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Abstract: Consumption of a high-fat diet (HFD) links obesity to colon cancer in humans. Our
data show that a HFD (45% energy fat versus 16% energy fat in an AIN-93 diet (AIN)) promotes
azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation in a mouse cancer model.
However, the underlying metabolic basis remains to be determined. In the present study, we hy-
pothesize that AOM treatment results in different plasma metabolomic responses in diet-induced
obese mice. An untargeted metabolomic analysis was performed on the plasma samples by gas
chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found that 53 of 144 identified
metabolites were different between the 4 groups of mice (AIN, AIN + AOM, HFD, HFD + AOM),
and sparse partial least-squares discriminant analysis showed a separation between the HFD and
HFD + AOM groups but not the AIN and AIN + AOM groups. Moreover, the concentrations of dihy-
drocholesterol and cholesterol were inversely associated with AOM-induced colonic ACF formation.
Functional pathway analyses indicated that diets and AOM-induced colonic ACF modulated five
metabolic pathways. Collectively, in addition to differential plasma metabolomic responses, AOM
treatment decreases dihydrocholesterol and cholesterol levels and alters the composition of plasma
metabolome to a greater extent in mice fed a HFD compared to the AIN.

Keywords: aberrant crypt foci; azoxymethane; colon cancer; high-fat diet; inflammation;
metabolome; obesity

1. Introduction

Consumption of a high-fat diet (HFD) links obesity to colon cancer in humans [1,2].
The global obesity epidemic has, in part, been attributed to the adoption of Western lifestyle
practices, including increased consumption of high-energy diets [1–3]. Diet-induced obesity
is now established as a risk factor for cancer, and overweight and obesity affect two-thirds
of Americans and an estimated 2.3 billion people worldwide [4]. In mice, consumption
of a HFD can lead to the accumulation of excess body fat that is associated with adipose
tissue dysfunction and a chronic state of low-grade inflammation known to promote
tumor development [5,6]. However, there are few mechanistic studies on early colonic
tumorigenesis concerning the underlying metabolic regulation in the context of HFD-
induced obesity.

We recently reported that in a mouse model, a HFD promotes colonic aberrant crypt
foci (ACF, putative preneoplastic lesions) formation accompanied by increased systemic
levels of proinflammatory cytokines [7]. We therefore posit that determining plasma
metabolomic responses may lead to a greater understanding of the metabolic regulation
concerning a HFD and colonic ACF formation. As small-molecule metabolites exhibit
an organisms’ physiological condition at a given moment, these metabolites represent
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a dynamic situation in response to biochemical and pathological changes [8,9]. Thus,
untargeted metabolite profiling (e.g., metabolomics) is an effective approach that aids in
determining these underlying biochemical changes [10]. It is known that a HFD promotes
AOM-induced ACF formation in a mouse model, and differential metabolites were iden-
tified in the serum of colon cancer patients compared to the healthy controls [7,11,12].
Therefore, we hypothesize that AOM treatment may cause different plasma metabolomic
responses in AOM mouse colon cancer models fed with the HFD compared to the AIN.

2. Results
2.1. Identified Metabolites and Their Group Separation

The plasma samples were collected at the end of the study (Week 14) [7]. We identified
144 metabolites (Table S1) from 555 discrete signals detected in the plasma by using GC-
TOFMS. There were 53 of 144 metabolites significantly different between the 4 groups
of mice (AIN, AIN + AOM; HFD, HFD + AOM), and the relative values for these 53
metabolites compared to the AIN group are shown in Table 1.

Table 1. The effect of HFD feeding and AOM treatment on the abundance of plasma metabolites.

Metabolites AIN AIN + AOM HFD HFD + AOM

Palmitoleic acid 1.00 ± 0.40 a 1.11 ± 0.27 a 0.19 ± 0.05 b 0.30 ± 0.11 b

Myristic acid 1.00 ± 0.18 a 1.02 ± 0.10 a 0.57 ± 0.06 c 0.74 ± 0.12 b

Oleic acid 1.00 ± 1.46 bc 0.73 ± 1.32 c 1.99 ± 0.42 ab 2.71 ± 0.95 a

Malic acid 1.00 ± 0.26 a 1.23 ± 0.42 a 0.63 ± 0.08 b 0.60 ± 0.12 b

Beta-sitosterol 1.00 ± 0.35 b 0.46 ± 0.11 c 2.22 ± 0.65 a 0.64 ± 0.10 bc

Oxoproline 1.00 ± 0.14 b 1.08 ± 0.15 b 1.13 ± 0.17 b 1.42 ± 0.21 a

Alpha-tocopherol 1.00 ± 0.23 b 0.67 ± 0.10 c 1.94 ± 0.46 a 0.84 ± 0.17 bc

Alpha-ketoglutarate 1.00 ± 0.22 a 1.15 ± 0.34 a 0.72 ± 0.09 b 0.63 ± 0.13 b

Fumaric acid 1.00 ± 0.14 a 1.17 ± 0.32 a 0.76 ± 0.05 b 0.75 ± 0.11 b

Citric acid 1.00 ± 0.24 ab 1.08 ± 0.14 a 0.68 ± 0.07 c 0.88 ± 0.10 b

3-hydroxybutyric acid 1.00 ± 0.64 c 1.32 ± 0.62 bc 2.08 ± 0.50 a 1.80 ± 0.57 ab

Saccharic acid 1.00 ± 0.18 c 1.14 ± 0.21 bc 1.49 ± 0.36 a 1.33 ± 0.21 ab

Citrulline 1.00 ± 0.21 a 0.87 ± 0.17 ab 0.77 ± 0.13 bc 0.64 ± 0.12 c

2-hydroxyglutaric acid 1.00 ± 0.13 ab 1.12 ± 0.17 a 0.86 ± 0.11 b 0.87 ± 0.14 b

2-aminobutyric acid 1.00 ± 0.37 b 0.87 ± 0.36 b 0.88 ± 0.24 b 1.58 ± 0.54 a

Palmitic acid 1.00 ± 0.15 ab 1.09 ± 0.14 a 0.86 ± 0.08 b 0.88 ± 0.13 b

3-ureidopropionate 1.00 ± 0.29 b 1.35 ± 0.49 b 1.19 ± 0.47 b 2.02 ± 0.55 a

Myo-inositol 1.00 ± 0.24 b 0.97 ± 0.13 b 1.37 ± 0.32 a 1.09 ± 0.27 b

Dihydrocholesterol 1.00 ± 0.26 b 0.48 ± 0.12 c 1.89 ± 0.55 a 0.48 ± 0.12 c

Glucuronic acid 1.00 ± 0.33 c 1.98 ± 0.51 ab 1.32 ± 0.37 bc 2.48 ± 0.96 a

Lysine 1.00 ± 0.37 a 0.77 ± 0.22 ab 0.57 ± 0.25 b 0.58 ± 0.15 b

Cholesterol 1.00 ± 0.14 b 0.79 ± 0.14 c 1.32 ± 0.22 a 0.81 ± 0.12 c

Isothreonic acid 1.00 ± 0.09 b 1.07 ± 0.08 b 1.22 ± 0.20 a 1.03 ± 0.06 b

Uracil 1.00 ± 0.33 b 1.04 ± 0.15 b 0.95 ± 0.17 b 1.29 ± 0.23 a

Ornithine 1.00 ± 0.27 b 1.39 ± 0.62 b 1.05 ± 0.46 b 2.04 ± 0.33 a

Succinic acid 1.00 ± 0.21 ab 1.27 ± 0.47 a 0.87 ± 0.11 b 0.87 ± 0.24 b

N-acetyl-d-tryptophan 1.00 ± 0.22 a 1.00 ± 0.26 a 0.68 ± 0.22 b 0.87 ± 0.18 ab

Pyruvic acid 1.00 ± 0.45 ab 1.15 ± 0.65 a 0.58 ± 0.18 b 0.67 ± 0.34 b

2,3-dihydroxybutanoic acid 1.00 ± 0.19 b 1.11 ± 0.12 ab 1.00 ± 0.12 b 1.29 ± 0.24 a

Linoleic acid 1.00 ± 0.26 b 1.10 ± 0.26 ab 0.99 ± 0.20 b 1.41 ± 0.50 a

Beta-alanine 1.00 ± 0.32 a 0.97 ± 0.33 a 0.60 ± 0.21 b 0.86 ± 0.23 ab

Maleimide 1.00 ± 0.13 b 0.88 ± 0.14 b 1.26 ± 0.14 a 0.85 ± 0.14 b

Isocitric acid 1.00 ± 0.17 a 1.15 ± 0.23 a 0.77 ± 0.11 b 1.08 ± 0.14 a
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Table 1. Cont.

Metabolites AIN AIN + AOM HFD HFD + AOM

Tyrosine 1.00 ± 0.19 a 1.12 ± 0.20 a 0.75 ± 0.22 b 1.06 ± 0.14 a

Xylitol 1.00 ± 0.54 b 1.58 ± 0.42 a 0.90 ± 0.23 b 2.03 ± 0.65 a

Nicotinamide 1.00 ± 0.26 b 0.92 ± 0.20 bc 1.58 ± 0.24 a 0.76 ± 0.15 c

Putrescine 1.00 ± 0.34 a 0.77 ± 0.25 ab 0.70 ± 0.10 b 0.70 ± 0.12 b

Threonic acid 1.00 ± 0.15 b 1.16 ± 0.24 ab 1.39 ± 0.22 a 1.01 ± 0.24 b

Methanolphosphate 1.00 ± 0.12 b 0.69 ± 0.11 c 1.18 ± 0.15 a 0.65 ± 0.09 c

Threonine 1.00 ± 0.23 a 0.76 ± 0.13 b 0.74 ± 0.16 b 0.75 ± 0.12 b

Serine 1.00 ± 0.22 ab 0.82 ± 0.14 b 0.80 ± 0.21 b 1.02 ± 0.14 a

Glycine 1.00 ± 0.32 a 0.82 ± 0.12 ab 0.78 ± 0.09 b 0.80 ± 0.12 b

Salicylic acid 1.00 ± 0.16 ab 1.15 ± 0.21 ab 0.95 ± 0.16 b 1.20 ± 0.19 a

Erythritol 1.00 ± 0.13 b 1.13 ± 0.07 a 1.03 ± 0.10 b 1.08 ± 0.06 ab

Sophorose 1.00 ± 0.32 ab 0.88 ± 0.29 b 1.28 ± 0.44 a 0.78 ± 0.18 b

Thymidine 1.00 ± 0.21 ab 1.03 ± 0.24 a 0.79 ± 0.13 b 1.20 ± 0.20 a

Aminomalonate 1.00 ± 0.34 a 0.76 ± 0.14 bc 0.93 ± 0.25 ab 0.67 ± 0.11 c

Arachidonic acid 1.00 ± 0.11 a 0.71 ± 0.14 b 1.06 ± 0.16 a 0.60 ± 0.10 b

Aconitic acid 1.00 ± 0.35 ab 1.09 ± 0.32 a 0.75 ± 0.30 b 1.14 ± 0.25 a

Phenylalanine 1.00 ± 0.19 ab 0.97 ± 0.24 ab 0.81 ± 0.31 b 1.13 ± 0.20 ab

Aspartic acid 1.00 ± 0.33 ab 1.01 ± 0.28 ab 0.72 ± 0.20 b 1.13 ± 0.27 a

Methionine 1.00 ± 0.24 ab 0.94 ± 0.26 ab 0.73 ± 0.30 b 1.08 ± 0.23 a

Glycerol-alpha-phosphate 1.00 ± 0.29 a 0.79 ± 0.08 b 0.89 ± 0.14 ab 0.79 ± 0.10 b

Values are means ± SDs, n = 10/group (AIN or HFD group) and n = 15/group (AIN + AOM or HFD + AOM group). Data from the HFD,
AIN + AOM, and HFD + AOM groups were converted to fold changes compared to the AIN group. For a given metabolite, if two values
share at least one letter, then the difference between them is not statistically significant. However, if they do not have a letter in common,
then the difference between them is statistically significant, p < 0.05 adjusted by the FDR method.

To examine the diet-AOM effect on metabolome, sparse partial least-squares dis-
criminant analysis (sPLS-DA) was used to visualize the metabolite group separation and
individual sample variability (Figure 1A). We found that there was a separation between
the HFD and HFD + AOM groups but not the AIN and AIN + AOM groups.

The 10 major metabolites influencing separation along Component 1 were (1) beta-
sitosterol (>120% increase), dihydrocholesterol (>89% increase), alpha-tocopherol
(>94% increase), methanol phosphate (>18% increase), cholesterol (>32% increase), arachi-
donic acid (>6% increase), and nicotinamide (>58% increase), which were the highest
concentrations in the HFD group compared to the other three groups; (2) the concentrations
of citric acid, isocitric acid and myristic acid were decreased by (>23%) in the HFD group
compared to the other three groups (Figure 1B).

The 10 major metabolites influencing separation along Component 2 were: (1) oxo-
proline (>29% increase), oleic acid (>72% increase), 3-ureidopropionate (>67% increase),
2-aminobutyric acid (>58% increase), ornithine (>65% increase), and uracil (>25% increase)
were the highest concentration in the HFD + AOM group compared to the otherthree3
groups; (2) palmitoleic acid (>30% decrease), alpha-ketoglutarate (>28% decrease), malic
acid (>40% decrease), and citrulline (>30% decrease) exhibited a lower concentration in the
HFD and HFD + AOM groups compared with the AIN or AIN + AOM group (Figure 1C).
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Figure 1. Two-dimensional (2D) sPLS-DA of the 4 experimental groups (A) and loading plots of 10 metabolites that are
most significant in group separation among the four groups for Component 1 (B) and Component 2 (C). Mice without AOM
treatment (control), n = 10/group (AIN or HFD group). Mice with AOM treatment (AIN + AOM or HFD + AOM group),
n = 15/group.

2.2. Diet and AOM Interaction

To visualize the effect of diet and AOM interaction on the abundance of these
53 metabolites, a two-way ANOVA (including interaction tests) was performed. In Figure 2,
there were 25 metabolites (green circle) that exhibited overall diet x AOM interactions in
which (1) the concentration of 12 metabolites (the overlapped green and red circles) differed
due to different diets while the concentration of 18 metabolites (the overlapped green and
blue circles) differed because of AOM treatment; (2) the concentration of 10 metabolites
(the overlapped green, red and blue circles) differed due to both diet and AOM treatment.
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Figure 2. The interaction effect of diet and AOM on 53 plasma metabolites. Plot of significant interacting metabolites (green
circle, 25 of 53 metabolites) by diet vs. AOM interaction, and two-way ANOVA between diet (red circle) and AOM (blue
circle) with an FDR-adjusted p < 0.05. Mice without AOM treatment (control) n = 10/group (AIN or HFD group). Mice with
AOM treatment, n = 15/group (AIN + AOM or HFD + AOM group).

These 25 interactive metabolites included (1) the concentrations of alpha-tocopherol,
dihydrocholesterol and nicotinamide were increased (> 58%) in the HFD group compared
to the other 3 groups; in contrast, the concentrations of citric acid and myristic acid were
decreased at least 23% in the HFD group compared to the other 3 groups (Table 1). These 5
metabolites comprise 50% of component 1 (Figure 1B); (2) the concentrations of oxoproline,
2-aminobutyric acid, uracil and ornithine were increased (> 29%) in the HFD + AOM group
compared to the other 3 groups while palmitoleic acid was decreased (> 80%) in the (HFD
or HFD + AOM) group compared to the (LFD or LFD + AOM) group (Table 1). These 5
metabolites consist 50% of component 2 (Figure 1C).

2.3. Metabolic Pathways of Altered Metabolites

To examine the biological significance of these altered 53 metabolites, we determined
the potential pathways using the metabolite set enrichment analysis. These pathways
(Figure 3, Table 2) included (1) the citric acid cycle: oxoglutaric acid, succinic acid, isocitric
acid, cis-aconitic acid, citric acid, pyruvic acid, fumaric acid; (2) arginine biosynthesis:
citrulline, aspartic acid, ornithine, oxoglutaric acid, fumaric acid; (3) aminoacyl-tRNA
biosynthesis: phenylalanine, glycine, aspartic acid, serine, methionine, lysine, threonine,
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tyrosine; (4) alanine, aspartate, and glutamate metabolism: aspartic acid, citric acid, fu-
maric acid, pyruvic acid, succinic acid, oxoglutaric acid; and (5) glyoxylate and dicarboxy-
late metabolism: cis-aconitic acid, citric acid, serine, glycine, isocitric acid, pyruvic acid
(Figure 3, Tables 1 and 2).
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Figure 3. Pathway analysis of 53 differential metabolites and five major metabolic pathways *: (1) citrate cycle; (2) Arg
biosynthesis; (3) aminoacyl-tRNA biosynthesis; (4) Ala, Asp, and Glu metabolism; (5) glyoxylate and dicarboxylate
metabolism. * Only the pathways with statistical significance are highlighted.

Table 2. The major metabolic pathways * involved in 53 differential metabolites (between experimental groups).

KEGG Pathway Number of Metabolites Identified p * Impact **

Citrate cycle (TCA cycle) 7 <0.0001 0.35
Arg biosynthesis 5 <0.003 0.29

Aminoacyl-tRNA biosynthesis 8 <0.005 0.17
Ala, Asp, and Glu metabolism 6 <0.01 0.27

Glyoxylate and dicarboxylate metabolism 6 <0.03 0.20

* Only the pathways with statistical significance are listed, and p-values are obtained by the over-representation analysis and adjusted by
Holm and FDR methods. ** Impact is the pathway impact score obtained by the pathway topology analysis.
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2.4. Correlation between Colonic ACF and Dihydrocholesterol/Cholesterol

A scatterplot analysis was used to determine the correlation between the number of ACF
and the concentration of dihydrocholesterol/cholesterol. The AOM-induced colonic ACF data
were taken from our previous study [7], and dihydrocholesterol/cholesterol data were from the
current study (Table 1 and Table S1). The analysis (Figure 4) showed that there was an inverse
association between the ACF number and dihydrocholesterol/cholesterol concentrations.
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of cholesterol. With n = 50 each set, both (A,B) show an inverse association with a significant Spearman correlation
(p < 0.0001), respectively.

3. Discussion

Epidemiological and experimental data suggest that obesity increases colon cancer
risk [2,3,6–9]. Our previous data demonstrate that a HFD promotes colonic ACF formation
with increased levels of circulating proinflammatory cytokines in a mouse model [7]. In the
present study, we found that 53 of 144 identified metabolites were different between the 4
experimental groups (Table 1, Figure S1). These data (1) confirm the hypothesis that AOM
treatment causes different plasma metabolomic responses in AOM mouse colon cancer
model fed with the HFD compared to the AIN; (2) support the notion that metabolomic
fingerprints in the plasma may be used as potential markers for identifying changes in the
connection between diet and colon cancer [13].

The separation between the HFD and HFD + AOM treatment groups but not the
AIN and AIN + AOM groups (Figure 1A) indicates that AOM-induced colonic ACF for-
mation altered the plasma metabolome to a greater extent in mice fed a HFD compared
to the AIN. Compared to Component 2 of the sPLS-DA, Component 1 played a greater
role (Figure 1B,C) in separating treatment groups [14,15]. The concentrations of alpha-
tocopherol, nicotinamide, and beta-sitosterol were higher in the HFD group compared to
the AIN group (Table 1, Figure 1B), which may be due to the increased dietary intakes (e.g.,
the alpha-tocopherol and beta-sitosterol in corn-oil) and homeostatic adaptation during the
HFD consumption (e.g., nicotinamide) [7,16]. This observation is initially counterintuitive
given the fact that alpha-tocopherol, beta-sitosterol, and nicotinamide are potential anti-
cancer compounds [17–19]. For example, alpha-tocopherol exhibits superior antioxidant
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and anti-inflammatory properties via downregulation of transcription factor NF-kB acti-
vation [17]; beta-sitosterol and nicotinamide modulate multiple cell signaling pathways,
including cell proliferation, angiogenesis, metastasis, inflammation, genomic stability, and
immune-response [19–21]. However, compared to the AIN, the proinflammatory impact
of HFD-induced obesity may outweigh the beneficial effects of these compounds (e.g.,
alpha-tocopherol); subsequently, AOM treatment induces a higher number of colonic ACF
in the HFD group compared to the AIN group [7].

As colonic ACF formation is critically dependent on AOM bioactivation by the gut
bacteria without affecting the daily food intake [7,22,23], the higher colonic ACF number
may reduce the uptake of alpha-tocopherol, beta-sitosterol, and nicotinamide to a greater
extent in the HFD + AOM group compared to the AIN + AOM group [7,24]. Thus, a low
uptake efficacy of these beneficial compounds in the HFD + AOM group might further
promote the vicious cycle of AOM-induced colonic ACF formation.

There are epidemiological reports on an inverse relationship between plasma choles-
terol levels and certain colon cancer risk populations (e.g., during the 10 years preceding
the cancer) [25–27]. In line with these epidemiological data [25–27], the concentrations
of dihydrocholesterol and cholesterol in the AIN + AOM and HFD + AOM groups were
decreased by 62% and 21% and 75% and 39% when compared to the AIN and HFD groups,
respectively (Table 1, Figure 1B). The connection between declining serum cholesterol
concentrations and colon cancer [25–27] may involve several factors. First, epithelial cell
mutations occur during colonic tumorigenesis cause a decrease in intestinal cholesterol
uptake [24,28]. Second, to meet the increasing demand for cell proliferation, cancer cells
significantly enhance cholesterol absorption and synthesis [29,30]. Third, an intestinal
cachexia may be a secondary result of metabolic and nutritional change in advanced
tumorigenesis [27].

Dihydrocholesterol biosynthesis occurs through two major pathways: (1) unab-
sorbed cholesterol in the colon is biohydrogenated to dihydrocholesterol via bacterial
enzymes [31,32], and (2) dihydrocholesterol is synthesized via a pathway with 7 alpha-
hydroxylated C27-steroids as substrates in the liver [33]. Our data demonstrate that the
levels of both plasma dihydrocholesterol (62 to 75% decrease) and cholesterol (21 to 39%
decrease) are sensitive markers, which is inversely correlated to AOM-induced colonic
aberrant crypt formation in the AIN and HFD groups (Figure 4) [7]. Because cholesterol is
a precursor of dihydrocholesterol in the biosynthetic pathway [31–33], and the diet and
AOM exhibit interactive effects on dihydrocholesterol but not cholesterol (Figure 2), these
molecular events may account for a greater decrease of dihydrocholesterol concentrations
compared to that of total plasma cholesterol (Table 1). As dihydrocholesterol is widely
used as a surrogate marker of cholesterol synthesis and absorption [34], our data suggest
that plasma dihydrocholesterol may be a more sensitive marker than cholesterol (62 to
75% vs. 21 to 39% decrease) for epidemiological studies [25–27] on colon cancer, although
future human studies are needed to verify this finding.

Further functional analysis demonstrates that 53 plasma metabolites were involved
in five major metabolic pathways (Figure 3, Table 2). First, the citrate cycle is a critical
metabolic pathway that utilizes glucose, amino acids, and fatty acids. Emerging evidence
demonstrates that cancer cells heavily rely on the citrate cycle for energy production and
macromolecule synthesis [35]. Consequently, an altered citrate cycle pathway was detected
in this study (Figure 3, Table 2), which is consistent with the serum metabolomic data from
colon cancer patients [36,37]. Further studies are warranted to determine the connection
between human colon cancer and plasma metabolomic profiles of the citrate cycle pathway
in the context of obesity. Second, arginine biosynthesis and aminoacyl-tRNA biosynthesis
are two pathways, which are involved in endothelial cell migration and angiogenesis
in tumorigenesis [38,39]. However, there are scant data examining plasma metabolomic
profiling in this regard. A change of these two pathways (Figure 3, Table 2) provides
new insights into the plasma metabolome. Third, (a) alanine, aspartate, and glutamate
metabolism and (b) glyoxylate and dicarboxylate metabolism are the other two pathways
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with no immediate functional connections with colon cancer. These two pathways are
important for cellular homeostatic regulation because alanine, aspartate, and glutamate are
derived from intermediates of central metabolism such as the citrate cycle pathway [40,41],
a change in these two pathways (Figure 3, Table 2) may be the secondary results from the
citrate cycle pathway.

In this report, although our data on differential plasma metabolomic responses are
interesting, there are a few limitations. For example, our plasma metabolomic data show
only a disease-associated relationship but not a causal relationship, and these data are from
a single-time-point experiment. Because the cause of colon cancer is involved multiple
metabolic pathways (collective effects), it is currently difficult for us to experimentally
validate one or a few disease-causal metabolites. However, in the future, we will be able
to shed some light on disease-causal metabolites if more metabolomic data/studies (with
multiple experimental time points) are available.

4. Materials and Methods
4.1. Animals, Diets, and AOM Treatment

Three- to four-week-old male C57BL/6 mice (Harlan, Madison, WI, USA) were in-
dividually housed in PlexiglasTM ventilated cages within a pathogen-free facility that
maintained a 12 h light/dark cycle and a temperature of 22 ± 1 ◦C. Mice were given free
access to food and deionized water. This study was approved by the Animal Care and
Use Committee of the Grand Forks Human Nutrition Research Center (Protocol Code:
HZ13M2, 2013), and animals were maintained in accordance with NIH guidelines for the
care and use of laboratory animals. The study design, diet composition, and preparation
have been previously reported [7]. Briefly, C57BL/6 mice were fed either an AIN or HFD
(n = 25/group). On Week 3, within a given diet group, mice received either weekly
intraperitoneal injection of the colon carcinogen, AOM (Sigma, St. Louis, MO, USA)
(n = 15/group), at a concentration of 8 mg/kg body weight [42] or phosphate-buffered
saline (PBS, pH = 7.4) carrier solution (n = 10/group) for 4 weeks. At the termination of
the experiment, mice were fasted for 6 h and then euthanized with a mixture of ketamine
and xylazine (100 mg/kg body weight). Plasma samples were collected at the end of the
study (Week 14) and stored at −80 ◦C for metabolomic analysis.

4.2. Plasma Metabolomics

Metabolomic analysis was performed at the West Coast Metabolomics Center (Univer-
sity of California, Davis Genomic Center, Davis, CA, USA) [14,15]. Plasma samples were
extracted and derivatized by silylation and methyloximation and analyzed by GC-TOF-MS
for untargeted metabolomics. Data were processed at the West Coast Metabolomics Center
using the BinBase database [43]. Metabolite quantifier ion peak heights were normalized to
the sum intensities of all known compounds and used for the follow-up statistical analyses
(Table S1).

4.3. Statistical and Bioinformatic Analysis

Bioinformatic analysis: to avoid a skewed distribution, obtained (peak intensity)
data were normalized by Log10 transformation with an autoscaling method which is
highly recommended for most peak intensity data [44,45]. In addition, the suitability (our
data distribution) of the above-normalized method was the best when compared to other
available normalized methods (e.g., Pareto scaling) using the MetaboAnalyst software
(version 5.0, McGill University, Sainte Anne de Bellevue, Quebec, Canada) [44,45]. The
metabolite group separation and functional pathways were analyzed by sPLS-DA, heatmap
clustering, and metabolite set enrichment analysis (MSEA) using the MetaboAnalyst
software [44,45], respectively. The effects of diet (AIN or HFD) and AOM treatment (with
or without) on the relative abundance of plasma metabolites were analyzed using a two-
way analysis of variance (ANOVA) corrected by a false discovery rate (FDR) of 0.05 and
Tukey’s contrasts for post hoc comparisons. Results are given as mean ± standard deviation
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(SD). JMP V14 (SAS Institute Inc., Cary, NC, USA) and MetaboAnalyst software (version
4.0, McGill University, Sainte Anne de Bellevue, QC, Canada) were used for all statistical
analyses [44,45].

5. Conclusions

Our data demonstrated that AOM, a commonly used carcinogen in a chemical-induced
colon cancer model, altered the plasma metabolome to a greater extent in mice fed the HFD
compared to the AIN. These plasma metabolites were involved in five major metabolic
pathways included (1) citrate cycle, (2) Arg biosynthesis, (3) aminoacyl-tRNA biosynthesis,
(4) Ala, Asp, and Glu metabolism, and (5) glyoxylate and dicarboxylate metabolism. Our
newly identified (inverse) association between plasma dihydrocholesterol levels and AOM-
induced colonic ACF formation in a mouse model warrants future exploration as one of the
unique plasma “multiple analytes” at the quest of human colon cancer biomarker search.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11070448/s1. Figure S1: Hierarchical clustering heatmap analysis of 53 differential
metabolites between experimental groups. Each column represents the metabolite abundance of one
animal plasma sample. Without AOM treatment (control), n = 10/group (AIN or HFD group). With
AOM, treatment n = 15/group (AIN + AOM or HFD + AOM group). Table S1: Metabolites identified
in plasma from C57BL/6 mice fed the AIN93G (AIN) or the high-fat diet (HFD) and with or without
AOM treatment.
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