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Synucleinopathies (including α-synucleinopathies), which include Parkinson’s disease
(PD), manifest themsevles early on (stage 1) in the olfactory system; preferentially in the
anterior olfactory nucleus (AON). In particular, the non-motor, early manifestations of
PD include hyposmia, which is the partial loss of the sense of smell. The neural basis
of hyposmia in PD, however, is poorly understood; but the AON appears to be a key
structure in the disease’s progression. We analyzed whether α-synuclein was involved
in the differential interneuron vulnerability associated with PD in the retrobulbar, cortical
anterior and cortical posterior divisions of the AON. First, we determined the expression
of the calcium binding interneuron markers, calretinin, calbindin and parvalbumin, as
well as non-calcium binding interneuron marker, somatostatin, in neuronal cell bodies
alone (cells/mm2) and in neuronal cell bodies and neurites (% of area fraction) of
post-mortem tissue from PD cases and age-matched controls (n = 4 for each) by
immunofluorescent confocal microscopy. Results indicated that parvalbumin expression
was upregulated in neuronal cell bodies throughout the anterior olfactory nucleus of PD
cases compared with controls. Furthermore, there was increased calbindin, calretinin
and parvalbumin expression in the cell bodies and neurites of neurons in the retrobulbar
division and also increased parvalbumin expression in the neurites of neurons in the
cortical division; calretinin expression was also increased in neuronal cell bodies and
neurites in the cortical posterior division. Second, we analyzed the co-localization of
the above markers with α-synuclein, with results indicating that α-synuclein co-localized
with the calcium-binding proteins, but only partially with somatostatin. Taken together,
these results indicate differential expression levels among different neural markers
in the divisions of the AON in PD cases and point to several possibilities, among

Abbreviations: ACC, nucleus accumbens; AON, anterior olfactory nucleus; AONb, anterior olfactory nucleus, bulbar;
AONca, anterior olfactory nucleus, cortical anterior; AONcp, anterior olfactory nucleus, cortical posterior; AONi, anterior
olfactory nucleus, intrapeduncular; AONrb, anterior olfactory nucleus, retrobulbar; C, control; CB, calbindin; CR, calretinin;
DMSO, dimethyl sulfoxide; OB, olfactory bulb; OP, olfactory peduncle; ot, olfactory tract; PD, Parkinson’s disease; PV,
parvalbumin; REM, rapid eye movement; SG, straight gyrus; SST, somatostatin; α-syn, α-synuclein.
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them: possible neuroprotective mechanisms of calcium-binding proteins against α-
synuclein; and the differential involvement of somatostatin in α-synuclein-positive cell
bodies and neurites.

Keywords: calcium binding protein, non-motor symptoms, olfaction, somatostatin, α-synucleinopathy

INTRODUCTION

The classical motor dysfunctions of Parkinson’s disease (PD)
are bradykinesia, rigidity, resting tremor and postural instability
(Lees et al., 2009; Kalia and Lang, 2015; Poewe et al., 2017); while
early non-motor manifestations include dysautonomia, rapid eye
movement (REM) sleep disorder and hyposmia (Stiasny-Kolster
et al., 2005; Berg et al., 2015; Postuma et al., 2015; Schapira et al.,
2017). In parallel with the occurrence of non-motor and motor
signs, neuropathological aggregates of α-synuclein and ubiquitin,
termed Lewy bodies and Lewy neurites (Spillantini et al., 1997;
Goedert et al., 2013; Kalia and Kalia, 2015) appear in a predictable
and cumulative six-stage sequence.

Two decades after the presence of α-synuclein in Lewy
bodies was demonstrated (Spillantini et al., 1997), the precise
mechanism of α-synucleinopathy in neurodegeneration remains
unknown. Research in this area has revealed the following: (1) a
prodromal period characterized by non-motor manifestations
such as olfactory degeneration (hypnosmia), REM sleep disorder
and constipation (Postuma and Berg, 2016; Sauerbier et al.,
2016; Schapira et al., 2017); (2) aggregation of α-synuclein
has been used to establish a cumulative and predictable
sequence of six neuropathological stages in PD (Del Tredici
et al., 2002; Braak et al., 2003a,b; Del Tredici and Braak,
2016; Braak and Del Tredici, 2017). In stage I, the enteric
nervous system—Meissner’s and Auerbach’s plexuses and the
dorsal motor nucleus of the vagus nerve (Klingelhoefer and
Reichmann, 2015)—and the olfactory system—the olfactory
mucosa (Saito et al., 2016), the olfactory bulb (OB) and portions
of the anterior olfactory nucleus (AON)—are involved. In stage
II, α-synucleinopathy progresses to the brainstem to reach the
substantia nigra (stage III): the stage where motor symptoms
appear and clinical diagnosis can be established (Del Tredici
and Braak, 2016). Aggregation of α-synuclein in the central
and peripheral nervous system structures has been correlated
with both non-motor and motor symptoms (Tolosa and Pont-
Sunyer, 2011; Salat et al., 2016), but a direct clinicopathologic
relationship remains controversial (Burke et al., 2008).
(3) In addition, the progression of α-synucleinopathies
is still a matter of current debate. Interestingly, there is
accumulating evidence that α-synucleinopathies associated
with neurodegenerative diseases can spread via neuronal
pathways in a prion-like misfolding and seeding aggregation
manner (Jucker and Walker, 2013; Walker and Jucker, 2015).
Furthermore, specific α-synuclein conformations may be
particularly toxic and relevant to non-motor manifestations
without contributing to motor symptoms (Kalia and Kalia,
2015).

Although neural substrates of hyposmia in PD have not
been identified (Doty, 2012a,b, 2017), initial entry sites of

α-synucleinopathies (Kalia and Kalia, 2015) include the enteric
nervous system and the olfactory system (Braak et al., 2003a;
Del Tredici and Braak, 2016; Braak and Del Tredici, 2017).
Specifically, different divisions of the AON are preferentially
involved (Hawkes and Shephard, 1993; Pearce et al., 1995; Braak
et al., 2003a; Ubeda-Bañon et al., 2010, 2014; Attems et al., 2014;
Del Tredici and Braak, 2016; Braak and Del Tredici, 2017).

To this end, we hypotheisize that the human AON is
an early and preferential region of initial α-synucleinopathy
(Attems et al., 2014) in PD for several reasons: its peripheral
location; and also its multiple short and long distance, centrifugal
and centripetal, and bilateral neural connections (Ubeda-
Bañon et al., 2014). Analysis of the AON of postmortem
PD patients can provide insight into the involvement and
differential vulnerability of the various neuronal populations in
this region. Previous reports have shown that in the olfactory
system of PD patients, calcium-binding protein-expressing
neurons are highly co-localized with α-synuclein, which is
rarely the case for tyrosine hydroxylase- or somatostatin-
positive cells (Sengoku et al., 2008; Ubeda-Bañon et al.,
2010). However, comparisons on differential neural vulnerability
between PD and control cases in these structures have not been
carried out.

In the present report, we compared the expression of calcium-
binding proteins and somatostatin in the retrobulbar and cortical
anterior and poster divisions of the AON (the anterior olfactory
nucleus, retrobulbar (AONrb), anterior olfactory nucleus,
cortical anterior (AONca) and anterior olfactory nucleus, cortical
posterior (AONcp), respectively) in PD and control cases. This
is the first report describing variable α-synuclein susceptibility
among specific neuronal populations in PD.

MATERIALS AND METHODS

Human Brain Tissue
Specimens from four neuropathologically diagnosed cases of
PD (stages IV and V) and four age-matched controls were
examined in this study (Table 1). Tissue blocks were provided by
IDIBAPS (Barcelona), BTCIEN (Madrid), and BIOBANC-MUR
(Murcia) Biobanks. Experimental procedures were approved by
the Ethical Committee of Clinical Research at Ciudad Real
University Hospital (SAF2016-75768-R).

Histology
Tissue was stored in 4% paraformaldehyde for 45 days and
cryoprotected by immersion in 2% dimethyl sulfoxide (DMSO)
and 10% glycerol for 48 h, followed by 2% DMSO and
20% glycerol for a further 48 h. Using a freezing sliding
microtome, 10 series of 50-µm sections were obtained. One

Frontiers in Neuroanatomy | www.frontiersin.org 2 December 2017 | Volume 11 | Article 113

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Ubeda-Bañon et al. Anterior Olfactory Nucleus in PD

TABLE 1 | Demographic and clinic-pathological features of the individuals used in this study.

Diagnosis Sex Age Brain weight (g) Stage

PD M 67 1425 Braak IV-V
PD M 71 1275 Braak V/AD Braak III
PD F 69 1065 Braak IV-V/tau Braak III
PD M 55 790 Braak V/AD Braak III
C M 69 1451
C M 87 1000
C M 59 1400
C M 72 1600

C, control; F, female; M, male; PD, Parkinson’s disease.

FIGURE 1 | Horizontal (olfactory bulb (OB) and olfactory peduncle (OP)) and coronal (frontal lobe) sections of the human brain. Nissl-stained horizontal sections of
the human OB and OP show bulbar (A) and intrapeduncular (B) anterior olfactory nucleus (AON) showing diverse components (asterisks). In coronal sections of the
frontal lobe, the retrobulbar (C,D), cortical anterior (E,F) and cortical posterior (G,H) AON are distinguishable. Scale bar, 1300 µm. For abbreviations, see list.

of the series was Nissl-stained, while the second was used for
immunohistochemistry against α-synuclein; the third and fourth
series were used for immunofluorescence analysis.

Two different immunofluorescent experiments were carried
out. Sections were incubated with primary antibodies against

α-synuclein, parvalbumin and calretinin, or α-synuclein,
calbindin and somatostatin, followed by Alexa Fluor-
conjugated secondary antibodies (Table 2) according to
previous protocols (Ubeda-Bañon et al., 2010; Flores-Cuadrado
et al., 2017).

TABLE 2 | Antibodies used in the present study.

Antigen Dilution Species Secondary antibody (1/200)

Calbindin D-28k. Swant (Marly, Switzerland) 1:1000 Rabbit polyclonal Alexa Fluorr 488 anti-rabbit. Molecular Probes (Eugene, OR, USA)
Calretinin CR-769. Swant 1:1000 Rabbit polyclonal Alexa Fluorr 488 anti-rabbit. Molecular Probes
Parvalbumin PVG-214. Swant 1:1000 Goat polyclonal Alexa Fluorr 647 anti-goat. Molecular Probes
Somatostatin D-20. Santa Cruz (Dallas, TX, USA) 1:500 Goat polyclonal Alexa Fluorr 647 anti-goat. Molecular Probes
α-synuclein. Novocastra (Newcastle, UK) 1:20 Mouse monoclonal Alexa Fluorr 555 anti-mouse. Molecular Probes
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FIGURE 2 | Nissl staining (A,D) and the parallel coronal sections showing
α-synuclein immunoreactivity (B,C,E,F) of the anterior olfactory nucleus,
retrobulbar (AONrb) (A–C) and anterior olfactory nucleus, cortical anterior
(AONca) (D–F) divisions of the human AON. (C,F) correspond to framed area
shown in (B,E), respectively. Scale bar, for (A,B,D,E) 1300 µm, for (C,F)
130 µm. For abbreviations, see list.

Quantification
Three divisions of the AON—the AONrb, and the AONca and
AONcp divisions (Figure 1)—which were identified in parallel
Nissl-stained sections at approximately 12.5, 10.0 and 7.5 mm
from Bregma (Mai et al., 2008), were analyzed in each case (n = 8;
Figure 2).

Using LSM 800 confocal microscope (Zeiss, Jena, Germany)
a total of 192 images at 20× magnifications were acquired: four
random images in each division (n = 3) of each case (n = 8) of
each immunofluorescent staining combination (n = 2). In every
image, four independent channels were acquired according to the
three secondary antibodies used (Table 2), including DAPI.

For analysis, ZEN (Zeiss, black edition 10.0) and ImageJ
software (National Institutes of Health, Bethesda, MD, USA,
1.47v) were used. In order to estimate changes in the expression
of markers in neuronal cell bodies alone, changes in expression
of markers in neuronal cell bodies and neurites, and in
co-localization of markers with α-synucein, three kinds of
parameters were measured: cells/mm2, % of area fraction and %
of co-localization, respectively.

For estimating the number of positive cell bodies (cells/mm2)
of calcium binding proteins and somatostatin, the images were
analyzed with ImageJ using a protocol for the automated
counting of stained cells as previously reported (Flores-Cuadrado
et al., 2015). The corresponding channel of the marker analyzed
was selected in every image and the images were converted to
a binary 8-bit grayscale and a histogram was generated. The
mode was multiplied by 0.6 (60%) to obtain the threshold
for distinguishing specific cell labeling from background. The
thresholds were: 71 for somatostatin-positive cells, 30 for

calbindin-positive cells, 40 for calretinin-positive cells and 90 for
parvalbumin-positive cells.

In order to quantify the total expression of markers, including
cell bodies and neurites, % of area fraction was analyzed as
previously described (Saiz-Sanchez et al., 2012). Using the
the same images as above, the labeled area was compared to
un-labeled tissue as an automatic parameter of ImageJ.

For co-localization of different neural and pathological
markers, ZEN and ImageJ software was used. Using two channels
from every 2D image, the total number of cells expressing
a neural marker was compared to the number of cells that
also co-expressed α-synuclein. In this way, co-localization as a
percentage of total cells was obtained.

Data were analyzed using GraphPad Prism software
(GraphPad Inc., San Diego, CA, USA, v.6). The normality of the
samples (P > 0.05) was evaluated with the Kolmogorov–Smirnov
test and group means were compared with the Mann–Whitney
U test (non-parametric data). Data are expressed as
mean ± standard error of the mean to estimate the reliability of
the mean. Differences were considered statistically significant at
P < 0.05.

FIGURE 3 | Immunofluorescence analysis of parvalbumin (A,B), calbindin
(C,D), somatostatin (E,F) and calretinin (G,H) expression in different divisions
of the human AON. Scale bar, 50 µm (A–H). For abbreviations, see list.
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FIGURE 4 | Graphs show cells/mm2 (A) and % of area fraction (B) expression of calbindin, somatostatin, calretinin and parvalbumin in the different portions of the
AON in Parkinson’s disease (PD) and control (C) cases. ∗p < 0.05, ∗∗p < 0.01.

RESULTS

The human AON is a complex and multiple-portion structure
that is poorly characterized. Classical descriptions include
several subdivisions along the olfactory system (Crosby and
Humprey, 1941) that have been renamed as the bulbar,
intrapeduncular, retrobulbar, cortical anterior and cortical
posterior divisions (Ubeda-Bañon et al., 2010). Horizontal
sections of the human OB (Figure 1A) and olfactory peduncle
(OP; Figure 1B) showed several components of the anterior
olfactory nucleus, bulbar (AONb; Figure 1A, asterisks) and
anterior olfactory nucleus, intrapeduncular (AONi) AON
(Figure 1B, asterisks). In coronal sections, the AONrb
displayed a typical horseshoe form (Figures 1C,D) that
once incorporated to the basal prosencephalon, merged into
the AONca (Figures 1E,F), and caudally, into the AONcp
(Figures 1G,H).

Using sequential Nissl-stained sections, the AONrb
(Figure 2A), AONca (Figure 2D), and AONcp (not shown)
were analyzed. Immunohistochemical analysis of α-synuclein
expression revealed specific immunoreactivity in different AON
divisions includig the AONrb (Figure 2B), AONca (Figure 2E)
and AONcp (not shown). High-power images demonstrated the
preferential labeling of Lewy bodies and neurites in the AONrb
and AONca divisions, respectively (Figures 2C,F).

Fluorescent labeling (Figures 3, 5) was analyzed using three
parameters: (1) we compared the respective neuronal markers
in the neuronal cell bodies (cell/mm2) located in the divisions
of the AON of PD and control cases (Figure 4B); (2) we
compared the expression of these markers in the neuronal cell
bodies and neurites (% of area fraction) in the divisions of the

AON of PD and control cases (Figure 4A); (3) we analyzed
the co-localization of these neuronal markers with α-synuclein
(Figure 5).

Immunofluorescent analyses revealed significantly higher
expression of parvalbumin in the neuronal cell bodies (cell/mm2)
in all of the AON divisions of PD cases compared with controls:
the AONrb (P = 0.001; Figures 3A,B, 4A), AONca (P = 0.001;
Figure 4A) and the AONpc (P = 0.087; Figure 4A). No
significant differences were found in the expression of calbindin,
somatostatin, or calretinin in the above regions between the two
goups (Figures 3C–H, 4A).

There was significanlty higher expression of calbindin
(P = 0.0178; Figures 3C,D, 4B), calretinin (P = 0.0366; Figure 4B)
and parvalbumin (P = 0.0001; Figures 3A,B, 4B) in the cell
bodies and neurites (% of area fraction) of neurons in the
AONrb of PD patients compared with controls. There was also
significantly higher expression of parvalbumin in the neurites
(Figure 4B) of neurons in the AONca of PD cases compared
with controls (P = 0.0031; Figure 4B). In contrast, somatostatin
expression was significantly downregulated in the AONac of
PD cases (P = 0.0113; Figures 3E,F, 4B). Finally, calretinin
expression was significantly higher in the cell bodies plus
neurites of neurons in the AONpc of PD patients (P = 0.0096;
Figures 3G,H, 4B).

Co-localization of α-synuclein and the above neural markers
in PD cases was analyzed to investigate involvement of
α-synucleinopathy among different neuronal subtypes, and
is summarized in Figure 5. Examples of co-localization
of α-synuclein in the AONrb (Figures 5A,B), the AONca
(Figures 5C,D), and the AONpc (Figures 5E,F) with calretenin,
calbindin, parvalbumin and somatistatin are shown. Analyses of
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FIGURE 5 | Immunofluorescence analysis of parvalbumin (A,C,E), calbindin (B), somatostatin (E) and calretinin (F) expression and their co-localization with
α-synuclein in different divisions of the human AON. Percent is referred to total number of cells counted that express a neural marker and the fraction of which
co-express α-synuclein. Percent of co-localization of α-synuclein with the interneuron markers indicated (G) in the AONrb, AONca and anterior olfactory nucleus,
cortical posterior (AONcp) divisions of the AON. Scale bar, 50 µm (A–F); 21.25 µm in frame (A), 24.53 µm in frame (B), 16.72 µm in frame (C), 10.31 µm in frame
(D), 16.43 µm in frame (E), 12.5 µm in frame (F). For abbreviations, see list. ∗p < 0.05.

the percentage of cells where co-localization occurred revealed
that neurons expressing the calcium-binding proteins (calretinin,
calbindin and parvalbumin) had the highest percentages of
α-synuclein co-localization. Somatostatin/α-synuclein-positive

cells were rare, although there were higher percentages in the
AONca (Figures 5D,G).

Significant differences were also observed between
somatostatin and parvalbumin expression in the AONrb
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of PD cases (P = 0.0113; Figure 5G) and between
somatostatin and parvalbumin expression and calbindin
and paravalbumin expression in the AONcp (P = 0.0124;
Figure 5G).

DISCUSSION

We found that increased expression of calcium-binding
proteins (calretinin, calbindin and parvalbumin), particularly
parvalbumin, correlated with α-synuclein co-localization in
the different divisions of the AON. In contrast, the decreased
neuritic expression of somatostatin in the AONca also led
to decreased α-synuclein co-localization. Varied calbindin
expression (% of area fraction) and calbindin/α-synuclein
co-localization among the divisions of the AON were also
found. Regarding calretinin expression, we did not observe
differences in any of the AON divisions in cells/mm2, but
we did find significant increases in the % of area fraction in
both the AONrb and AONcp. This contrast to recent data
reporting significant reductions in the number of calretinin-
positive periglomerular and granular cells in the OB of PD
cases compared to controls (Cave et al., 2016). Data from
this experiment support the idea for differential regional
α-synuclein involvement; and therefore, we believe the divisions
of the AON to be diverse and thus need to be independently
analyzed.

There are several limitations to this study. First and foremost,
the interpretation of the data obtained in this study is limited
by the number of cases available. Future studies including larger
number of cases are needed.

This report is the first study comparing both the expression
of markers of different neuronal populations in the AONrb,
AONca, and AONcp of PD cases and controls as well as
α-synuclein distribution in these respective areas. Previous
reports on α-synuclein distribution in the OB focused on the
AONb and/or AONi (Del Tredici et al., 2002; Braak et al.,
2003a,b; Attems et al., 2014; Del Tredici and Braak, 2016; Braak
and Del Tredici, 2017) and for the most part, did not include
co-localization with neural markers (Sengoku et al., 2008).

In this context, it is especially interesting to investigate the
differential vulnerability of interneuron populations in the AON
since this structure is implicated in hyposmia (Hawkes and
Shephard, 1993; Jellinger, 2009) and shows early and preferential
involvement in α-synucleinopathy (Sengoku et al., 2008; Ubeda-
Bañon et al., 2010; Attems et al., 2014); suggesting that it is an
important structure in PD etiology (Ubeda-Bañon et al., 2014).
The early and preferential involvement of the AON in PD could
be due to the multiple interconnections of this structure with
various other regions of the brain as shown in rodents (Brunjes
et al., 2005). Indeed, a direct projection from the substantia nigra
to the OB has recently been described (Höglinger et al., 2015).
Therefore, as the AON in the human brain is composed of at least
five different divisions (Ubeda-Bañon et al., 2014; Figure 1), each
of these needs to be further characterized in order to establish
accurate analysis.

Overall, our results show high levels of calcium-binding
proteins—specfically of parvalbumin—in the AON and reduced

neuritic somatostatin expression in the AONca; in contrast
to what is observed in the substantia nigra (Hardman et al.,
1996).

In the human amygdala, we reported decreased expression
of somatostatin in PD cases (Flores-Cuadrado et al., 2017),
but, in contrast to the current data, we also found decreased
expression of parvalbumin (Flores-Cuadrado et al., 2017).
This difference could be due to the fact that the number
of parvalbumin-positive cells/mm2 is 10 times higher in
the AON (Figure 4) as compared to the human amygdala
(Flores-Cuadrado et al., 2017). Also, the intrinsic dendrites vs.
somatostatin-positive axons from distal sites cannot be discarded
(Lepousez et al., 2010). Interestingly, calcium-binding proteins,
but rarely somatostatin, co-localized with α-synuclein, which was
in agreement with previous studies (Flores-Cuadrado et al., 2016,
2017).

In Alzheimer’s disease, somatostatin expression is decreased
by 50% in the AONca and co-localizes with amyloid β (Saiz-
Sanchez et al., 2010), whereas parvalbumin and somatostatin
levels are up- and downregulated, respectively, in the piriform
cortex (Saiz-Sanchez et al., 2015, 2016). Common patterns
of differential vulnerability among different interneuron
populations due to distinct proteinopathies (Epelbaum et al.,
2009) deserves additional analysis in structures like the AON,
which is involved early and preferentially.

Our results suggest a potential differential vulnerability
that may be due to α-synucleinopathy among interneurons
populations in different divisions of the human AON. It
is unclear to what extent cells expressing calcium-binding
proteins can buffer the pathological effects of α-synuclein
and somatostatin-positive neurons are induced to change their
cell body size and/or dendritic expression by non-aggregated
α-synuclein isoforms; these are questions that will be addressed
in future studies.
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