-
file in PBMCs with or without SARS-CoV-2 infection
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(GSE164805 Homo sapiens) was used for differential
analysis in ME-blue and ME-magenta, showing that the
damaged redox system is almost inversely proportional to
autoimmune feedback (Figure 2F). On the other hand, in
GSE162113, an RNA-Seq dataset of cardiomyocytes origi-
nating from human pluripotent stem cells with or without
COVID-19 was used for differential analysis between
ME-magenta and ME-brown, showing that the signifi-
cant decrease of genes representing oxidative responses
and cardiomyocytes in COVID-19 patients (Figure 2G).
Taken together, we identified key functional modules
in COVID-19 as follows: “Oxidative impairment (ME-
magenta)”, “Myocardial dysfunction (ME-brown)”, and
“Immunopathological response (ME-blue)”, respectively.
Compared with bulk RNA-seq, single-cell RNA-

Seq analysis using Seurat could point out rare cell
classifications and clarify transitions of cell states at
different developmental stages. Therefore, we performed
a single-cell analysis from PBMCs in COVID-19 patients
(GSE165080). In a Uniform Manifold Approximation and
Projection (UMAP) plot, 12 cell types were identified
(Figure 3A). In addition, protein tyrosine phosphatase
receptor typeC (PTPRC) is an essential regulator of antigen
receptors of T cells, B cells, and immunological synapses.7
In the right panel of Figure 3A, PTPRC was compre-
hensively and intensively expressed in distinct immune
cells, suggesting a key target candidate for COVID-19
(Figure 3B–D). For cell chat analysis using the R package
CellChat, both “macrophage migration inhibitory factor
(MIF) pathway” and “type II interferon (IFN-II) signalling
pathway” are the main regulatory pathways in COVID-19,
in which CD8+ T cell is the most high-influence cell
signal sender (Figure 3E). For cellular developmental
trajectories among immunocytes, Monecle3 was used to
conduct psedotemporal ordering of PBMCs. It is reported
that severe COVID-19 can result in monocyte dysfunction
followed by increasing monocyte-derived inflammatory
macrophages and decreasing monocyte-derived dendritic
cells.8 However, there is no report on the evolutional time
and relative order of this process. Hereby, we explore the
dynamics of pseudotime trajectory in cell types shown in
the UMAPs (Figure 3F), indicating that the pseudotime
of FCGR3A+ monocytes to dendritic cells (Number
14) may be prior to FCGR3A+ monocytes-derived pro-
inflammatory macrophage with high expression of IL1β
(Number 18) (Data S2). In addition, the activation of B
and T cells (CD4+ T, CD8+ T, and Memory T cells) may
involve in the immune response of PTPRC in COVID-19
(Figure 3G). Thus, the single-cell analysis may reflect the
regulatory immune landscape of ME-blue in COVID-19.
The proposed pathological mechanism of the top 10
genes in gene modules (ME-magenta, ME-brown, and
ME-blue) were shown in Figure 4A. Furthermore, based

on identified genes and DGldb,9 20 Food and Drug
Administration (FDA)-approved drugs were identified for
potential COVID-19 management (Data S5 and Figure 4B).
For instance, Baricitinib (JAK inhibitor) with Remdesivir
can accelerate the recovery of hospitalised patients with
COVID-19.10 Since the pharmacological targets and mech-
anism of FDA-approved medicines are clear, it is attractive
to further validate these candidates for COVID-19 ther-
apy. More detailed descriptions regarding the methods
and understanding of identified targets were shown in
Data S3.
In conclusion, the main merits of this study are

as follows: 1) Using single-cell co-expression analy-
sis, we identified functional gene modules representing
“oxidative impairment”, “immunopathological response”,
and “myocardial dysfunction” in multi-organ failure of
COVID-19, which may promote COVID-19 management.
2) Based on computational machine learning analysis,
the pseudo time of FCGR3A+ monocytes to dendritic
cells might be prior to FCGR3A+ monocytes-derived pro-
inflammatory macrophage in COVID-19, showing the
therapeutic strategy of COVID-19. 3) FDA-approved 20
medicines are potentially repurposed for COVID-19 man-
agement.
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