data reports

open 👌 access

Crystal structure of 3-(2-nitrophenyl)-1-(1-phenylsulfonyl-1*H*-indol-3-yl)propan-1-one

M. Umadevi,^{a,b} Potharaju Raju,^c R. Yamuna,^d* Arasambattu K. Mohanakrishnan^c and G. Chakkaravarthi^e*

^aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, ^bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and ^eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India. *Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Received 16 October 2015; accepted 26 October 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{23}H_{18}N_2O_5S$, the phenyl and benzene rings subtend dihedral angles of 78.18 (10) and 30.18 (9)°, respectively, with the indole ring system (r.m.s. deviation = 0.022 Å). The crystal structure features weak $C-H\cdots O$ and $C-H\cdots \pi$ interactions, which link the molecules into a threedimensional network.

Keywords: crystal structure; indole; hydrogen bonding; $C - H \cdots \pi$ interactions.

CCDC reference: 1433093

1. Related literature

For the biological activity of indole derivatives, see: Andreev *et al.* (2015); Kolocouris *et al.* (1994). For related structures, see: Chakkaravarthi *et al.* (2007, 2008).

V = 2025.5 (2) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.24 \times 0.20$ mm

29555 measured reflections

6149 independent reflections

4060 reflections with $I > 2\sigma(I)$

 $\mu = 0.20 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.033$

Z = 4

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{23} {\rm H_{18}N_2O_5S} \\ M_r = 434.45 \\ {\rm Monoclinic}, \ P2_1/n \\ a = 9.0224 \ (7) \ {\rm \AA} \\ b = 15.4581 \ (10) \ {\rm \AA} \\ c = 15.1347 \ (10) \ {\rm \AA} \\ \beta = 106.349 \ (2)^\circ \end{array}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.950, T_{max} = 0.961

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	3 restraints
$wR(F^2) = 0.144$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
6149 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
280 parameters	

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C7–C12 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9 - H9 \cdots O2^{i}$	0.93	2.54	3.328 (2)	143
$C22 - H22 \cdots O3^{ii}$	0.93	2.42	3.319 (3)	163
$C23 - H23 \cdots O5^{iii}$	0.93	2.36	3.247 (3)	160
$C16-H16A\cdots Cg3^{iv}$	0.97	2.73	3.565 (2)	144

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$, (iv) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7524).

References

- Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). *Eur. J. Med. Chem.* 96, 250–258.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, 03564.

Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, 0542.

supporting information

Acta Cryst. (2015). E71, 0892-0893 [doi:10.1107/S2056989015020162]

Crystal structure of 3-(2-nitrophenyl)-1-(1-phenylsulfonyl-1*H*-indol-3-yl)propan-1-one

M. Umadevi, Potharaju Raju, R. Yamuna, Arasambattu K. Mohanakrishnan and G. Chakkaravarthi

S1. Structural commentary

Indole derivatives are known to exhibit anti-hepatitis C virus (Andreev *et al.*, 2015) and antiviral activity (Kolocouris *et al.*, 1994). We herein report the crystal structure of (I) (Fig. 1). The *ORTEP* diagram of the title compound (I) is shown in Fig. 1. The geometric parameters of (I) are comparable with similar structures (Chakkaravarthi *et al.* 2007, 2008).

The phenyl ring (C1—C6) and benzene ring (C18—C23) make the dihedral angles of 78.18 (10)° and 30.18 (9)°, respectively with the indole ring system. The phenyl (C1—C6) and benzene (C18—C23) rings are inclined at angle of 69.93 (12)°. In the crystal structure, the intermolecular weak C—H…O and C—H… π (Fig. 2 & Table 1) interactions form a three dimensional network.

S2. Synthesis and crystallization

To a solution of 1-(phenylsulfonyl)-1H-indole (0.5 g, 1.94 mmol) in dry DCM 3-(2-nitrophenyl)propanoyl chloride (0.62 g, 2.92 mmol) and SnCl₄ (0.76 g, 2.92 mmol) were added slowly at 273 K under nitrogen atmosphere and the resulting mixture was stirred at room temperature for 30 min after completion of starting material (monitored by TLC), the reaction mass was poured over ice water containing Conc. HCl (3 ml) and extracted with DCM (20 ml). The combined organic extracts were washed with water (30 ml), brine solution (10 ml) and dried Na₂SO₄. Removal of solvent followed by recrystallization of the crude product from methanol (3 ml) solution afforded the title compound as colourless blocks.

S3. Refinement

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2Ueq(C)$ for C—H and C—H = 0.97 Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH₂. The reflection (0 1 1) is omitted during refinement which is owing poor agreement.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the a axis. The C—H…O hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.

3-(2-Nitrophenyl)-1-(1-phenylsulfonyl-1H-indol-3-yl)propan-1-one

Crystal data

C₂₃H₁₈N₂O₅S $M_r = 434.45$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.0224 (7) Å b = 15.4581 (10) Å c = 15.1347 (10) Å $\beta = 106.349$ (2)° V = 2025.5 (2) Å³ Z = 4 F(000) = 904 $D_x = 1.425 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7714 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.26 \times 0.24 \times 0.20 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD	29555 measured reflections
diffractometer	6149 independent reflections
Radiation source: fine-focus sealed tube	4060 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.033$
ω and φ scan	$\theta_{max} = 31.6^{\circ}, \ \theta_{min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -21 \rightarrow 22$
$T_{\min} = 0.950, T_{\max} = 0.961$	$l = -21 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from
$wR(F^2) = 0.144$	neighbouring sites
S = 1.09	H-atom parameters constrained
6149 reflections	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 1.0896P]$
280 parameters	where $P = (F_o^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.35$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.32$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7579 (2)	-0.01858 (14)	0.38658 (13)	0.0384 (4)	
C2	0.6908 (3)	-0.05928 (17)	0.44691 (16)	0.0514 (6)	
H2	0.6403	-0.1120	0.4318	0.062*	
C3	0.7005 (3)	-0.0197 (2)	0.53057 (17)	0.0663 (8)	
H3	0.6565	-0.0460	0.5724	0.080*	
C4	0.7746 (3)	0.0580(2)	0.55179 (18)	0.0690 (8)	
H4	0.7801	0.0842	0.6079	0.083*	
C5	0.8408 (3)	0.09752 (19)	0.49126 (18)	0.0655 (7)	
H5	0.8907	0.1504	0.5065	0.079*	
C6	0.8337 (3)	0.05935 (16)	0.40815 (16)	0.0527 (6)	
H6	0.8793	0.0857	0.3671	0.063*	
C7	0.4643 (2)	-0.01056 (13)	0.18344 (12)	0.0327 (4)	
C8	0.3702 (2)	-0.05590 (14)	0.22590 (14)	0.0400 (5)	
H8	0.4111	-0.0932	0.2749	0.048*	
C9	0.2134 (2)	-0.04298 (15)	0.19192 (15)	0.0445 (5)	
H9	0.1467	-0.0715	0.2191	0.053*	

C10	0.1528 (2)	0.01177 (15)	0.11793 (15)	0.0445 (5)
H10	0.0463	0.0184	0.0961	0.053*
C11	0.2462 (2)	0.05662 (13)	0.07591 (14)	0.0390 (4)
H11	0.2039	0.0927	0.0260	0.047*
C12	0.4060 (2)	0.04658 (12)	0.11020 (12)	0.0314 (4)
C13	0.5371 (2)	0.08392 (13)	0.08696 (13)	0.0330 (4)
C14	0.6664 (2)	0.04867 (13)	0.14399 (13)	0.0349 (4)
H14	0.7669	0.0618	0.1438	0.042*
C15	0.5289 (2)	0.15065 (14)	0.01681 (14)	0.0407 (5)
C16	0.6745 (2)	0.17783 (14)	-0.00516 (13)	0.0365 (4)
H16A	0.7236	0.1273	-0.0225	0.044*
H16B	0.7453	0.2027	0.0494	0.044*
C17	0.6424 (2)	0.24371 (14)	-0.08307 (13)	0.0375 (4)
H17A	0.5508	0.2259	-0.1306	0.045*
H17B	0.6201	0.2991	-0.0596	0.045*
C18	0.7729 (2)	0.25523 (12)	-0.12581 (12)	0.0331 (4)
C19	0.7489 (2)	0.27562 (13)	-0.21829 (13)	0.0375 (4)
C20	0.8658 (3)	0.27853 (15)	-0.26069 (16)	0.0512 (6)
H20	0.8433	0.2895	-0.3235	0.061*
C21	1.0150 (3)	0.26509 (17)	-0.2093 (2)	0.0612 (7)
H21	1.0954	0.2681	-0.2364	0.073*
C22	1.0444 (3)	0.24708 (17)	-0.11702 (19)	0.0583 (7)
H22	1.1457	0.2387	-0.0814	0.070*
C23	0.9255 (2)	0.24134 (15)	-0.07669 (15)	0.0452 (5)
H23	0.9485	0.2277	-0.0144	0.054*
N1	0.62637 (18)	-0.00978 (11)	0.20252 (11)	0.0368 (4)
N2	0.5930 (2)	0.29460 (14)	-0.27675 (13)	0.0504 (4)
O1	0.68799 (19)	-0.15240 (10)	0.28042 (12)	0.0548 (4)
O2	0.89596 (16)	-0.05570 (11)	0.26200 (11)	0.0528 (4)
O3	0.40514 (19)	0.18257 (14)	-0.02227 (16)	0.0843 (7)
O4	0.5110 (2)	0.34181 (14)	-0.24777 (13)	0.0738 (6)
O5	0.5554 (2)	0.26312 (16)	-0.35371 (12)	0.0846 (7)
S1	0.75288 (6)	-0.06854 (4)	0.28195 (4)	0.04012 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0297 (10)	0.0474 (12)	0.0366 (10)	0.0047 (8)	0.0069 (8)	0.0104 (9)
C2	0.0462 (13)	0.0614 (15)	0.0479 (13)	-0.0007 (11)	0.0153 (10)	0.0164 (11)
C3	0.0641 (17)	0.094 (2)	0.0461 (13)	0.0018 (16)	0.0239 (12)	0.0168 (14)
C4	0.0702 (18)	0.092 (2)	0.0437 (13)	0.0085 (16)	0.0135 (12)	-0.0041 (14)
C5	0.0732 (18)	0.0651 (17)	0.0550 (15)	-0.0096 (14)	0.0130 (13)	-0.0070 (13)
C6	0.0536 (14)	0.0578 (15)	0.0476 (13)	-0.0061 (11)	0.0155 (11)	0.0091 (11)
C7	0.0253 (9)	0.0404 (10)	0.0338 (9)	-0.0015 (7)	0.0106 (7)	-0.0059 (8)
C8	0.0353 (10)	0.0500 (12)	0.0379 (10)	-0.0038 (9)	0.0153 (8)	0.0015 (9)
C9	0.0327 (10)	0.0569 (13)	0.0499 (12)	-0.0094 (9)	0.0217 (9)	-0.0047 (10)
C10	0.0249 (9)	0.0551 (13)	0.0551 (12)	-0.0025 (9)	0.0137 (9)	-0.0089 (11)
C11	0.0297 (10)	0.0428 (11)	0.0431 (11)	0.0032 (8)	0.0078 (8)	-0.0022 (9)

supporting information

C12	0.0278 (9)	0.0348 (9)	0.0327 (9)	-0.0012 (7)	0.0104 (7)	-0.0058 (7)
C13	0.0285 (9)	0.0379 (10)	0.0345 (9)	-0.0014 (7)	0.0118 (7)	-0.0030 (8)
C14	0.0262 (9)	0.0450 (11)	0.0356 (9)	-0.0024 (8)	0.0121 (7)	0.0008 (8)
C15	0.0320 (10)	0.0450 (11)	0.0458 (11)	0.0016 (9)	0.0121 (8)	0.0065 (9)
C16	0.0304 (10)	0.0447 (11)	0.0333 (9)	-0.0010 (8)	0.0071 (7)	0.0069 (8)
C17	0.0341 (10)	0.0439 (11)	0.0341 (10)	0.0030 (8)	0.0088 (8)	0.0061 (8)
C18	0.0316 (9)	0.0346 (9)	0.0312 (9)	-0.0012 (8)	0.0057 (7)	0.0035 (7)
C19	0.0391 (9)	0.0370 (10)	0.0352 (9)	0.0011 (8)	0.0084 (7)	0.0092 (8)
C20	0.0593 (15)	0.0524 (13)	0.0483 (12)	0.0049 (11)	0.0258 (11)	0.0171 (10)
C21	0.0493 (14)	0.0625 (16)	0.0833 (19)	0.0094 (12)	0.0377 (13)	0.0260 (14)
C22	0.0299 (11)	0.0644 (16)	0.0780 (17)	0.0042 (10)	0.0108 (11)	0.0224 (13)
C23	0.0353 (11)	0.0550 (13)	0.0400 (11)	-0.0012 (9)	0.0020 (8)	0.0097 (10)
N1	0.0247 (7)	0.0512 (10)	0.0353 (8)	-0.0006 (7)	0.0096 (6)	0.0061 (7)
N2	0.0463 (9)	0.0630 (12)	0.0374 (10)	0.0006 (8)	0.0042 (7)	0.0201 (9)
01	0.0543 (10)	0.0441 (9)	0.0673 (11)	0.0027 (7)	0.0192 (8)	0.0051 (8)
O2	0.0296 (8)	0.0740 (11)	0.0580 (9)	0.0098 (7)	0.0173 (7)	0.0095 (8)
O3	0.0350 (9)	0.1001 (16)	0.1185 (17)	0.0172 (9)	0.0228 (10)	0.0669 (14)
O4	0.0556 (11)	0.0885 (14)	0.0741 (13)	0.0308 (9)	0.0130 (9)	0.0299 (10)
O5	0.0781 (14)	0.1281 (19)	0.0350 (9)	-0.0157 (13)	-0.0045 (9)	0.0106 (11)
S1	0.0301 (2)	0.0473 (3)	0.0443 (3)	0.0062 (2)	0.0126 (2)	0.0080 (2)

Geometric parameters (Å, °)

C1—C6	1.378 (3)	C14—N1	1.383 (2)
C1—C2	1.381 (3)	C14—H14	0.9300
C1—S1	1.751 (2)	C15—O3	1.212 (3)
С2—С3	1.387 (4)	C15—C16	1.502 (3)
С2—Н2	0.9300	C16—C17	1.523 (3)
С3—С4	1.367 (4)	C16—H16A	0.9700
С3—Н3	0.9300	C16—H16B	0.9700
C4—C5	1.370 (4)	C17—C18	1.505 (3)
C4—H4	0.9300	C17—H17A	0.9700
С5—С6	1.374 (3)	C17—H17B	0.9700
С5—Н5	0.9300	C18—C23	1.385 (3)
С6—Н6	0.9300	C18—C19	1.391 (3)
С7—С8	1.391 (3)	C19—C20	1.381 (3)
C7—C12	1.399 (3)	C19—N2	1.465 (3)
C7—N1	1.408 (2)	C20—C21	1.368 (4)
С8—С9	1.377 (3)	C20—H20	0.9300
С8—Н8	0.9300	C21—C22	1.375 (4)
C9—C10	1.387 (3)	C21—H21	0.9300
С9—Н9	0.9300	C22—C23	1.379 (3)
C10-C11	1.377 (3)	C22—H22	0.9300
С10—Н10	0.9300	C23—H23	0.9300
C11—C12	1.397 (3)	N1—S1	1.6736 (17)
C11—H11	0.9300	N2—O4	1.207 (3)
C12—C13	1.445 (2)	N2—O5	1.219 (3)
C13—C14	1.355 (3)	O1—S1	1.4199 (17)

supporting information

C13—C15	1.467 (3)	O2—S1	1.4200 (15)
C6—C1—C2	121.5 (2)	C13—C15—C16	119.20 (17)
C6-C1-S1	118.98 (16)	C15-C16-C17	111.76 (16)
$C_2 - C_1 - S_1$	119.51 (18)	C15—C16—H16A	109.3
C1 - C2 - C3	118.4 (2)	C17 - C16 - H16A	109.3
C1 - C2 - H2	120.8	C_{15} C_{16} H_{16B}	109.3
C_{3} C_{2} H_{2}	120.8	C17 - C16 - H16B	109.3
$C_{4} - C_{3} - C_{2}$	120.3 120.2(2)	$H_{16} - C_{16} - H_{16}B$	107.9
$C_4 = C_3 = C_2$	110.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/23 (16)
C_{1} C_{2} C_{3} H_{2}	119.9	$C_{18} = C_{17} = C_{10}$	109.7
$C_2 = C_3 = H_3$	119.9 120.7(2)	$C_{16} - C_{17} - H_{17A}$	108.7
$C_3 = C_4 = C_3$	120.7 (5)	$C_{10} - C_{17} - H_{17}$	108.7
C3-C4-H4	119.0	C16_C17_H17B	108.7
C3-C4-H4	119.0		108.7
C4 - C5 - C6	120.2 (3)	HI/A - CI/-HI/B	107.6
C4—C5—H5	119.9	C23—C18—C19	115.16 (18)
C6—C5—H5	119.9	C23—C18—C17	122.06 (17)
C5—C6—C1	119.0 (2)	C19—C18—C17	122.69 (17)
С5—С6—Н6	120.5	C20—C19—C18	123.49 (19)
C1—C6—H6	120.5	C20—C19—N2	116.22 (18)
C8—C7—C12	122.82 (17)	C18—C19—N2	120.29 (18)
C8—C7—N1	130.07 (18)	C21—C20—C19	119.3 (2)
C12—C7—N1	107.11 (16)	C21—C20—H20	120.4
C9—C8—C7	116.8 (2)	С19—С20—Н20	120.4
С9—С8—Н8	121.6	C20—C21—C22	119.1 (2)
С7—С8—Н8	121.6	C20—C21—H21	120.4
C8—C9—C10	121.31 (19)	C22—C21—H21	120.4
С8—С9—Н9	119.3	C21—C22—C23	120.7 (2)
С10—С9—Н9	119.3	C21—C22—H22	119.6
C11—C10—C9	121.80 (19)	C23—C22—H22	119.6
C11—C10—H10	119.1	C22—C23—C18	122.2 (2)
C9—C10—H10	119.1	С22—С23—Н23	118.9
C10—C11—C12	118.3 (2)	С18—С23—Н23	118.9
C10—C11—H11	120.8	C14—N1—C7	108.51 (15)
C12—C11—H11	120.8	C14—N1—S1	124.51 (13)
C11—C12—C7	118.88 (17)	C7—N1—S1	126.97 (13)
$C_{11} - C_{12} - C_{13}$	134.02 (18)	04—N2—05	123.7(2)
C7-C12-C13	107 10 (16)	$04 - N^2 - C^{19}$	1190(2)
C_{14} C_{13} C_{12}	107.52 (17)	05-N2-C19	117.3(2)
C_{14} C_{13} C_{15}	107.52(17) 127.04(17)	01 - 12 - 02	121.30(10)
$C_{12} = C_{13} = C_{15}$	127.04(17) 125.30(17)	01 - 51 - 02	121.30(10) 106.80(0)
$C_{12} = C_{13} = C_{13}$	100 73 (16)	$O_2 = S_1 = N_1$	104.30 (9)
$C_{13} = C_{14} = M_1$	109.75 (10)	02 - 51 - 101	104.37 (7)
$ \begin{array}{c} 13 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$	125.1	01 - 51 - 01	100.04(10) 100.71(10)
$1 \times 1 - \mathbb{C} 14 - \Pi 14$	123.1	02 - 51 - 01	109.71(10)
03 - 015 - 015	119.40 (19)	NI-5I-CI	104.41 (9)
03-015-016	121.40 (19)		
C6—C1—C2—C3	0.3 (3)	C23—C18—C19—C20	2.7 (3)

S1 - C1 - C2 - C3	178 00 (18)	C17 - C18 - C19 - C20	-1738(2)
C1 - C2 - C3 - C4	0 2 (4)	C_{23} C_{18} C_{19} N_{20}	-177.95(19)
$C_2 - C_3 - C_4 - C_5$	-0.3(4)	C17 - C18 - C19 - N2	56(3)
C_{3} C_{4} C_{5} C_{6}	-0.1(4)	C_{18} C_{19} C_{20} C_{21}	-34(4)
C4-C5-C6-C1	0.6(4)	N_{2} C19 C20 C21	1773(2)
C_{2} C_{1} C_{6} C_{5}	-0.7(3)	C_{19} C_{20} C_{21} C_{22}	1 + (4)
$S_1 - C_1 - C_6 - C_5$	-17844(19)	C_{20} C_{21} C_{22} C_{23}	0.9(4)
C12-C7-C8-C9	0.6 (3)	$C_{21} - C_{22} - C_{23} - C_{18}$	-1.5(4)
N1-C7-C8-C9	179 64 (19)	C_{19} C_{18} C_{23} C_{22}	-0.2(3)
C7-C8-C9-C10	0.9(3)	C_{17} C_{18} C_{23} C_{22}	1763(2)
C8-C9-C10-C11	-10(3)	C_{13} C_{14} N_{1} C_{7}	-1.3(2)
C9-C10-C11-C12	-0.6(3)	C13 - C14 - N1 - S1	178.71 (14)
C10—C11—C12—C7	2.1 (3)	C8-C7-N1-C14	-177.3(2)
C10-C11-C12-C13	-177.6 (2)	C12—C7—N1—C14	1.8 (2)
C8—C7—C12—C11	-2.2 (3)	C8—C7—N1—S1	2.6 (3)
N1—C7—C12—C11	178.61 (17)	C12—C7—N1—S1	-178.24 (14)
C8—C7—C12—C13	177.62 (18)	C20-C19-N2-O4	-135.8 (2)
N1—C7—C12—C13	-1.6 (2)	C18—C19—N2—O4	44.9 (3)
C11—C12—C13—C14	-179.4 (2)	C20-C19-N2-O5	42.3 (3)
C7—C12—C13—C14	0.8 (2)	C18—C19—N2—O5	-137.1 (2)
C11—C12—C13—C15	3.0 (3)	C14—N1—S1—O1	-139.88 (17)
C7—C12—C13—C15	-176.77 (18)	C7—N1—S1—O1	40.16 (19)
C12-C13-C14-N1	0.3 (2)	C14—N1—S1—O2	-10.27 (19)
C15-C13-C14-N1	177.84 (19)	C7—N1—S1—O2	169.78 (17)
C14—C13—C15—O3	-172.1 (2)	C14—N1—S1—C1	104.91 (17)
C12—C13—C15—O3	5.0 (3)	C7—N1—S1—C1	-75.05 (18)
C14—C13—C15—C16	8.0 (3)	C6-C1-S1-O1	172.14 (17)
C12-C13-C15-C16	-174.90 (18)	C2-C1-S1-O1	-5.6 (2)
O3—C15—C16—C17	-3.1 (3)	C6-C1-S1-O2	37.3 (2)
C13—C15—C16—C17	176.79 (18)	C2-C1-S1-O2	-140.47 (17)
C15—C16—C17—C18	-164.04 (17)	C6-C1-S1-N1	-74.09 (18)
C16—C17—C18—C23	-28.2 (3)	C2-C1-S1-N1	108.15 (18)
C16—C17—C18—C19	148.00 (19)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H···A	D—H	H···A	D····A	D—H···A	
C9—H9…O2 ⁱ	0.93	2.54	3.328 (2)	143	
С22—Н22…ОЗ ^{іі}	0.93	2.42	3.319 (3)	163	
С23—Н23…О5 ^{ііі}	0.93	2.36	3.247 (3)	160	
C16—H16 <i>A</i> ··· <i>Cg</i> 3 ^{iv}	0.97	2.73	3.565 (2)	144	

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1, -*y*, -*z*.