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ABSTRACT

We are now in an era where protein–DNA interac-
tions have been experimentally assayed for thou-
sands of DNA-binding proteins. In order to infer DNA-
binding specificities from these data, numerous so-
phisticated computational methods have been devel-
oped. These approaches typically infer DNA-binding
specificities by considering interactions for each pro-
tein independently, ignoring related and potentially
valuable interaction information across other pro-
teins that bind DNA via the same structural domain.
Here we introduce a framework for inferring DNA-
binding specificities by considering protein–DNA in-
teractions for entire groups of structurally similar
proteins simultaneously. We devise both constrained
optimization and label propagation algorithms for
this task, each balancing observations at the in-
dividual protein level against dataset-wide consis-
tency of interaction preferences. We test our ap-
proaches on two large, independent Cys2His2 zinc
finger protein–DNA interaction datasets. We demon-
strate that jointly inferring specificities within each
dataset individually dramatically improves accuracy,
leading to increased agreement both between these
two datasets and with a fixed external standard. Over-
all, our results suggest that sharing protein–DNA in-
teraction information across structurally similar pro-
teins is a powerful means to enable accurate infer-
ence of DNA-binding specificities.

INTRODUCTION

Proteins that bind DNA in a sequence-specific manner are
involved in a wide range of functions in the cell, from

transcriptional regulation to recombination. Comprehen-
sive knowledge of the DNA-binding preferences of these
proteins would thus be a great aid in unraveling the molecu-
lar underpinnings of these processes. Fortunately, there has
been an explosion in high-throughput experimental tech-
niques for determining DNA-binding preferences for pro-
teins (reviews, (1,2)), and DNA-binding specificities are now
known for thousands of naturally occurring proteins span-
ning a variety of species, including human and most model
organisms. Still thousands more specificities have been in-
ferred for synthetic variants from select DNA-binding do-
main (DBD) families (3,4). Altogether, these specificities
cover tens of DBD families, and are easily accessible via ex-
pansive databases (5–12).

Accompanying these experimental advances, novel com-
putational approaches have enabled the inference of DNA-
binding specificities from raw interaction data (see e.g. (13–
18)) and have optimized the inferred models’ abilities to de-
tect in vivo binding sites (19–22). Generally, though, current
approaches for inferring DNA-binding specificities con-
sider only a single protein at a time, despite the knowl-
edge that proteins within the same DBD family tend to in-
teract with their binding sites in similar ways based upon
their common underlying protein–DNA structural interac-
tion scaffold (i.e. they have similar underlying DBD-DNA
‘interfaces’) (23–29). Since high-throughput measurements
may be less accurate for some proteins than for others, we
reasoned that simultaneously considering all observed in-
teractions for large groups of proteins while also consid-
ering the similarity of their interfaces would lead to more
accurate estimation of DNA-binding specificities. Such an
approach is of increasing value as DNA-binding interac-
tions are continuing to be rapidly determined and system-
atic screens of large numbers of variants for a given DBD
family are becoming more common (3,4,30,31).

In this article, we introduce a formal computational
framework, along with two specific approaches, for jointly
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inferring DNA-binding specificities of proteins that share
similar underlying structural interfaces. Our framework
considers all DNA-binding information across a large col-
lection of proteins within a single DBD family simultane-
ously in either a constrained optimization or label prop-
agation setting. Our formulation balances inferring speci-
ficities that reflect experimental observations for individ-
ual proteins with rewarding consistency across inferred
specificities when considering the proteins’ similar inter-
faces. To our knowledge, this is the first approach for in-
ferring DNA-binding specificities that simultaneously con-
siders multiple proteins together in the context of their
structural interfaces. In principle, our approaches require
only that the large collection of DNA-binding informa-
tion is for proteins from a DBD family that has a well-
characterized DBD-DNA interaction scaffold where it is
known which amino acid positions of the DBD are likely to
contact and specify bases at particular positions within the
specificities.

Here, we demonstrate the power of sharing DNA-binding
information across structurally similar proteins via compre-
hensive testing on two recent independent DNA-binding
studies spanning thousands of Cys2His2 zinc finger (C2H2-
ZF) DBDs (4,30); C2H2-ZFs are the most abundant DBD
family in higher organisms (32). Applying our framework
to each of these datasets individually leads to a ∼15% in-
crease in agreement of DNA-binding specificities for pro-
teins shared across the two datasets; this increase in agree-
ment across repeated independent experiments provides
broad evidence that jointly inferred specificities are likely
closer to ground truth than their individually inferred coun-
terparts. Moreover, we validate the increased accuracy of
jointly inferred specificities by showing increased agreement
to a smaller external collection of C2H2-ZF specificities
determined from lower throughput experimental data. Fi-
nally, as proof of principle, we demonstrate the general-
ity of our framework by applying it to infer specificities
for Homeodomain DBDs as well. Overall, we present com-
pelling evidence that joint specificity inference is a powerful,
general paradigm to increase the accuracy of specificities
derived from high-throughout protein–DNA interaction
screens.

MATERIALS AND METHODS

Overview of approach

Suppose that we have a group of proteins of the same DBD
family, and a measure between pairs of proteins that reflects
our expectation as to whether their DNA-binding speci-
ficities should be similar. Given a corpus of protein–DNA
interaction data across these proteins, our method jointly
determines their DNA-binding specificities, as opposed to
just determining each protein’s DNA-binding specificity in-
dividually, as is typically done.

More formally, suppose we have a set of n proteins A
of the same DBD class, and for each a ∈ A, we have an
initial estimate of its DNA-binding specificity represented
as a position-specific weight matrix (PWM) Sa (or alterna-
tively a count matrix Ca). In particular, if k is the length of
the binding site for the protein, Sa is a 4 × k matrix where
Sa[b, j] (respectively, Ca[b, j]) is the normalized frequency

(respectively, count) with which nucleotide b is observed in
the j-th position of the aligned binding sites for protein a; Sa
or Ca are usually determined by specialized computational
approaches designed to analyze data for a arising from spe-
cific types of experiments (e.g. protein binding microarrays).
We note that binding sites of DBDs typically have a fixed,
known length; for example, each C2H2-ZF domain binds a
3 or 4 base pair (bp) site.

For each pair of proteins a and a′ and for each posi-
tion 1 ≤ j ≤ k within the binding site, suppose that we
have a weight wj(a, a′) that represents our a priori expecta-
tion of how similar the DNA-binding specificities for pro-
teins a and a′ should be at the j-th position in their respec-
tive PWMs. If there is no reason to expect that two pro-
teins have similar binding preferences at nucleotide posi-
tion j, then wj(a, a′) = 0, and otherwise 0 < wj(a, a′) ≤ 1,
with higher values indicating a greater expectation that the
DNA-binding specificities of these two proteins are similar.
Furthermore, we consider these weights normalized on a
per-protein basis (i.e.,

∑
a′ w j (a, a′) = 1) so that each pro-

tein contributes equally in the optimization formulations
below. In a following section, we provide one approach to
deriving these weights using structural knowledge about the
DBD family.

Our goal is to infer for each a ∈ A a revised DNA-
binding specificity Ŝa such that the DNA-binding specifici-
ties of the proteins within A are informed both by the initial
specificity estimates (i.e. as inferred by analyzing the DNA-
binding data for each protein individually) and by the ex-
pected similarities between specificities for all the proteins
in A (as specified by the weights w). We give three possible
formulations of this problem below, and apply the latter two
to infer PWMs.

Formulations

Jointly regularized maximum likelihood. In our first for-
mulation, we consider the case where for each protein a, we
have count data Ca. Our formulation corresponds to a max-
imum likelihood estimation procedure for inferring PWMs
Ŝa for all a ∈ A , where the PWMs are jointly regularized
using the weights w. Due to computational considerations,
we are not able to apply this formulation on protein–DNA
binding data in practice, but it provides a framework with
which to understand our subsequent approaches.

Here, each column j in Ŝa is modeled as a multinomial
distribution, and our goal is to simultaneously estimate the
parameters for column j for all proteins a ∈ A. Let Ca[ ·, j]
denote the the count vector for the j-th binding site posi-
tion for DBD instance a, and Ŝa [·, j ] denote the analogous
parameters we wish to estimate for the multinomial dis-
tribution. Then L

(
Ŝa [·, j ]

∣∣Ca [·, j ]
) = Pr

(
Ca [·, j ]

∣∣Ŝa [·, j ]
)

is the likelihood function and −�
(
Ŝa [·, j ]

∣∣Ca [·, j ]
) =

− ln
(
L

(
Ŝa [·, j ]

∣∣Ca [·, j ]
))

is the negative log-likelihood
function for the data Ca[ ·, j] under parameters Ŝa [·, j ]. For
each position j in the binding site, we determine parameters
by solving a constrained optimization problem where
we balance minimizing the negative log-likelihoods with
the inconsistencies in binding preferences among binding
specificity columns that we believe should be similar based
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on w. In particular, for each position j we solve:

min
Ŝ

∑
a

− �
(
Ŝa [·, j ]

∣∣Ca [·, j ]
)

+β
∑

b

∑
a

∑
a′

w j
(
a, a′) (

Ŝa [b, j ] − Ŝa′ [b, j ]
)2

subject to: ∑
b

Ŝa [b, j ] = 1 ∀ a

0 ≤ Ŝa [b, j ] ≤ 1 ∀ (a, b)

(1)

where b is summed across the possible nucleotide outcomes
{A, C, G, T} and a and a′ are each summed over A.

The constraints ensure that each PWM column in Ŝ
forms a distribution, and � is a non-negative constant con-
trolling the level of regularization. In particular, � can be
set to be zero if we wish to estimate the PWMs individually;
in this case, we will obtain the precise maximum likelihood
estimates for each individual PWM in Ŝ. On the other hand,
if we wish to share information across the proteins, we can
increase the value of �, and the terms in the second sum-
mation will smooth agreement across the j-th columns of
the PWMs according to our expected similarity measure, w
(i.e. jointly regularize the parameter estimates for the multi-
nomials).

Although this formulation has a clean probabilistic inter-
pretation, it poses a few difficulties. First, the multinomial
likelihood and negative log-likelihood functions contain ex-
ponential and logarithmic terms, respectively; non-linear
constrained optimization problems are not practically solv-
able for a large number of parameters. Second, while most
experimental techniques can yield counts, not all do. In con-
trast, there are technology-specific computational methods
for extracting PWMs for all experimental techniques, and
PWM models allow similar but more tractable formulations
for inferring specificities jointly, as explained below.

Convex quadratic programming. Our next formulation
modifies the maximum likelihood approach by replacing
the negative log likelihood terms with squared error terms
relating a set of initial PWM estimates S to the output esti-
mates Ŝ. We use a single fixed parameter 0 < � ≤ 1 in the
objective function to balance the original per-protein esti-
mates with the dataset-wide consistency of estimates across
all proteins under the measure w. For each position j in the
binding site, our optimization is:

min
Ŝ

α
∑

b

∑
a

(
Sa [b, j ] − Ŝa [b, j ]

)2

+(1 − α)
∑

b

∑
a

∑
a′

w j
(
a, a′) (

Ŝa [b, j ] − Ŝa′ [b, j ]
)2

subject to: ∑
b

Ŝa [b, j ] = 1 ∀ a

0 ≤ Ŝa [b, j ] ≤ 1 ∀ (a, b)

(2)

When � = 1, S = Ŝ, and as � approaches zero, clus-
ters of proteins for which we expect similar DNA-binding
behavior with respect to base position j will each have
highly similar j-th PWM columns. In the case that Sa [b, j ] =

Ca [b, j ]/
∑

b′ Ca [b′, j ] (i.e. the maximum likelihood esti-
mate for Sa[b, j] based on counts), the primary difference
between this formulation and the previous one is that pa-
rameter smoothing (‘regularization’) occurs after maximum
likelihood estimation rather than simultaneously. Since this
objective function is quadratic, the constraints are linear,
and the objective function’s Hessian matrix is diagonally
dominant with a strictly positive diagonal, the optimization
problem is a convex quadratic program and the optimal pa-
rameters can be found efficiently. In particular, we use the
cvxopt Python package to do so.

Label propagation. Our third formulation is based on a
general and flexible label propagation algorithm called net-
work ‘adsorption,’ that was initially introduced in the con-
text of improving recommender systems (33). Here, in each
iteration, the j-th column of the PWM for each protein a is
updated based on its current value and those of the ‘neigh-
boring’ proteins a′ (i.e. those with wj(a, a′) > 0). That is, col-
umn j of Ŝa is initially assigned the value of the column j of
Sa. The algorithm then repeatedly updates Ŝa as a convex
combination of a and the neighbors of a’s current PWMs
according to the following update, where t indicates the it-
eration number, until convergence is reached:

Ŝa [·, j ](t) ← αŜa [·, j ](t−1)

+(1 − α)
∑

a′
w j (a, a′)Ŝa′ [·, j ](t−1) (3)

where Ŝa [·, j ] is the j-th column of Ŝa and 0 < � ≤ 1 is a
fixed parameter balancing the current PWM estimate with
the amount of smoothing across related PWMs.

Similarity measure based on structural knowledge

We now describe how we compute a similarity measure for
a DBD family (see Supplemental Methods 1.1 and 1.2 for
full details). Briefly, we start by extracting all co-complex
protein–DNA structures for the DBD family from Bi-
oLiP (34) and performing a multiple structural alignment.
Our alignment produces a contact frequency matrix M,
where M[i, j] is the uniqueness-weighted (35) (to account for
redundancy of DBDs across co-complex structures) frac-
tion of DBD-DNA co-complex instances in which an amino
acid in position i of the DBD contacts a base in aligned
binding site position j (i.e. within 3.6 Å of a non-hydrogen
atom of the base). If an amino acid position i contacts a
base in at least 10% of DBD–DNA co-complex instances,
then we consider it as base contacting. Contact frequency
matrices inferred for C2H2-ZFs and Homeodomains high-
light known specificity-conferring residues (27,36,37) and
are in excellent agreement with previous analyses (Supple-
mentary Figure S1). For two C2H2-ZF DBD sequences a
and a′ that differ in more than one base contacting position,
we presume no previous expectation of PWM column sim-
ilarity (i.e. wj(a, a′) = 0 for all j). Similarly, if a and a′ vary
in the DBD position most frequently contacting position j,
we set wj(a, a′) = 0. Otherwise, wj(a, a′) is set proportionally
to 1 – M[i, j], where i is the varying key DBD position, and
normalized on a per protein basis so that

∑
a′ w j (a, a′) = 1.
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For Homeodomains, we modify this approach to allow non-
zero edges for pairs differing in up to four base contacting
positions (Supplemental Methods 1.6).

For a DBD family, the similarities between all pairs of
DBD sequences can also be represented by a set of graphs
Gj, one for each base position j. In this similarity graph rep-
resentation, there is a node for each DBD sequence a and
directed edges of weights wj(a, a′) and wj(a′, a) connecting
nodes for DBD instances a and a′ if they have non-zero ex-
pected similarity in base position j.

PWM datasets

We use two independent datasets of DNA-binding speci-
ficities, represented as PWMs, for single C2H2-ZF domains
as determined by Persikov, Wetzel et al. (4) (the PW-2015
dataset) and Najafabadi, Mnaimneh et al. (30) (the NM-
2015 dataset). We process these data so that DBDs that
are identical in the four base contacting amino acid posi-
tions (determined as described above and corresponding to
the well-known specificity determining positions for C2H2-
ZF domains (4,27,30)) are aggregated; we refer to each set
of aggregated sequences by its core sequence representation,
which is the concatenation of these four amino acids. Our
initial set of PWMs consists of 7776 and 2599 distinct core
sequences from PW-2015 and NM-2015, respectively. Each
PWM is 3 bp long, corresponding to the binding site length
of a single domain. Within each dataset, we eliminate core
sequences a such that there is no a′ 	= a in that dataset with
wj(a, a′) > 0 for some j, leaving 7760 and 2471 distinct core
sequences, respectively, with an overlap of 896 distinct core
sequences. Finally, we consider a third set of PWMs corre-
sponding to 150 core sequences from the D. melanogaster
genome assayed earlier in a lower throughput system (38).
Details regarding processing these datasets at the level of
core sequences are provided in Supplemental Methods 1.3,
and topological properties of the similarity graph represen-
tations for the two large datasets are provided in Supple-
mentary Figures S2 and S3. Homeodomain PWM datasets
and their processing are described in Supplemental Meth-
ods 1.4 and 1.5.

Evaluating the level of agreement across PWMs

Two PWM columns are considered to be in agreement if
their Pearson correlation coefficient (PCC) is ≥0.5. We en-
sured that our analysis is robust to variations in this thresh-
old, as explained in the Results section. PCC is particularly
suitable for our analysis due to its insensitivity to infor-
mation content (IC), as there are substantial differences in
overall IC between the two large PWM datasets and there
are changes in IC introduced by our procedure.

RESULTS

Rewarding within-dataset consistency increases across-
dataset agreement

We begin by considering the performance of our quadratic
programming formulation (QP), and then show how the la-
bel propagation adsorption formulation (LPA) compares to
it in a subsequent section (see Comparison of optimization
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Figure 1. Rewarding within-dataset consistency increases across-dataset
agreement. For two independent datasets of single-domain C2H2-ZF
specificities, we apply the QP formulation to each dataset separately for dif-
ferent values of � (x-axis; lower value implies more information sharing).
(Top) For each �, for all proteins shared between the two datasets, we com-
pare their jointly inferred specificities in each of the two datasets and com-
pute the increase in the fraction of corresponding columns in agreement as
compared to the agreement between the initial PWMs (solid line; y-axis).
This increase is substantially larger than when randomly pairing PWMs
across the two datasets (dashed line; y-axis). (Bottom) As a function of �,
we consider the difference in the rate of across-dataset agreement increase
for corresponding versus random core sequence pairings (solid line minus
dashed line from top panel; y-axis), and observe a plateau around � = 0.4
where rates become similar.

and adsorption approaches). We test our approaches us-
ing the PW-2015 and NM-2015 PWM datasets as initial
specificities, determined as described in (4,30) and then pro-
cessed at the core sequence level (see Materials and Meth-
ods). We apply QP to each dataset individually, varying the
value of the regularization parameter � that controls the
amount of information sharing amongst proteins within
a dataset between 1 (no information sharing, the initial
PWMs) and 0.05 (heavily rewarding within-dataset consis-
tency). For each � setting, we then measure agreement be-
tween corresponding PWM columns for 896 core sequences
that are present in both datasets. Since these corresponding
PWM columns reflect biologically repeated experiments,
we expect high agreement; however, we observe that initial
specificities agree for only 60% of columns, with a median
per-column PCC of 0.76.

Strikingly, as � decreases, the across-dataset agreement
increases substantially (Figure 1, top, solid line) as com-
pared to the baseline where there is no joint consideration
of proteins (� = 1); this suggests that as information is
shared across proteins, each set of inferred PWMs moves
independently toward a common ground truth. As a con-
trol, we also consider agreement between the PWMs of
randomly paired core sequences across the datasets; agree-
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ment between random pairs could increase due to protein-
independent similarity in background nucleotide distribu-
tions across the two datasets. Importantly, for each � <
1 considered, the increase in agreement for the true cor-
responding PWM columns is far greater than that of the
randomly paired columns (Figure 1, top, dashed line), in-
dicating that the increase in agreement for corresponding
pairs can not be explained by simple protein-independent
similarities in nucleotide backgrounds. Indeed, we find that
as � goes from 1 down to 0.4, actual pairings increase in
agreement considerably faster than random, after which the
difference in rates plateaus (Figure 1, bottom). This sug-
gests that, with smaller �, specificities are rewarded too
heavily for consistency with respect to the structural inter-
face. When this plateau at � = 0.4 is reached, the QP ap-
proach has led to a 15% increase in agreement for columns
of corresponding core sequence pairings across these two
datasets, while relatively little increase has occurred for ran-
dom pairings (2%). These trends are robust to altering the
PCC threshold for agreement (Supplementary Figure S4),
with median PCCs across paired columns increasing and
variances of the PCC distributions decreasing as � decreases
(Supplementary Figure S5). Additionally, these same obser-
vations hold when considering the individual base positions
of the PWMs separately rather than in aggregate (Supple-
mentary Figure S6).

Initially confident specificities tend not to change

Reasoning that initial specificities reproduced across the
two datasets are likely to be correct, we next examine the
differential effect of the QP approach on reproduced ver-
sus non-reproduced initial specificities. To do so, we parti-
tion the corresponding PWM column pairs across the core
sequences present in both PW-2015 and NM-2015 into
those that initially agree and those that do not (i.e. repro-
duced and non-reproduced, respectively), and then analyze
whether agreement status changes as we reduce �.

Overall, the fraction of columns in initial disagreement
that swap into agreement (‘agreement gain’) vastly exceeds
the fraction of columns in initial agreement that swap out
of agreement (‘agreement loss’) (Figure 2, top). The ratio
of agreement gain to agreement loss is maximized around
� = 0.4 (Figure 2, bottom), which coincides with the per-
formance plateau observed in the previous section (Fig-
ure 1, bottom). At this ‘optimal’ regularization level, there
is ∼8-fold enrichment for agreement gain over loss (46%
and 6%, respectively). Thus our approach does not tend
to change agreement for specificities reproduced across the
two datasets.

For a wide range of � settings, the vast majority of
jointly inferred specificities are in good agreement with cor-
responding initial specificities. For example, at � = 0.4,
92% of columns agree with their corresponding initial coun-
terparts (Supplementary Figure S7). Strikingly, when con-
sidering the subset of paired columns (i.e., one from each
dataset, corresponding to the same core sequence) from the
across-dataset ‘agreement gain’ group, at least one column
from each pair remains in agreement with its initial coun-
terpart 99% of the time (Supplementary Figure S8). This
suggests that one of the two initial specificities is typically
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Figure 2. Initially confident specificities tend not to change. For two in-
dependent datasets of single-domain C2H2-ZF specificities, we apply the
QP formulation to each dataset separately for different values of � (x-
axis). (Top) For each �, for all proteins shared between the two datasets,
we compare their jointly inferred specificities in each of the two datasets
and compute the fraction (y-axis) of initially disagreeing columns that now
agree (green) and the fraction of initially agreeing columns that now dis-
agree (red). For all �, agreement gain is substantially larger than agreement
loss. (Bottom) We plot the ratio of these two values (green over red, or the
enrichment; y-axis), observing 4-to-8-fold enrichment for agreement gain,
peaking near � = 0.4. We note that that large enrichments at high � (≥0.90)
are an artifact of small sample sizes (i.e. most columns’ agreement statuses
have not yet changed from their initial status; see top).

already accurate, and our procedure is highly unlikely to al-
ter that particular one.

As a control, when repeating our QP procedure after ran-
domizing core sequence relationships within each dataset
by permuting nodes within each similarity graph, we find
that the agreement gain vs. loss ratio remains close to 1 for
nearly all � settings tested (Supplementary Figure S9) and
corresponding columns across the two datasets decrease
in agreement (Supplementary Figure S10). Furthermore,
PWM columns inferred under such random core sequence
associations lack information content and diversity (Sup-
plementary Figures S11 and S12).

Comparison with an external dataset validates improvements

We further evaluate the accuracy of the jointly inferred
specificities we derived from PW-2015 and NM-2015 by
considering agreement of each with a more reliable dataset
of 150 specificities for C2H2-ZF core sequences determined
independently from lower throughput data (38). Of these
core sequences, 67 and 80 overlap with PW-2015 and NM-
2015, respectively. Considering these overlapping core se-
quences, at � = 0.4 we find that specificities have 6–7% more
columns in agreement with the external dataset than do the
corresponding initial specificities (Figure 3, top). Further-
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Figure 3. Comparison with an external dataset validates improvements.
For the PW-2015 and NM-2015 datasets of single-domain C2H2-ZF
specificities, we apply the QP formulation to each dataset separately for
different values of � (x-axis). (Top) For each �, for each protein shared
between PW-2015 and an external dataset (38), we compare the jointly
inferred specificity in the PW-2015 dataset with the corresponding speci-
ficity in (38) and compute the increase in the fraction of columns in agree-
ment (top, y-axis) as compared to the agreement between the initial PWMs
(solid red line). Similarly, we compute this same increase in agreement be-
tween the jointly inferred specificities for NM-2015 and their correspond-
ing specificities in (38) (solid green line). Agreement with the external
dataset increases in both cases as more information is shared among pro-
teins in the same dataset (i.e., by decreasing �), until either a plateau or a
peak is reached around � = 0.4. When comparing jointly inferred PWM
columns to randomly chosen PWM columns from the external set (dashed
lines), little to no agreement increase is observed. (Bottom) We consider
the ratio for agreement gain to agreement loss (y-axis) at each � setting
(analogous to Figure 2, bottom), aggregating columns across both datasets
simultaneously, and observe a peak enrichment of ∼8-fold at � = 0.4.

more, the curve for ratio of agreement gain to agreement
loss is qualitatively similar to that observed in our analysis
above, again with peak enrichment for agreement gain of
roughly 8-fold at � = 0.4 (Figure 3, bottom). Thus, the in-
creased accuracy suggested by our large-scale analyses is re-
capitulated when considering this smaller but more reliable
dataset. Several examples of jointly inferred specificities as
compared to their initial individually inferred counterparts
are shown in Supplementary Figure S13.

Comparison of optimization and adsorption approaches

We repeat the analyses described above using the LPA al-
gorithm (33). In LPA, � corresponds to the probability of
entering an absorbing state during a random walk through
the transpose of the similarity graph, which differs from its
interpretation in the QP approach. Thus we do not neces-
sarily expect similar performance at the same � across the
two approaches. Instead we ask whether for each � setting
for QP, there exists some �′ for LPA at which the approaches
perform similarly.

We compare results of the QP and LPA approaches
across a grid of (�, �′) settings, computing the Jac-
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Figure 4. Quadratic programming and label propagation adsorption ap-
proaches yield similar jointly determined specificities. We consider the sim-
ilarity of results between our two distinct approaches to sharing DNA
binding information across structurally similar proteins. (A) For different
values of � for the QP approach (x-axis) and for the LPA approach (y-
axis), we plot the Jaccard coefficient of the sets of corresponding columns
in agreement across PW-2015 and NM-2015 (i.e. the agreement overlap).
Lower overlap is indicated by blue and higher overlap is indicated by red.
(B) As a function of � (x-axis), we compare the agreement gain versus
agreement loss ratio (i.e., as described in Figure 2; y-axis) when using ei-
ther the LPA approach (green) or the QP approach (red, also shown in
Figure 2, bottom). The QP approach obtains higher ratios for all � and
the ratio peaks at 0.3 ≤ � ≤ 0.4 for both approaches.

card coefficient overlap of the PWM columns that are
in across-dataset agreement for NM-2015 and PW-2015.
The two approaches produce highly similar, though non-
identical, across-dataset agreement profiles, as indicated by
the slightly asymmetric red diagonal in Figure 4 A (corre-
sponding to Jaccard coefficient > 0.9). When considering
each approach at its best � setting according to the agree-
ment gain to agreement loss ratio, QP performs slightly bet-
ter than LPA (7.9-fold at � = 0.4 versus 6.7-fold at � = 0.3,
respectively; see Figure 4 B). At these � settings, the overlap
in sets of columns in across-dataset agreement is 0.94, and
the increase in fraction of PWM columns in across-dataset
agreement is similar (15% for QP and 13% for LPA). Over-
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all, the same general trends observed when using QP are
preserved when switching to LPA (Supplementary Figures
S14 and S15), with LPA performing slightly worse but at
lower computational cost.

Since label propagation is a natural extension of a near-
est neighbor (NN) approach, we perform additional test-
ing to ensure that LPA outperforms an analogous NN ap-
proach. Specifically, we repeat our analysis, but run LPA for
only a single iteration, which is identical to weighted NN us-
ing the same structural similarity measure. LPA to conver-
gence substantially outperforms NN, both in terms of in-
crease in across-dataset agreement between NM-2015 and
PW-2015 and each datasets’ agreement with the smaller ex-
ternal dataset (38) (Supplementary Figure S14).

Application to Homeodomains

As a proof of principle demonstration of the generality of
our approach, we next apply it to infer the DNA-binding
specificities of Homeodomain proteins. Homeodomains
comprise the second most abundant class of transcription
factors in humans (32), and more generally account for an
estimated 15-30% of transcription factors across plants and
animals (39). While Homeodomains generally bind DNA
via a 6–8 bp long region, PWMs extracted from the cis-
BP (8) database for Homeodomains vary in length. We thus
aligned each of 429 Homeodomain PWMs extracted from
cis-BP to their appropriate positions within our structural
contact model for Homeodomains (Supplemental Meth-
ods 1.4 and 1.5; Supplementary Figure S1, bottom). These
PWMs span 314 distinct proteins, of which 231 have a single
PWM, while the remaining each have up to four ‘replicate’
PWMs from separate publications. In general, specificities
for distinct Homeodomain proteins are less diverse than
those for ZFs, with the majority of Homeodomains’ PWMs
containing a TAAT motif in the first four of six ‘core’ bind-
ing site positions. We find that the replicate PWMs have ex-
cellent agreement in these four positions (labeled 1 through
4 in Supplementary Figure S16). However, there are some
disagreements at positions 5 and 6, and thus we apply our
procedure for jointly inferring DNA-binding specificities in
order to determine whether we can obtain higher agreement
for these positions.

After randomly partitioning the PWMs into two sets of
roughly equal size, with 83 proteins represented by repli-
cate PWMs in opposite sets, we apply our QP approach
to positions 5 and 6 of each set independently at various
� settings (Supplementary Results 2.1 and Supplementary
Methods 1.6). Of the corresponding column pairs across the
two sets that disagree initially (i.e. at � = 1), 61% gain agree-
ment at � ≤ 0.7, while none of the initially agreeing columns
lose agreement (Supplementary Figure S17, top left). This
agreement gain far exceeds that observed for columns ran-
domly paired across the two sets (18% at � = 0.7; Supple-
mentary Figure S17, bottom left). Overall, sharing knowl-
edge across proteins tends to result in higher PCCs between
corresponding columns; for example, at � = 0.7, 66.4% of
paired columns have increased PCCs, 30.3% have PCCs that
are the same, and only 3.3% have decreased PCCs (Sup-
plementary Figure S17, right). Thus, even in a challeng-
ing testing scenario where specificities are highly accurate

to start, our framework increases reproducibility of PWM
estimates across independent experiments. Visual examples
of improved agreement for Homeodomain specificities are
provided in Supplementary Figure S18.

DISCUSSION

Here, we have introduced a general framework for DNA-
binding specificity estimation that simultaneously consid-
ers interaction preferences for an entire group of proteins
from the same DBD family. At the heart of our framework
is the notion of rewarding global consistency of specifici-
ties according to an expected similarity measure that reflects
DBD family-level structural considerations. We have shown
several lines of evidence supporting the advantages of our
framework over simply estimating each specificity individu-
ally. First, determining specificities jointly substantially im-
proves across-dataset agreement for two large-scale, inde-
pendent studies. Second, this approach rarely perturbs reli-
able and reproducible initial specificities, instead selectively
correcting less confident ones. Third, we verified that the
specificities jointly determined based on either of the two
large-scale datasets are in better agreement with a reliable
external set than the corresponding initial specificities are.

The framework we have described here is technology-
independent and designed to be applied as a complemen-
tary post-processing step to any sufficiently large set of
PWMs for proteins that share similar underlying structural
DBD-DNA interfaces. Indeed, we have used our frame-
work to infer Homeodomain DNA-binding specificities
that consider measurements from across multiple experi-
mental platforms simultaneously. Much previous work im-
proving specificities derived from high-throughput protein–
DNA interactions has been technology-specific, as the rela-
tionship between actual binding events and measured sig-
nals of binding is itself technology-specific. For example, a
competition comparing over twenty algorithms highlighted
this inherent challenge in the context of predicting probe
intensities for protein binding microarrays (PBMs) (16). As
technology-specific approaches continue to advance models
relating raw signal to specificities of individual proteins, our
joint framework can leverage these improved models.

One potential limitation of our approach is that it re-
quires knowledge of the structural interface between an in-
stance of a DBD and its binding sites, as represented by
a PWM. This interface can be inferred, even from limited
structural examples, either by hierarchically aligning suffi-
ciently similar PWMs across distinct DBD instances (40),
or via specialized experimental setups that directly provide
position and orientation information across all the detected
DBD-DNA interactions (4,30,36). For example, here we use
a heuristic approach based upon a limited set of known in-
terfaces (36) as well as the similarity of key base-contacting
DBD residues to align Homeodomain DBD–PWM pairs
to underlying structural interfaces (Supplemental Methods
1.5). Given the breadth of co-complex structures available
in the PDB (41,42), we expect that further development
of algorithms for jointly determining DNA-binding speci-
ficities may be able to automatically infer the necessary
structural interfaces from more general experimental data
(i.e. with unknown registration of PWM positions across
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proteins), even for DBD families with complex and diverse
binding preferences. Alternatively, previously correlations
between DBD residues and bound DNA sequences for a
particular DBD family have been leveraged to infer mod-
els predictive of changes in DNA-binding specificity (43)
or even family-wide recognition codes (25,30,44–47); it may
be that such correlations can also be harnessed to guide
sharing of information across structural interfaces of DBD–
PWM pairs.

Our approaches allow flexibility in the amount of DNA-
binding information that is shared across proteins within
a dataset via a single tunable parameter, �. In many set-
tings, independent datasets include specificities for overlap-
ping sets of proteins. In this case, we have shown already
that several measures of improvement––including overall
increase in across-dataset agreement relative to a null model
(Figure 1, bottom) and enrichment for agreement gain over
agreement loss (Figures 2 and 3, bottom)––are very helpful
for choosing the � parameter. If substantially overlapping
datasets are not available, we recommend considering the
fit of the initial PWMs to the underlying data that is being
modeled. For example, � can be tuned to allow some in-
formation sharing (e.g. 0.5 ≤ � ≤ 0.9) while also requiring
that well-fitting initial PWMs from sufficient data should
be minimally perturbed. Importantly, we note that precise
tuning of the parameter is not strictly required; indeed we
have shown that even small amounts of information shar-
ing across proteins (i.e. large �) can substantially improve
PWM estimates.

While our framework is developed in the regime of classi-
cal PWMs, more complex models of specificity relax prob-
abilistic base position independence assumptions inherent
to classical PWMs. This is done, for example, via regression
on DNA k-mer features (14,16,17,48), direct inclusion of
DNA-shape information (18,20–22), and/or direct formu-
lation of specificity models in terms of binding energy esti-
mates (13,49–51)). One advantage of formulating in terms
of classical PWMs is the ability of our framework to ac-
commodate DNA-binding specificities derived from vari-
ous sources; complex models can be converted to simpler
ones under basic independence and/or scaling assumptions.
While our approach already improves specificities substan-
tially, we anticipate that extending it to allow inter-base de-
pendencies may lead to even higher improvements for select
proteins, albeit at the expense of additional parameters.

In sum, protein–DNA interactions continue to be rapidly
determined in the laboratory, and assays considering large
numbers of variants of DNA-binding proteins of the same
DBD family are becoming commonplace. Here we have pre-
sented a general framework for joint PWM inference that
allows simultaneous consideration of entire groups of struc-
turally similar DNA-binding proteins during specificity de-
termination. We have demonstrated that an existing label
propagation algorithm can provide comparable results to
directly optimizing an objective, as the fundamental con-
cept of encouraging consistency across specificity estimates
for similar DBD instances is reflected in either formulation.
In the future, alternate optimizations of the joint PWM
inference problem under various algorithmic or statistical
objectives is likely to extend the capabilities of the frame-

work and to lead to even more accurate estimates of DNA-
binding specificity.
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Supplementary Data are available at NAR Online.
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