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Abstract

Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have
predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount
that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that
describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of
the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate
models from a set of candidates in order to elect one as the best model to use for prediction. In this work, a method is
proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We
focus on models with systems of ordinary differential equations as the underlying mathematical description. The method
provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the
models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-
objective optimization problems was used. The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to
evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also
been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by
optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme,
glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-
substrate mechanism for the kinetics of yeast glyoxalase I.
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Introduction

Mathematical modeling is a key tool to investigate how the

dynamics of biochemical systems emerges from the interactions of

cellular molecular components [1]. The reliability of the

predictions derived from a model based on ordinary differential

equations (ODE) often depends on finding accurate parameter

values and selecting the most appropriate network structure and

rate equations. Parameter estimation and model discrimination

are, therefore, two main concerns in Systems Biochemistry. To

solve these problems, several conditions must be fulfilled. For

instance, it is paramount that a minimal set of variables can be

experimentally observed to ensure parameter identifiability,

meaning that the parameters of the model can be uniquely

estimated. Often, despite satisfactory parameter estimation, the

selection of the best model from a set of candidate models is not

clear from the experimental data available a priori. In such cases,

one possible strategy is to design experiments specifically to

discriminate which model better explains the observed behavior of

the investigated biochemical system. This paper focuses on the

implementation of this strategy, assuming that (i) the observable

variables to be measured were already chosen (possibly due to

experimental constraints concerning which biochemical variables

can actually be measured) and (ii) estimates for the parameters of

the candidate models were previously obtained. A procedure is

presented to optimize time-course kinetic experiments so that the

divergence between the time courses predicted by the models

under consideration is maximized. In these conditions, the relative

competence of the candidate models in describing new exper-

imental data, according to appropriate statistical criteria, should

be clear. This idea has been explored before for two candidate-

model problems [2,3,4,5]. These works share the common feature

that a distance between quantitative predictions drawn from the

models (often the weighted sum of the squared differences between

outputs computed over the time courses predicted by each model)

is maximized to find the optimal experimental conditions. They

differ in the experimental parameters and manipulations consid-

ered in the design of the discriminatory experiments: the optimal

spacing in the time between measurements [5], the perturbation

applied to a running biochemical system and the optimal instant

for such perturbation [3] or different combinations of constant or

sinusoidal input variable values [2]. The measure used to choose

the best model also differs among the different approaches and

ranges, from simple L2 distances in the amplitudes [4] or phases

[2] of the model outputs, to the fitting scores to new data

generated at the discriminatory conditions [2]. The goal of finding
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experimental conditions such that the predictions of the models

are sufficiently different to allow discrimination regardless of

measurement noise was explicitly stated in one of these works [4].

In our study, we follow the general idea of finding constant

inputs that maximize the difference between the predicted time

courses of concentrations as model outputs. The model divergence

metric used here is based on the Kullback-Leibler distance, a

measure of the difference between two probability distribution

functions [6,7], as defined in equation 1.

IKL f ,gð Þ~
ð

f xjhf

� �
ln

f xjhf

� �
g xjhg

� � dx ð1Þ

In this equation, f and g are probability density functions, x is the

vector of observable variables, hf and hg are the vectors of

parameters of f and g respectively, and the integral is computed

over the domain of the distributions. IKL(f, g) is a measure of how

well distribution g approximates distribution f. IKL(f, g) is not a

symmetrical distance, since distribution g may approximate

distribution f better than distribution f approximates g.

An extension of the Kullback-Leibler distance to the space of

positive functions was proposed [8], according to the equation 2.

I f ,gð Þ~
ð

f tjhf

� �
ln

f tjhf

� �
g tjhg

� �z
g tjhg

� �
f tjhf

� �{1

 !
dt ð2Þ

This measure of divergence was used in the context of nonlinear

regression for the estimation of pharmacokinetic parameters as an

alternative to ordinary least squares and extended least squares

[8]. Its form is derived from the application of a Minimum

Relative Entropy Principle to nonlinear estimation problems. In

estimation, f represents experimental data and g the values

predicted by a model to be fit. Simulations for a combination of

typical pharmacokinetic functions with different error models

showed that minimization of this distance function to estimate

parameters has a performance comparable to the extended least

squares method and that it only performed poorly for constant

error rate problems [8]. However, to apply this measure of

divergence, a particular measurement error model does not need

to be considered or postulated. This was concluded to be one of

the main advantages of using function I (f, g) in estimation

problems [8].

We suggest the use of the extended Kullback-Leibler distance, I

(f, g), as a measure of divergence between biochemical kinetic

ODE based models describing the time variation of the

concentrations variables. In this context, f and g in equation 2

are the time courses predicted by kinetic models for the

experimentally measurable variables, the observable model

outputs. For model discrimination, the experimental conditions

that maximize I (f, g) computed over the time courses predicted by

every pair of candidate models f and g, in both directions, are

considered to be optimal for an experiment aiming at the selection

of one candidate model. By choosing this measure of divergence

and given its statistical properties in estimation problems, we

follow the idea of maximizing the difference between predictions

of models to an extent such that discrimination can be achieved

despite measurement errors [4].

As an illustration of the use of such measure, we designed an

experiment to discriminate between two kinetic models proposed

for the yeast glyoxalase system that differ in the kinetics of the first

enzyme of the pathway, glyoxalase I, one being a single-substrate

model and the other a two-substrate model. The glyoxalase

pathway (comprising glyoxalase I and glyoxalase II) is responsible

for the elimination of methylglyoxal, a toxic, mutagenic and highly

reactive metabolite present in all living cells. Methylglyoxal is

formed mainly as a non-enzymatic by-product of glycolysis [9].

This system is particularly important in diabetes and in

neurodegenerative disorders (like familial amyloidotic polyneu-

ropathy, Alzheimer’s and Parkinson’s diseases), since it prevents

the formation of methylglyoxal-derived advanced glycation end-

products involved in these diseases [10,11,12,13]. Glycation

changes protein structure with consequent loss of function, but

notably in chaperones like a-crystallin [14] and fibrinogen [15]

may also potentiate activity.

The kinetic mechanism of glyoxalase I has been a matter of

debate for years as this enzyme acts upon a mixture of three

substrates: methylglyoxal, glutathione and the hemithioacetal

resulting from the non-enzymatic reaction of the first two.

In this work we address this question by implementing a

discriminatory experiment leading to the comparison of the

predicted time courses from each model with laboratory data that

allowed the conclusive selection of the two-substrate model.

Results and Discussion

Multi-optimization framework
The extended Kullback-Leibler distance I (f, g) is a directed

measure and must be maximized in both directions even in the

simplest two-model case, as summarized in figure 1A, requiring a

multi-objective optimization approach. An alternative would be

the optimization of the sum of I (f, g) and I (g, f). However,

simultaneous maximization in both directions is preferable, as

maximizing the sum may favor maximization in one direction at

the expense of the other. Some multi-objective optimization

problems may be solved by assigning different weighting factors to

each objective according to their relative importance and using a

single-objective optimization algorithm. In this case, however,

objectives have equal importance – all candidate models should be

tested in conditions which do not favor the selection of any model.

As opposed to single-objective optimizations, in multi-objective

problems several solutions of equivalent quality can be found, each

with different trade-offs regarding the scores for the different

objectives. The set of the optimal solutions for a multi-objective

optimization problem is the ‘‘Pareto front’’ [16,17,18]. The

approximation of solutions to the Pareto front may be compared

by the dominance criterion, [17,19]: a solution u dominates a

solution v, i.e. v[u if and only if condition 3 is verified:

f ~(f1, f2, ::: ,fi ,:::)

Vi : fi(v)ƒf (u) ^ Ak : fk(v)vfk(u)
ð3Þ

The optimal solutions are those for which the score of one

objective cannot be improved without decreasing the score of

other objectives. Therefore, optimal solutions are non-dominated.

The user should choose among the final non-dominated solutions

resulting from the algorithm those that provide a feasible design,

taking experimental constraints into consideration.

Application example
The concept of Pareto optimality and the extended Kullback-

Leibler distance were combined to find an optimal experimental

design for model discrimination. The procedure was applied to

optimize an experiment to discriminate between two kinetic

models proposed for the yeast glyoxalase system that differ in the

kinetics of the first enzyme of the pathway (glyoxalase I).

Kinetic Model Discrimination
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In both models, shown in figure 2, the substrates of the pathway,

glutathione (GSH) and methylglyoxal, undergo a non-enzymatic

condensation that results in the formation of a hemithioacetal. This

non-enzymatic step precedes the reactions catalyzed by the enzymes

of the pathway, a feature that is quite uncommon in biochemical

networks. In model 1, glyoxalase I is a one-substrate Michaelis-

Menten irreversible reaction that catalyzes the isomerization of

hemithioacetal [20]. In model 2, glyoxalase I binds methylglyoxal and

glutathione directly and competes with the non-enzymatic step for

these substrates [21]. The product of glyoxalase I is the adduct S-D-

lactoylglutathione (SDLGS). Glyoxalase II acts downstream of

glyoxalase I, converting SDLGS into GSH and D-lactate, and is

widely accepted to follow irreversible one-substrate Michaelis-

Menten kinetics [22,23,24,25,26,27,28,29,30].

The difficulty in selecting among the two models for the human

glyoxalase I led to the proposal of a branched mechanism of which

models 1 and 2 are particular cases [31,32]. Nevertheless, this

broader model, which was consistent with initial rate experiments,

did not come into much use in subsequent works since authors

generally choose the one-substrate model [27,28,33,34,35] over

the two-substrate model [29].

In order to complement the theoretical experimental design

procedure with an actual laboratory experiment, we restricted the

design to the maximization of the difference of output variable

SDLGS. In contrast to the other concentration variables, which can

only be measured by analytical derivatization methods performed at

discrete time points, the concentration of this variable can be easily

determined by following its absorbance on a UV-visible spectropho-

tometer with high frequency sampling (above 1 Hz).

The concentrations at time zero are the most obvious and

easiest experimental variables controllable by the user. We

considered the initial substrate concentrations as variables to be

optimized in model discrimination.

Parameter estimation
Before a model discrimination experiment is designed, it is

assumed that every candidate model is equally adequate to

describe previous experimental observations and that their

parameters have been estimated. Only after all models are fully

characterized, can a strategy be sought to find an experimental

setup for which the divergence between the predictions of any pair

of candidate models is simultaneously maximized. A model is

considered to be fully characterized when the network structure,

the reaction rate laws and the kinetic parameters are all known. In

turn, this means that the corresponding ODE equations have no

unknown functions or constants in their mathematical expression

apart from the dynamic variables.

The goal, in the application example, was the discrimination

between two models for the yeast glyoxalase pathway that differ

only in glyoxalase I kinetics. However, for the design of the

discriminatory experiment we considered the presence of glyox-

alase II. The kinetics of this second enzyme had also to be

Figure 1. Discrimination of kinetic models by maximization of
the extended Kullback-Leibler distance (I ). Conditions are sought
that maximize I in both directions between any two models. In a two
candidate model scenario (A) two functions must be simultaneously
optimized. In a three candidate model scenario (B) six functions must be
simultaneously optimized. After optimization, the set of solutions
approximate a Pareto front and represent a compromise between the
various objectives in the sense that, for any solution, the value of any
objective could only be increased if the value of another objective was
simultaneously decreased.
doi:10.1371/journal.pone.0032749.g001

Figure 2. Kinetic models of the glyoxalase pathway. In model 1
(A), glutathione (GSH) and methylglyoxal (MGO) form a hemithioacetal
(HTA) which is the substrate of glyoxalase I. In model 2 (B), glutathione
and methylglyoxal are sequential substrates of glyoxalase I and the
hemithioacetal is formed at the active centre of the enzyme. Glyoxalase
II is a one-substrate-one-product irreversible Michaelis Menten enzyme,
catalyzing the hydrolysis of S-D-lactoylglutatione (SDLGS) into D-lactate
(D-Lac) and glutathione. The rate laws assumed in the models are
expressed in equations 15 to 18.
doi:10.1371/journal.pone.0032749.g002

Kinetic Model Discrimination
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parameterized and, for this purpose, we used glyoxalase II from

bovine liver, which is commercially available. This enzyme is

described by the same rate equation in both models and fulfils the

key role of regenerating glutathione as the pathway cofactor.

The kinetic parameters, determined from a collective fit to the

time courses included in dataset S1, are shown in table 1. Figure 3

shows the data used for parameter estimation associated with

glyoxalase I, along with the predictions by the two candidate

models for the time course of the product SDLGS in the absence

of glyoxalase II. Some of the parameters are associated with rather

large standard errors (table 1). This is commonly observed in time-

course collective fits or when the number of measured variables is

too few, a phenomenon previously described as sloppiness [36].

However, it has been found that even in models exhibiting

sloppiness, as indicated by the large standard errors, the

predictability of the models remains acceptable as similar time-

course responses are predicted over a wide parameter variation

[36]. This was actually observed in our results, as shown in figure 3:

the experimental time courses of SDLGS are very close to the time

courses predicted by each of the two candidate models. As a

consequence, the discrimination between the two proposed models

of the glyoxalase I from data generated using glyoxalase I alone is

a difficult problem. In these simple assays, the non-enzymatic

formation of hemithioacetal and the reaction of glyoxalase I are

the only reactions occurring, without regeneration of the cofactor

glutathione. It should be noted that the initial substrate and

enzyme concentrations used in this parameterization are rather

representative since they are used in standard protocols to assay

glyoxalase I activity [29]. In spite of their large standard errors, the

estimates for the parameters were used subsequently as nominal

values for the model discrimination procedure.

Model discrimination
The global optimal solutions of the optimization problem might

not be usable due to specific experimental limitations: for instance,

optimal substrate concentrations may lead to intermediate

concentrations below the limit of detection or above the

measurable range; the necessary amount of reagents may be so

high that the experiment would be extremely expensive or not

feasible due to solubility issues. Therefore, appropriate allowable

ranges were assigned to the variables to be optimized.

In the glyoxalase system, the activities of the two enzymes are

commonly assayed by following the intermediate SDLGS at its

maximum absorption wavelength (240 nm) with an absorption

coefficient of 2.86 mM21 cm21 [37]. For the initial concentrations

of glyoxalase I and II, 2.061023 mM and 4.061024 mM were set

as upper bounds for the optimization, respectively. These limits

were chosen so that several replicate experiments could be

performed from single commercial enzyme batches. For the

substrates glutathione and methylglyoxal, boundaries for the

concentrations were set to 1 mM, to ensure that the changes of

SDLGS signal were within the spectrophotometer range. These

boundary values are summarized in table S1.

The performance of the extended Kullback-Leibler distance

was compared with two other measures of model divergence used

in previous works:

1- Simple L2-norm (non-weighted)

L2~
Xm

i~1

Xn

j~1

fj tijhf

� �
{gj tijhg

� �� �2

ð4Þ

2- The L2-norm weighted by the square of the mean

values of model variables [2]

L2w~
Xm

i~1

Xn

j~1

fj tijhf

� �
{gj tijhg

� �
fj tijhf

� �
zgj tijhg

� �� �
=2

 !2

ð5Þ

The expression for the Kullback-Leibler distance extended to

the space of positive functions (equation 2) [8], using a discrete

version for equidistant time points, is:

If ,g~
Xm

i~1

Xn

j~1

fj tijhf

� �
ln

fj tijhf

� �
gj tijhg

� �z
gj tijhg

� �
fj tijhg

� �{1

 !
ð6Þ

In equations 4, 5 and 6, fj (ti|hf) and gj (ti|hf) are the values of

variable j at time point i predicted by models f and g, respectively.

The system has n observable variables and the time course has m

time points.

Both L2 norms were ineffective for this problem since the

optimization converged to the bounds of the allowed ranges for the

concentrations, both for the initial substrates and the enzymes.

The use of the extended Kullback-Leibler distance (equation 6)

required the implementation of a multi-objective optimization

strategy (figure 1A). With this metric, convergence to optimal

substrate concentrations was achieved, although enzyme concen-

trations converged to the upper-bound limits. This means that

using this divergence measure, it was possible to optimize the

substrate concentrations for a discrimination experiment if the

enzyme concentrations were set to constant values. Running the

optimization while removing enzyme concentrations as parame-

ters to be optimized resulted in a set of solutions approximating a

Pareto front for the initial values of glutathione and methylglyoxal.

The solutions which approximate the Pareto front are shown in

figures 4A (in the space of the solutions) and 4B (in the space of the

objective functions) and were obtained after termination of the

optimization by the maximal generation number criterion.

The optimal solutions have a little spread over the solution

space (within 10% of average value for methylglyoxal and 6% for

GSH) and, as a consequence, the time courses predicted by each

model are very similar.

The landscape of optimization objectives is shown in figure 5.

The two directed extended Kullback-Leibler distances between

the two models both have a clear region containing a maximum

(or maxima) and the multi-objective optimization gave solutions

that took into account both objectives. In the case of the L2 norms,

the landscape explains why the single objective maximization of

these functions failed to provide solutions sufficiently separate from

the allowable range boundaries: the maxima lie either outside

these boundaries or, in the case of the L2w norm, very close to the

zero concentration axes, making the solutions experimentally

unfeasible.

The time courses predicted by one of the solutions of figure 4

are shown in figure 6A (the time courses for the other solutions are

very similar). For the first 120 min of reaction, approximately 4.5

fold less than the time necessary for parameter estimation (figure 3),

the time courses of SDLGS predicted by each model are clearly

divergent, both in concentration and rate of change.

It is interesting to clarify why in this example the optimal design

concentrations are able to provide such a divergence between the

time courses. In figure 6, panels B and C, the net rates of the

different reactions are plotted against time and the explanation for

Kinetic Model Discrimination
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the divergence becomes apparent: in model 1, the rates of the

enzymatic reactions are limited by the non-enzymatic formation of

the hemithioacetal and the net rate of this step is indistinguishable

from the rate of glyoxalase I whereas, in model 2, the enzyme-

catalyzed reactions are limited only by the regeneration of the

cofactor glutathione and the hemithioacetal formation reaction is

at quasi equilibrium throughout the time course.

The choice of the best model to describe the kinetics of the

glyoxalase system was provided by actual laboratory experiments

where the concentration of SDLGS was followed for 120 min,

starting at the concentrations prescribed by the experimental

design optimization (Figure 6 A). It is clear that only model 2 is

able to predict the rapid initial increase of SDLGS concentration,

followed by a short period of quasi steady state before decreasing

to zero. The variation of the concentration of SDLGS predicted

by model 1 is smoother and the decay to zero lasts longer.

However, even model 2 does not describe completely well the

early amplitude of SDLGS concentration, a fact that can be

attributed to the discrepancies between the computed design and

its experimental implementation associated with the experimental

error in both enzyme and substrate concentrations. Nevertheless,

it is clear that model 2 describes the experimental observations

better than model 1.

It should be noted that the presence of glyoxalase II in the

design is essential for the regeneration of this cofactor. Although

the main goal of the discrimination concerns the kinetics of

glyoxalase I, the occurrence of the non-enzymatic step, which is

unavoidable and is not under the control of the experimenter, and

the presence of glyoxalase II, which was deliberately added to the

reaction network, provide the necessary degrees of freedom in the

candidate models to support the design of a sufficiently complex

experiment even in case where a single output variable is

measureable. Also, it simulates the conditions found in total

protein extracts and in vivo, where both enzymes are present and

act simultaneously [30]. This is in contrast with previous studies on

the kinetic characterization of glyoxalase I mechanism where

classical initial-rate analysis was used and glyoxalase II was not

Figure 3. Time courses of SDLGS formation in the reaction of yeast glyoxalase I. Black: experimental data. Blue: time course predicted by
model 1. Red: time course predicted by model 2. Experimental time courses and initial concentrations are included in dataset S1.
doi:10.1371/journal.pone.0032749.g003

Table 1. Kinetic parameters for S. cerevisiae glyoxalase I and
bovine liver glyoxalase II.

Enzyme Parameter Value ± Standard error

Glyoxalase I, model 1 kcat GLOI,1 (863.0)6104 min21

Km,HTA (0.260.14) mM

Glyoxalase I, model 2 kcat GLOI,2 (1.760.38)6105 min21

Km,GSH (0.8760.11) mM

Km,MGO (1.260.19) mM

Glyoxalase II kcat GLOII (362.2)6102 min21

Km SDLGS (362.1) mM

Non-enzymatic reaction kf 0.34 mM21 min21

kr 1.01 min21

Parameters were estimated by collective fit to time-course data, as detailed in
Methods, except for the non-enzymatic reaction rate constants, for which
previously reported values were used [29]. Dataset S1 includes four time
courses used in the estimation of glyoxalase I parameters and four time courses
used in the estimation of glyoxalase II parameters.
doi:10.1371/journal.pone.0032749.t001

Kinetic Model Discrimination
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present [31,34]. Using only the initial-rate approach, the rate

equation proposed for the porcine erythrocyte enzyme [31], for

example, derives from a random mechanism and comprises six

kinetic parameters. This equation might be over parameterized.

Our findings suggest a simpler equation for the kinetics of

glyoxalase I, a result that was achieved by working with full time

courses and including another enzyme that provided a response

from the system with discriminatory power. This approach is in

line with the modern systems biology concepts of kinetically

studying whole pathways and proposing models based on data that

result from system perturbations that affect cellular networks as a

whole [38].

In conclusion, the results of this work show that the combination

of a multi-objective optimization algorithm with the extended

Kullback-Leibler distance as objective function successfully

provide experimental designs, within a reasonable computational

time, to discriminate between two candidate models. This

procedure may be useful for model construction in systems

biology, where accurate models of biological processes are

required. The difficult glyoxalase I discrimination problem, long

addressed but not solved, was tackled with the proposed method

and a model (model 2) was conclusively selected from a set of two

candidates. The multi-objective approach presented in this paper

has interesting potential to be explored in the future, due to the

Figure 4. Optimization of experimental design for model discrimination. A - Optimal initial concentrations of methylglyoxal and
glutathione (solutions approximating the Pareto front) for the discrimination of the two models presented in figure 2. B – Corresponding values of
the extended Kullback-Leibler distances (optimization objectives); Concentration of glyoxalase I is 2.061023 mM and concentration of glyoxalase II is
4.061024 mM. The red dot indicates the initial concentrations used in the discriminatory experiment.
doi:10.1371/journal.pone.0032749.g004

Figure 5. Landscapes of different measures of model divergences in the allowed optimization range of concentrations of pathway
substrates. Measures of model distances are I1,2 : extended Kullback-Leibler distance of model 2 from model 1 (equation 6). I2,1 : extended Kullback-
Leibler distance of model 1 from model 2 (equation 6). L2 : simple L2 norm (equation 4). L2w : weighted L2 norm (equation 5).
doi:10.1371/journal.pone.0032749.g005

Kinetic Model Discrimination
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possibility of including additional objective functions in the

optimization. Also, the approach is immediately usable for

problems with more than two candidate models – for such cases,

divergence between pair-wise combinations of models can be

maximized simultaneously, as illustrated in figure 1B. Another

interesting possibility is the addition of objective functions for

experimental optimization for other purposes besides model

discrimination. Experimental design for model discrimination

and model parameter estimation are generally treated as distinct

problems, and solutions for these two optimization problems tend

to be different. The multi-objective approach may open a window

to design experiments where a good compromise between

optimization for model discrimination and parameter estimation

is achieved.

Materials and Methods

Model details
The glyoxalase system, responsible for the elimination of

methylglyoxal, a toxic and mutagenic byproduct of glycolysis [33],

was chosen to validate the proposed method of experimental design.

In the two models compared in this work (figure 2), glutathione and

methylglyoxal undergo a non-enzymatic reversible condensation

that results in a hemithioacetal. Mass-action kinetics was considered

for this step, using previously published rate constants as in [29]. In

model 1, the kinetics of glyoxalase I was described by the irreversible

Michaelis-Menten equation with one substrate. In model 2, a

sequential mechanism for two substrates was considered, using a

simplified version of the irreversible two-substrate Michaelis-

Menten equation [29]. In this simplification, the rate law is identical

to the steady-state rate equation derived for this kind of mechanism

except for the constant term in the denominator: this term is the

product of the Michaelis constant of the second substrate with the

inhibition constant of the first substrate as a product inhibitor of the

reverse reaction [39]. Here assume that this constant term is the

product of the Michaelis constants of the two substrates. This

simplification eases the identification of the parameters of model 2

without loss of relevant information about the mechanism and the

kinetic properties of the enzyme. The kinetics of glyoxalase II was

described by the irreversible Michaelis-Menten equation with one

substrate. The models were mathematical expressed by systems of

ordinary differential equations. Model 1 is described by equations 7

to 10:

d MGO

dt
~{vne ð7Þ

d HTA

dt
~vne{vGLOI ð8Þ

d GSH

dt
~{vnezvGLOII ð9Þ

Figure 6. Discriminatory experiment for the kinetics of yeast glyoxalase I. A - Time courses of SDLGS concentration in the discriminatory
setup experiment. Black: experimental result, average of 4 replicates (the grey shaded area is within one standard error of the mean). Blue: prediction
by model 1. Red: prediction by model 2. Initial concentrations are 0.221 mM for glutathione, 2.061023 mM for glyoxalase I, 0.441 mM for
methylglyoxal and 4.061023 mM for glyoxalase II. The initial concentrations correspond to the solution chosen from of the Pareto front highlighted
in figure 4A. B and C - rates predicted by model 1 (B) and model 2 (C). Red: net rate of hemithioacetal formation, blue: rate of glyoxalase I reaction.
green: rate of glyoxalase II reaction.
doi:10.1371/journal.pone.0032749.g006
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d SDLGS

dt
~vGLOI{vGLOII ð10Þ

Model 2 is described by equations 11 to 14:

d MGO

dt
~{vne{vGLOI ð11Þ

d HTA

dt
~vne ð12Þ

d GSH

dt
~{vne{vGLOIzvGLOII ð13Þ

d SDLGS

dt
~vGLOI{vGLOII ð14Þ

The rate laws assumed in the models are expressed in equations

15 to 18:

vne~kf MGO GSH{kr HTA ð15Þ

vGLO I (model 1)~
kcat GLOI ,1GLOI HTA

Km HTAzHTA
ð16Þ

vGLO I (model 2)~
kcat GLOI ,2GLOI MGO GSH

(Km MGOzMGO)(Km GSHzGSH)
ð17Þ

vGLOII~
kcat GLOII GLOII SDLGS

Km SDLGSzSDLGS
ð18Þ

Apart from the non-enzymatic step, all parameters concerning

the reactions catalyzed by enzymes were estimated as detailed

below.

Parameter estimation
Parameters of models 1 and 2 were estimated by collective fit to

time-course data generated as follows: the reaction of glyoxalase I

from Saccharomyces cerevisiae (Sigma) was monitored at 30uC in

70 mM potassium phosphate buffer pH 6.5 and the time course of

SDLGS concentration was followed at 240 nm. Four time courses

were generated by combining different concentrations of enzyme

and the substrates glutathione (Roche) and methylglyoxal (figure 3

and dataset S1). Methylglyoxal was prepared fresh by heat-acid

hydrolysis of methylglyoxal-1,1-dimethylacetal (Sigma) [40].

Reactions started with the addition of methylglyoxal to mixtures

containing glyoxalase I and glutathione. The reaction of glyoxalase

II from bovine liver (Sigma) was followed at the same temperature

and pH. Four combinations of glyoxalase II and SDLGS (Sigma)

concentrations were used to generate four different time courses of

SDLGS hydrolysis (dataset S1). Absorbance was measured in an

Agilent 8453 diode-array spectrophotometer with magnetic

stirring and temperature control in the optical cells.

Since time-course parameter estimation poses the problem of

fitting data to a set of non-linear ODEs, the use of stochastic

optimization algorithms instead of deterministic algorithms is

advised for their ability in finding global optima in multimodal

functions [41,42,43,44,45].

Parameters were fitted using a (non-weighted) least-squares

criterion, where the following objective, taken as a function of the

vector of parameters P, was minimized:

S~
Xm

i~1

Xni

j~1

(Xexp,j{Xpred,j,P)2 ð19Þ

m is the number of time courses used in the estimation, ni is the

number of experimental time points in time course i. Xexp,j is the

value of experimental SDLGS concentration at time point j and

Xpred,j, P is the value predicted by either model at time point j, given

the vector of parameters P.

This criterion was combined with the genetic algorithm

Differential Evolution (DE) [46] coupled to the Downhill-Simplex

algorithm. The initial population was generated by sampling a

multivariate uniform distribution within a domain defined by

constraints. These constraints are summarized in table S2.

Several recombination schemes have been proposed for use in

DE, and the scheme called DE/rand/1/bin [41] was used with

probability of replacement and the weighting factor for the

combination of random vectors set to 0.7 and 0.5, respectively.

This recombination scheme is the simplest proposed for use with

differential evolution and has the advantage of keeping the

population of candidates well distributed in the search space while

converging to the optimal solution. The optimal solutions found by

DE are further refined by the deterministic downhill-simplex

algorithm [47] to improve the accuracy of the estimates [42].

The inverse of the Fisher information matrix was used as the

parameter variance-covariance matrix, taking the square root of its

diagonal as lower-bounds to parameter standard deviations [2].

The Fisher information matrix was computed as outlined in [2]:

F~
X

time points

ST :V{1:S ð20Þ

V is the measurement error variance-covariance matrix and S is

the dynamic sensitivity matrix. The entries in this matrix can be

computed by extending the model system of ODEs with the

following differential equations [48]:

_SS~
Lf

Lx
:Sz

Lf

Lp
ð21Þ

x is the vector of variables, f is the vector of the right end side of

the model system of ODE and p is the vector of parameters.

Experimental design optimization
Evolutionary algorithms are naturally suited for multi-objective

numerical optimizations since the generation of sets of possible

solutions allows finding several optimal solutions in a single run

[17]. Also, they are generally less susceptible than other stochastic

algorithms to be trapped at suboptimal approximations of the

Pareto front [49]. In an evolutionary algorithm the successive

selection of new or old candidate solutions to form the next

generation may also be directly used as a way to approach the

Pareto front through the dominance criterion [19].
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Generalized Differential Evolution, presently in its third

generation (GDE3) [19], was chosen as the multi-objective

optimization algorithm. This is an extension of the single-objective

optimization algorithm Differential Evolution. GDE3 performed

well in a variety of problems both regarding computation time and

distribution of the final solution set near the Pareto front [19,50].

Initialization of the population, mutation and crossover in the

GDE3 algorithm are identical to single-objective differential

evolution. In the selection step, GDE3 is based on Pareto

dominance and solution crowding: if a new solution vector

dominates the target vector, the latter is replaced by the former in

the new population. When the two solutions are non-dominated

both are saved. As a consequence, after the evaluation of a set of

new solutions the dimension of the population usually increases.

To maintain population size during the progression of the

algorithm, solutions were sorted according to Pareto dominance;

then, surplus solutions were discarded according to proximity to

other solutions (crowding) – one at a time, the solution closest to 3

other solutions was removed [19]. Solution vectors outside the

user-defined boundaries were also discarded and generation of

new vectors was repeated.

The most time-expensive step of GDE3 is the sorting of the non-

dominated solutions, possibly surpassed by the evaluation of the

objective functions only [50,51]. To perform the non-dominated

sorting, a divide-and-conquer mechanism based on a dominance tree

data structure was employed.

In a dominance tree, nodes correspond to solutions and are

interconnected through dominance or non-dominance relation-

ships. The divide-and-conquer method builds the tree by

consecutively dividing the entire population in halves, so that each

node contains a single solution. The individual nodes are then

successively compared pair-wise and merged (conquering) accord-

ing to their dominance relationship until the dominance tree is

complete. The algorithm is recursive in both the dividing and

conquering steps since the result of dividing or merging nodes is

subsequently used for other dividing or merging rounds. After

sorting, the solutions are organized in sets named non-dominated

fronts; these sets are ranked such that the solutions of any front are

non-dominated by other solutions of the same front and there is at

least one solution in front i +1 dominated by at least one solution

in front i.

After sorting, the most crowded solutions of the last non-

dominated front were iteratively removed from the population to

restore its original size. In the present implementation of GDE3,

the k-nearest neighbor method [19,52] was used to identify the

most crowded solutions in the last non-dominated front.

The termination criterion for the optimization was defined as

non-improvement in more than 5% of the possible solutions for 20

generations of GDE3. In addition, a maximal number of

generations was set to 200.

Computational implementation
The computational algorithms were implemented in a software

package (S-timator) written in Python (www.python.org) and using

the modules numpy (numpy.scipy.org), and scipy (www.scipy.org) for

numerical efficiency. The module sympy (http://code.google.com/

p/sympy) was used for symbolic derivation of dynamic sensitivities

and the module matplotlib (http://matplotlib.sourceforge.net/) for

plotting. The odeint function from the scipy.integrate module, which

implements the LSODA routine [53,54] was used for ODE

numerical integration. All the source code used for the

computations performed in this work is available from http://

enzymology.fc.ul.pt/software.
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