
fncir-14-00019 December 7, 2020 Time: 13:23 # 1

METHODS
published: 15 May 2020

doi: 10.3389/fncir.2020.00019

Edited by:
Jean-Claude Béïque,

University of Ottawa, Canada

Reviewed by:
Daniel W. Wesson,

University of Florida, United States
Richard Naud,

University of Ottawa, Canada

*Correspondence:
Guillaume Etter

etterguillaume@gmail.com
Sylvain Williams

sylvain.williams@mcgill.ca

Received: 31 October 2019
Accepted: 06 April 2020
Published: 15 May 2020

Citation:
Etter G, Manseau F and

Williams S (2020) A Probabilistic
Framework for Decoding Behavior

From in vivo Calcium Imaging Data.
Front. Neural Circuits 14:19.

doi: 10.3389/fncir.2020.00019

A Probabilistic Framework for
Decoding Behavior From in vivo
Calcium Imaging Data
Guillaume Etter* , Frederic Manseau and Sylvain Williams*

Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada

Understanding the role of neuronal activity in cognition and behavior is a key
question in neuroscience. Previously, in vivo studies have typically inferred behavior
from electrophysiological data using probabilistic approaches including Bayesian
decoding. While providing useful information on the role of neuronal subcircuits,
electrophysiological approaches are often limited in the maximum number of recorded
neurons as well as their ability to reliably identify neurons over time. This can be
particularly problematic when trying to decode behaviors that rely on large neuronal
assemblies or rely on temporal mechanisms, such as a learning task over the course
of several days. Calcium imaging of genetically encoded calcium indicators has
overcome these two issues. Unfortunately, because calcium transients only indirectly
reflect spiking activity and calcium imaging is often performed at lower sampling
frequencies, this approach suffers from uncertainty in exact spike timing and thus
activity frequency, making rate-based decoding approaches used in electrophysiological
recordings difficult to apply to calcium imaging data. Here we describe a probabilistic
framework that can be used to robustly infer behavior from calcium imaging recordings
and relies on a simplified implementation of a naive Baysian classifier. Our method
discriminates between periods of activity and periods of inactivity to compute probability
density functions (likelihood and posterior), significance and confidence interval, as well
as mutual information. We next devise a simple method to decode behavior using these
probability density functions and propose metrics to quantify decoding accuracy. Finally,
we show that neuronal activity can be predicted from behavior, and that the accuracy
of such reconstructions can guide the understanding of relationships that may exist
between behavioral states and neuronal activity.

Keywords: calcium imaging, decoding, bayesian inference, hippocampus, spatial coding

INTRODUCTION

Early in vivo studies have established relationships between external variables and neuronal activity,
including (but not restricted to) auditory information in the auditory cortex (Katsuki et al.,
1956), visual stimuli in the visual cortex (Hubel and Wiesel, 1962), and spatial information in the
hippocampus (O’Keefe and Dostrovsky, 1971). Based on the widely influential information theory
(Shannon, 1948), it has previously been proposed that neurons can act as ’communication channels’
between physiological variables (input) and spike trains (output) (Richmond and Optican, 1990;
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Richmond et al., 1990; Skaggs et al., 1993). In addition to
providing metrics to quantify the extent to which external
variables can be encoded in neurons, these studies laid the first
foundations in establishing computational tools to predict animal
behavior merely using neuronal activity. This process, termed
decoding, is essential in understanding the role of neuronal
activity in behavior, and the success rate of predictions can be
used as a metric of understanding of a given system. Among
techniques that have been described in this context, Bayesian
decoding in particular has been relatively popular and widely
used (Brown et al., 1998; Zhang et al., 1998; Gerwinn, 2009; Quian
Quiroga and Panzeri, 2009; Koyama et al., 2010).

While the literature on in vivo neuronal physiology has
been largely dominated by electrophysiological studies, calcium
imaging methods have recently gained popularity. Originally
performed at the single cell level with the aid of calcium
sensors (Grynkiewicz et al., 1985; Persechini et al., 1997),
calcium imaging can now be performed in vivo, in large
neuronal assemblies, and over very long periods of time (Ziv
et al., 2013; Sheintuch et al., 2017; Gonzalez et al., 2019).
These major improvements coincided with the development of
genetically encoded calcium indicators (GECI), including the
popular GCaMP (Nakai et al., 2001; Tian et al., 2009; Ohkura
et al., 2012; Chen et al., 2013). In recent years, calcium imaging
methods have seen the development of various computational
tools that solve the problem of signal extraction from raw
calcium imaging video recordings. In particular, several groups
have proposed open-source software codes to perform fast,
recursive motion correction (Pnevmatikakis and Giovannucci,
2017), offline (Pnevmatikakis et al., 2016; Zhou et al., 2018)
and online (Giovannucci et al., 2017) extraction of neuronal
spatial footprints and their associated calcium activity, temporal
registration of neurons across days (Sheintuch et al., 2017),
and complete analysis pipelines have been made available
(Giovannucci et al., 2018). The aforementioned open source
codes have significantly facilitated the analysis of calcium imaging
datasets. Most often, one of the objectives when using such a
tool is to understand the neural basis of behavior. Unfortunately,
there are only a few open source analysis toolboxes that can relate
calcium imaging data to behavior to this day (Tegtmeier et al.,
20181). While these useful analytical tools allow the exploration
of relationships between calcium signals and behavior, they
are mostly restricted to visualization and correlation. Previous
studies have made use of naive Bayesian classifiers to infer rodent
behavior from calcium imaging data recorded in the motor
cortex (Huber et al., 2012; Kondo et al., 2018), hippocampus
(Ziv et al., 2013; Mau et al., 2018; Gonzalez et al., 2019), or
amygdala (Grewe et al., 2017). While these analyses usually result
in accurate predictions of behaviors, there is no consensus on the
methodology, and in particular the input signal to the classifier,
or other preprocessing steps (e.g. smoothing of neuronal tuning
curves used by the classifier).

While calcium imaging does not allow the determination
of exact spike timing, some methods have been proposed to
approximate spiking activity from calcium imaging data by
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deconvolving calcium transients (Deneux et al., 2016; Pachitariu
et al., 2018; Rahmati et al., 2018). Consequently, one strategy that
can be employed is to first estimate deconvolution parameters
from ground truth data (e.g. in vitro unit recording in brain
slices combined with calcium imaging) to then apply them to
recordings performed in vivo. However, one major caveat with
this approach is that physiological responses can differ greatly
between in vivo and in vitro conditions (Belle et al., 2018) leading
to erroneous parameter estimation. Another obstacle to using
deconvolved signals and estimated spikes to decode calcium
activity is that the very nature of calcium imaging does not
allow to determine exact spike timing. While unit recordings
are typically done at sampling rates exceeding 10 KHz, 1-
photon microendoscopes used in freely moving animals usually
sample images at 30 frames per second or less, and spike trains
will generally be associated with large calcium transients of
varying size and duration. Consequently, one could for example
correctly estimate that a neuron fires 10 action potentials based
on the observation of a single calcium transient, however, the
exact timing of each spike would remain unknown, and could
happen anywhere within a∼33 ms window (for calcium imaging
performed at 30 Hz).

Importantly, another issue encountered when performing
calcium imaging with GCaMP is photobleaching, which leads to
a progressive loss of signal due to the destruction of fluorescent
proteins that report calcium influx. Unlike electrophysiological
unit recordings that can be performed for several hours, calcium
imaging is thus typically performed for shorter durations. While
it is possible to follow GCaMP-positive cell assemblies over
months (Ziv et al., 2013; Sheintuch et al., 2017), each recording
session has to be limited in duration to avoid photobleaching.
This results in low sampling that can be problematic when
trying to associate neuronal activity with a certain behavior:
some behavioral states can be over- or underrepresented and
concurrently, calcium activity can be too sparse to establish
tuning curves of neuronal activity.

Here, we propose simple analytical methods to relate calcium
activity to behavior by (1) extracting periods of activity in
calcium imaging data without approximating spike timing and
subjecting actual data to null hypothesis testing in order to solve
the problem of low sampling, (2) decoding behavior by using
previously computed probability density functions in a naive
Bayesian classifier, and (3) reconstructing neuronal activity from
behavior and assessing the quality of neuronal coding.

RESULTS

Establishment of Probabilistic Neural
Tuning Curves
To demonstrate the usefulness of our method, we performed
calcium imaging in a well characterized system: CA1 pyramidal
cells of the dorsal hippocampus (Figure 1A). These neurons
are known to display spatial tuning and are commonly referred
to as place cells (O’Keefe and Dostrovsky, 1971). We trained
a mouse to run back and forth on a 100 cm long linear track
by providing sucrose water rewards at each end of the track
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FIGURE 1 | Rationale for extracting spatial coding characteristics of CA1 pyramidale cells. (A) Diagram of GRIN lens implanted over CA1 pyramidal cells of the
dorsal hippocampus. (B) Calcium imaging was performed as a mouse was running in alternating directions on a linear track. (C) Maximum projection of the
corresponding field of view. (D) Corresponding extracted spatial footprints using CNMFe. (E) Example traces from a subset of extracted cells aligned with position
on a linear track and locomotor speed. Running epochs are indicated with green stripes. (F) Example raw transient (top) from one cell and corresponding filtered,
z-scored, first-derivative, and binarized signals. (G) Rationale used to extract unconditional and joint probabilities from binarized data that can be later used to
compute conditional probabilities. (H) Mouse location on the linear track with corresponding raw calcium activity and derived binary trace (blue). Only runs to the
right are considered here. (I) (Top) mouse trajectory on the linear track (gray) with corresponding locations where one cell’s binarized activity was detected (blue
dots), and (bottom) location of binarized activity on the linear track for each run (n = 16 runs). (J) Probability P(active| state) of cell #4 to be active given the location
on the linear track, and corresponding mutual information (MI, top). (K) Derived posterior probability of the mouse being in a location given cell activity P(state| active)
(ocher) compared to uniformity (dotted line). (L) Example cases of poor variable coding (case 1), superior variable coding (case 2), poor variable coding with sparse
information (case 3), and superior variable coding with sparse information (case 4). (M) Method for computing a p-value: actual (a) calcium trace, corresponding
circular permutations (sn), and corresponding location (green). (N) Probability P(active| state) of cell #4 being active given location (blue) and corresponding average
shuffled distribution from n = 1000 surrogates (the thickness of the line represents the SEM). (O) p-Value computed using actual data and shuffled surrogates for
each location of the linear track. (P) Thresholded place field retaining only significant P(active| state) values. (Q) Method for computing 95% confidence interval from
bootstrap samples. (R) Actual tuning curve P(active| state) (blue) and corresponding 95% confidence interval (red) computed from bootstrap samples (gray;
n = 1000).
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and scheduling homecage access to water every day (Figure 1B).
We recorded ∼400 neurons in these conditions (Figure 1C).
After extracting neuronal spatial footprints (Figure 1D), we
visualized corresponding calcium activity along with the position
and locomotor speed of the animal (Figure 1E). Previous studies
have shown that immobility periods are associated with replay
of experience (Foster and Wilson, 2006; Diba and Buzsáki,
2007; Davidson et al., 2009). In order to focus on the spatial
tuning curves of CA1 neurons, we therefore excluded periods of
immobility (<5 cm.s−1) that could potentially contain periods
of neuronal activity that reflect tuning to internal, rather than
external variables.

In order to compute probabilities that will be used in later
analyses of tuning curves, we sought to discriminate periods
of activity versus inactivity. To this end, we devised a simple
binarizing method where raw calcium signals are first filtered
(to remove high frequency fluctuations that could erroneously be
detected as transient rise periods), and we considered periods of
activity as following the two criteria: (1) the signal amplitude of a
normalized trace has to be above 2 standard-deviations, and (2)
the first order derivative has to be positive (thus corresponding to
a transient rise period; Figure 1F).

Extracting Probability Values in a Bayesian Context
Following the binarization of raw calcium traces, we propose a
probabilistic framework to describe how the activity of a neuron
encodes a certain behavior or state (Figure 1G). To this end, we
can first compute the probability of a neuron to be active P(A)
using the following formula:

P (A) =
time active
total time

(1)

P(A) only informs on the activity rate of a neuron over the course
of a recording session and corresponds to the marginal likelihood
in a Bayesian context. We can also compute the probability of
spending time in a given behavioral state i:

P (Si) =
time in state i
total time

(2)

P(S) can be informative on whether the distribution of behavioral
states is homogeneous or inhomogeneous, which can potentially
lead to biases in further analyzes. In a Bayesian context, P(S)
corresponds to the prior. Additionally, the joint probability
P (Si ∩ A) of a given neuron to be both active and in a given
state i will be later used to compute information metrics:

P (Si ∩ A) =
time active while in state i

total time
(3)

We can then compute the probability that a cell is active given the
animal is in a state i:

P (A|Si) =
time active while in state i

time in state
(4)

P (A|S) is more informative and can be interpreted as a tuning
curve. In a Bayesian framework, this probability is also known
as the likelihood. For example, a probability value of 0.8 means

that a cell is active 80 % of the time when the animal is in a given
behavioral state.

In our example, we isolated running periods when the mouse
was running toward the right hand side of the linear track
(Figure 1H), and divided the track in 3 cm bins. Each bin thus
represents a discrete state, and while visualizing the activity of
neuron #4 for each run, it is apparent that this cell displays some
spatial tuning (Figure 1I). We thus computed P (Si|A) for that
cell and found a peak likelihood of 0.78 at∼64.5 cm from the left
hand side of the track (Figure 1J). Finally, using classical Bayesian
inference, we can infer the probability that the animal is in a state
Si given neuronal activity A:

P (Si|A) =
P (A|Si) × P (Si)

P (A)
(5)

P (S|A) is the posterior probability distribution of states given
neuronal activity and will be used later on to decode behavior.

Testing Significance of Tuning Curves
One current issue with calcium imaging is photobleaching, which
prevents extended recordings and thus restricts the sampling
of both neuronal activity and behavioral data. Experimenters
can thus be frequently faced with one of four cases: first,
sampling of both behavior and neuronal activity are sufficient,
and there is no apparent relationship between these two variables
(Figure 1L, case 1). Secondly, sampling is sufficient and there is
a very clear relationship between behavior and neuronal activity
(Figure 1L, case 2). Thirdly, sampling is too low to observe a
clear phenomenon (not enough coverage of behavioral states,
sparse neuronal activity; Figure 1L, case 3). Lastly, behavioral
sampling is sufficient, but neuronal activity is sparse and while
there is an apparent relationship between behavior and neuronal
activity, there is no absolute confidence that this could indeed be
the case (Figure 1L, case 4). In every case, we will want to test
whether the tuning curves that have been derived are significantly
different from chance.

Deriving p-values from shuffled distributions
One solution we propose to this problem is to confront the actual
data to a null hypothesis that there is no relationship between
behavior and neuronal activity. To this end, we generated
a distribution of tuning curves that are computed from the
actual calcium trace, but that has been shifted in time so
that any potential relationship to behavior is lost. Circular
permutations can be used to remove the temporal relationship
that exists between neuronal activity and behavior; Figure 1M).
We recommend this shuffling method because it preserves the
temporal structure of calcium transients and leads to more
conservative results, as opposed to a complete randomization
of every data point which often gives rise to non-physiological
data, and thus inflates the significance value of results. The choice
of a null hypothesis should, however, be determined carefully
depending on the nature of the question asked. In our example,
we performed n = 1000 random circular permutations, computed
the mean as well as standard error of the mean (SEM), and
compared it to our actual tuning curve (Figure 1N). Because
the shuffled data points cannot be assumed to be distributed

Frontiers in Neural Circuits | www.frontiersin.org 4 May 2020 | Volume 14 | Article 19

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-14-00019 December 7, 2020 Time: 13:23 # 5

Etter et al. Decoding Behavior From Calcium Imaging

normally, transforming the actual data into a z-score cannot
be used to derive a measure of significance. Instead, one can
compute a p-value that corresponds to the number of data points
from the shuffled distribution that are greater than the actual
data, divided by the number of permutations (Cohen, 2014).
Note that using this method, the p-value can take null values
in the event where all data points from the shuffled distribution
fall under the actual data. After computing a p-value value
from our actual data and shuffled distribution (Figure 1O),
a threshold (typically of 0.05 or 0.01) can be used to display
only significant data points (we used a 0.05 threshold in our
example; Figure 1P).

Deriving confidence intervals using bootstrap samples
Another challenge associated with sparse sampling of behavior
and/or neuronal activity is estimating the reliability of
tuning curves. One method to circumvent this problem
is to derive statistics (mean and confidence interval) from
bootstrapped samples (Kass et al., 2014). To this end,
we can measure several times (e.g. n = 1000 samples)
our likelihood P(A|S) on a portion of the data (e.g. 50%
randomly chosen data points) and with replacement (the
same data points can be used in different bootstrap samples;
Figure 1Q). Using these parameters (n = 1000 bootstrap
samples using 50% of the data), we display every bootstrap
tuning curve along with the corresponding 95% confidence
interval (Figure 1R).

Information Metrics
Numerous studies have applied metrics derived from information
theory (Shannon, 1948) to neuronal data (Skaggs et al., 1993;
see Dimitrov et al., 2011 for review). While the information
held within a single spike is difficult to approximate with
calcium imaging, mutual information (MI) can be used to
describe the amount of information about one variable through
observation of another variable (neuron activity and behavioral
state in our example) using unconditional and joint probabilities:

MI =
M∑
i=1

2∑
j=1

P(Si ∩ Aj)× log2(
P(Si ∩ Aj)

P(Si)× P(Aj)
)

where M is the total number of possible behavioral states,
P(Si ∩ Aj)is the joint probability of behavioral state i to be
observed concurrently with activity level j. Note that in our
case we consider only two levels of activity j (active versus
inactive). The MI index is a practical way of sorting neurons
by the amount of information they encode (Supplementary
Figure 1), and it was previously found that although related,
MI is more reliable and scalable than other spatial information
metrics (Souza et al., 2018). In our example, cell #4 displays
0.21 bits of information while considering only trajectories to
the right (Figure 1J). On the other hand, it is possible to assess
the significance of MI values by using the same techniques
described in section “Information Metrics.” An example of
MI values compared to shuffled surrogate can be found in
Supplementary Figure 1a.

Decoding of Behavior From Calcium
Imaging Data
Extracting tuning curves for each individual neuron can shed
light about their activity pattern but does not fully explain a
particular behavior. Importantly, the temporal coordination of
large neuronal assemblies is likely to provide more information
about the specificity of generated behaviors. In our example,
we would like to understand the relationship between location
(without discriminating left/right trajectories at first) and the
activity patterns of a large (∼400) cell assembly. When a given
neuron is active, the posterior probability density function (Eq. 5)
computed earlier gives an estimate of the likely position of
the mouse on the linear track. The most likely position of the
mouse given that a neuron can be estimated as the location
corresponding to the maximum value of the posterior probability
density function. P(S) can be measured directly (in our case,
it is the general likelihood of finding the mouse in any given
location; Figure 2A, teal line in the bottom panel) or kept
uniform. In the latter case, we make no prior assumption about
the potential location of the mouse on the linear track and
attribute equal probability for each location (Figure 2A, orange
line in the bottom panel).

Decoding Behavior Using Activity From Multiple
Neurons
To predict the mouse state using the activity from multiple
neurons, it is more efficient to take the product (rather than the
sum) of a posteriori probabilities, because null values translate
into an absolute certainty that the mouse cannot be in a given
state considering the activity of a given neuron. Importantly, this
can only be done under the assumption that every neuron is
independent from each other, which is unlikely to be the case
in practice because of neuroanatomical connectivity or other
reasons: for example on a linear track the same sequence of
neuronal activity is expected to be observed for each trajectory.
In the case of interdependent neurons, posterior probabilities
would have to be computed for each dependent neuronal
ensemble, and the reconstructions would be expected to be
more accurate at the expense of requiring significantly larger
training datasets. Therefore, assuming that recorded neurons are
independent trades off decoding accuracy for computing time.
We can then rewrite our equation to include tuning curves from
multiple neurons:

P (S|A) =

N∏
k=1

P (Ak|S) × P (S)
P (Ak)

(6)

where P (S|A)is a vector of a posteriori behavioral states and N
corresponds to the number of neurons used. In our example, we
can measure the activity of every neuron k at a given time point
(Figure 2B), derive the associated tuning curves (Figure 2C,
top panel), and corresponding posterior location probability
(Figure 2C, bottom panel). Importantly, while equation (7) is
fundamentally correct, the repeated product of small values (such
as probability values that are between 0 and 1) will lead to
numerical underflow when computed on most softwares available
currently. Although this is not a problem when decoding activity
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FIGURE 2 | Bayesian decoding of behavior from calcium imaging recording. (A) Spatial tuning curves for each individual CA1 neuron [data sorted from location of
peak probability P(active|state)], and corresponding marginal likelihood of being active (right-hand side), and prior probability of being in a given state (= location;
bottom). (B) Raster plot of binarized cell activity and corresponding position on the linear track (bottom). (C) Tuning curves of cells corresponding to their state at
frame 11392 (in b) and subsequent posterior probability of being in a location on the linear track given cell activity (bottom). Location was estimated using maximum
a posteriori (MAP). (D) Posterior probabilities for each frame estimated from ongoing binarized calcium activity, and corresponding actual (green) and decoded (pink)
location estimated with MAP. (E) Confusion matrix of actual vs. decoded position. (F) Method used to compute Euclidean distance decoding error (top) and
decoding agreement (bottom). (G) Paradigm used to train and test the decoder on different epochs of the dataset. (H) Effect of prior and bias (marginal likelihood of
cell being active) on decoding agreement. (I) Same for decoding error. Color codes in a,c,d,e: dark blue = low probability, yellow = high probability.

from a small number of cells, numerical underflow will prevent
decoding activity from large sets of cell assemblies. One solution
to this problem is to perform computations on a log scale.
Additionally, using exp(x)-1 and log(1+x) allows very small values
to converge toward x instead of 0. Our equation can then take

the form:

P (S|A) = exp

[ N∑
k=1

log(1+
P (Ak|S) × P (S)

P (Ak)
)− 1

]
(7)
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It is noteworthy that Eq. (7) and (8) are not formally
equivalent. However, to reconstruct the position of the mouse,
we will consider the location associated with the maximum a
posteriori (MAP) which will remain the same value under such
convex transform:

ŷ= arg max exp

[ N∑
k=1

log(1+
P (Ak|S) × P (S)

P (Ak)
)− 1

]
(8)

where ŷ is the estimated state among all states in S.

Assessing Decoding Accuracy
In our example, we can compute the posterior probabilities
for each individual timestep based on neuronal activity, and
compare the actual versus decoded location on the linear track
(Figure 2D). To visualize which states are associated with
better/worse decoding error, we can compute a confusion matrix,
which expresses the portion of time points where the actual state
was successfully decoded (Figure 2E). This representation is also
useful to identify which states are more difficult to decode. While
confusion matrices are useful, they are not practical when it
comes to summarizing decoding accuracy for large datasets and
performing statistical analyzes. We thus propose two metrics: (1)
decoding agreement, and (2) decoding error (Figure 2F). We
define decoding agreement as the portion of time where the exact
state of the mouse was successfully decoded:

decoding agreement =
time points successfully decoded

Total time
(9)

Therefore, decoding agreement is a value between 0 and 1. For
instance, a value of 0.5 means that 50 % of time points have
been successfully decoded. This approach is quite conservative:
when the decoded state is only one bin away from the actual
behavioral state, it would lead to a null decoding agreement while
still being close to reality. Therefore, another metric commonly
used in decoding analyzes is decoding error, which is the distance
between the decoded behavior and the actual behavior. Note
that in our case, the distance is explicitly Euclidean and can be
expressed in cm. For one-dimensional data, equation (16) can be
used to compute decoding error:

decoding error = |decoded state − actual state| (10)

The decoding error may or may not be useful depending
on the variables under study. For instance, in the case of
auditory stimuli, the distance between tone frequencies might
not necessarily be as meaningful as an actual spatial distance,
as it is the case in our example. Moreover, its computation
will be different for two-dimensional space, or head orientation,
to list a few of the variables commonly studied. Importantly,
to assess decoding accuracy, it is recommended not to test
the decoder on epochs that were used to train the Bayesian
decoder. Some epochs, such as periods of immobility in our case,
can be excluded for both training and testing altogether. We
propose here to train and test our decoder on non-overlapping
sets of random epochs, repeat the process several times, and
compute the average decoding agreement and decoding error

(Figure 2G). Using this approach, we found in our conditions
that using a uniform prior P(S) led to higher decoding agreement
(0.37 ± 0.002, n = 30 trials; data expressed as mean ± SEM)
compared to using observed prior probabilities (0.07 ± 0.004,
n = 30 independent trials), or replacing the marginal likelihood
(bias) P(A) by 1 (condition which we term ’unbiased’ here;
0.07± 0.001, n = 30 independent trials; 1ANOVA, F(2,87) = 4521,
P < 0.0001; Figure 2H). Similarly, decoding error was lower
using a uniform prior (8.12± 0.08 cm, n = 30 independent trials)
compared to using an observed prior (13.18 ± 0.15 cm, n = 30
independent trials) or in unbiased conditions (49.34 ± 0.08 cm,
n = 30 trials; F(2,87) = 44710, P < 0.0001; Figure 2I).

Adding Temporal Constraints
Although decoding can be performed for each individual time
point, this temporal independence can lead to spurious results
(see decoded trajectory in Figure 2D, pink line in the bottom
panel). Rationaly, if the mouse is at one end of the linear track,
it is extremely unlikely to be found at the opposite end on the
next frame. There are several ways to solve this problem and
improve state estimation. A first method could be to build a
transition matrix (such as one that would be used in a Markov
process), and attribute null values to impossible transitions (such
as going from one end of the linear track to the other), as
well as uniform probabilities to adjacent states. One could then
replace the observed or uniform prior P(S) by the appropriate
realistic transition values at each individual timestep. Another
method consists of taking the product of temporally adjacent
posteriors. In that case, we would decode the mouse state by
rewriting equation (7):

P (S|At) =

N∏
k=1

L∏
l=1

P (Ak,t=l|S) × P (S)
P (Ak,t=l)

(11)

where P (S|At) is the a posteriori distribution of states at time
t. The number of past timesteps l used to estimate the mouse
state at time t is determined by L. The effect of different values
of L will be detailed in the following section. The advantage of
this method is that it does not require to determine transition
probabilities experimentally. In our conditions, temporal filtering
can greatly improve reconstruction and remove erratic ’jumps’
that can sometimes occur during decoding (Figure 3A).

Parameter Optimization
To find the best conditions to decode neuronal activity, it is
possible to optimize parameters including (but not restricted to):
number of cells used, portion of training set, temporal filtering
window, or spatial filtering of tuning curves. For instance, we
performed decoding on 30 sets of random epochs using several
temporal filtering window sizes ranging from 0 (no filtering)
to 2 s, and found that better reconstructions could be achieved
using a 0.5 s filtering window, leading to smaller decoding
errors (4.73 ± 0.04 cm, n = 30 independent trials per filtering
window; 1ANOVA, F(8,261) = 1002, P < 0.0001; Figure 3B).
Interestingly, the bigger the temporal filtering window, the
lower the decoding agreement (Pearson correlation, R2 = 0.96,
P < 0.0001, n = 30 independent trials per filtering window;
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FIGURE 3 | Decoding parameter estimation. (A) Example posterior probabilities P(state| active) when using a 0.5 s temporal filtering window (top), and
corresponding decoded location estimated from MAP (bottom). (B,C) Effect of temporal filtering window size on decoding error and agreement, respectively. (D,E)
Effect of the number of cells used on decoding error and agreement, respectively. (F,G) Effect of training set portion on decoding error and agreement, respectively.
(H) Effect of random noise on spatial tuning curves. (I,J) Corresponding decoding agreement and error, respectively. (K) Effect of gaussian smoothing on spatial
tuning curves. (L,M) Corresponding decoding agreement and error, respectively. Color codes in (A,H),: dark blue = low probability, yellow = high probability.
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Figure 3C). As expected, considering more cells during the
reconstruction resulted in decreased decoding error (Pearson
correlation, R2 = 0.75, P < 0.0012, n = 30 independent trials
per cell number; Figure 3D) and increased decoding agreement
(Pearson correlation, R2 = 0.87, P < 0.0001, n = 30 independent
trials per cell number; Figure 3E). We also tested the influence
of the training/testing length ratio on reconstruction accuracy
and found that good reconstruction can be achieved by using
testing epochs that represent beyond 30 % of the total experiment
length. Mean decoding error decreased as the training set portion
increased (Pearson correlation, R2 = 0.64, P = 0.01, n = 30
independent trials per training set portion tested; Figure 3F),
while mean decoding agreement increased (Pearson correlation,
R2 = 0.79, P = 0.0013, n = 30 independent trials per training set
portion tested; Figure 3G). We next assessed the robustness of
tuning curves to random noise. To this end, we computed tuning
curves as described previously, then replaced a portion (between
0 and 1, with 0.1 incremental steps) of the tuning curves data
with random probability values (Figure 3H). Addition of noise
was correlated with decreased decoding agreement (Pearson
correlation, R2 = 0.80, P = 0.0014, n = 30 independent trials per
noise amount; Figure 3I), and increased decoding error (Pearson
correlation, R2 = 0.77, P = 0.0004, n = 30 independent trials
per noise amount; Figure 3J). Finally, we tested the impact of
smoothing tuning curves on decoding accuracy (Figure 3K).
Gaussian smoothing is often performed in the context of place
cell studies, presumably to improve the visualization of assumed
place fields (O’Keefe and Burgess, 1996; Hetherington and
Shapiro, 1997). In our conditions, we found that Gaussian
smoothing of tuning curves was systematically associated with
decreased decoding agreement (Pearson correlation, R2 = 0.92,
P = 0.0025; n = 30 independent trials per gaussian sigma value;
Figure 3L), together with increasing decoding error (Pearson
correlation, R2 = 0.97, P = 0.0003, n = 30 independent trials per
gaussian sigma value; Figure 3M).

Optimal Method to Binarize Neuronal Activity
In our conditions, we used a simple binarizing algorithm
that transformed rising periods of calcium transients into
periods of activity. We compared this method to a simple
z-score threshold where all activity above 2 standard-deviations
is considered active, and to a deconvolved signal using a
first order autoregressive model (see methods), where all
values above zero are considered as periods of activity. To
quantify the accuracy of these methods, we performed in vitro
electrophysiological recordings in the cell attached configuration,
in conjunction with 1-photon calcium imaging (Supplementary
Figure 2a). We extracted calcium transients from the recorded
cell (Supplementary Figure 2b) so as to contrast these signals
with ground truth spiking activity (Supplementary Figure 2c).
Interestingly, calcium transients appeared much longer in
these conditions, and our binarizing method only matched
the later portion of transients rising periods (Supplementary
Figure 2d). In the following analyses, we seperated the portion
of action potentials successfully labeled as active periods in the
corresponding calcium imaging recording frame, as well as the
portion of total recorded frames that were either correctly labeled

as active if they were associated with at least one action potential,
or inactive if they did not. Using a deconvolved trace to estimate
neuronal activity resulted in a higher number of action potentials
successfully detected as corresponding calcium imaging active
periods (0.94 ± 0.032) compared to our binarizing algorithm
(0.49 ± 0.067) or a simple z-score threshold (0.65 ± 0.075;
1ANOVA, F(2,108) = 13.71, P < 0.0001, n = 37 detection windows;
Supplementary Figure 2e). Furthermore, both the portion of
true negatives (calcium imaging frames binarized as inactive that
indeed contained no action potential divided by the total number
of recorded frames) and the portion of true positives (calcium
imaging frames binarized as active that indeed contained at
least one action potential, divided by total number of recorded
frames) were comparable between methods (Supplementary
Figures 2f,g, respectively).

Interestingly, these in vitro results did not compare to our
in vivo conditions. When computing tuning curves for the
neuron presented in Figure 1, using a simple threshold resulted
in a larger place field, while binarizing data from a deconvolved
trace resulted in two peaks (Supplementary Figure 3a). While
there is no ground truth data to conclude which method is
best to compute tuning curves, decoding analyzes can shed a
light on this question, because animal behavior can be used as
ground truth data (the higher the decoding accuracy, the closer to
ground truth). We thus trained our decoder (Eq. 9) using tuning
curves computed from binarized activity derived using a simple
z-score threshold, a deconvolved trace, or using our binarizing
method. We found that using both our binarizing method
(4.74 ± 0.0039 cm) or a deconvolved trace (4.81 ± 0.048 cm) led
to lower decoding errors compared to using a simple threshold
(5.18± 0.051 cm, F(2,87) = 26.22, P < 0.0001, n = 30 independent
trials for each binarizing method; Supplementary Figure 3b).

Decoding Two-Dimensional Behavioral Variables
The decoding method presented above is scalable to a large
variety of behaviors. However, sometimes it can be useful to
represent behaviors in more than one dimension. This is for
instance the case with spatial location in larger environments.
We will now show that the principles presented above can easily
be translated to more dimensions. To this end, we recorded
neuronal activity using calcium imaging in a mouse exploring
an open-field for the first time. Calcium transients are then
extracted and binarized, along with the x and y mouse position
(Figure 4A). It is possible to plot periods of activity of one cell
in 2D space, and color code this activity to visualize the stability
of such activity in time/space (Figure 4B). Relative occupancy
(Figure 4C) and P(active| state) probabilities can be computed for
each state (3× 3 cm spatial bin) the same way as presented above
(Figure 4D). The posterior probability distribution can then be
derived (Figure 4F). To assess the confidence of the likelihood
probability distribution, it is possible to shuffle data circularly
and compute P(active| state) probability maps (Figure 4E).
From these shuffled probability maps, we can derive the level
of significance using a p-value that corresponds to the number
of shuffled data points above the actual data divided by the
number of shuffled surrogates (Figure 4G). We can then derive
a thresholded place field that only retains significant values of
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FIGURE 4 | Decoding two-dimensional behaviors. (A) x,y coordinates of mouse location in an open field (bottom) and corresponding raw calcium trace of one
example cell and binarized activity (top). (B) Top view of mouse trajectory (beige trace) with overlaid location corresponding to neuronal activity (green, early activity;
magenta, late activity). (C) Relative occupancy in the open field. (D) Tuning map (probability of being active given location) of one neuron. Top, corresponding MI
index. (E) Example tuning maps computed from shuffled calcium traces. (F) Posterior probability P(state| active) for the same cell. (G) P-value computed from the
actual tuning map and corresponding shuffled surrogates. (H) Thresholded place field using only significant P(active| state) values. (I) Standard-deviation of the
shuffled distribution. (J) Scatter plot comparing the standard-deviation of the shuffled distribution, and the mouse open field occupancy. (K) Effect of temporal
filtering on decoding error in the open field. The red arrow indicates the temporal filtering window size yielding the lower decoding error. (L) Effect of gaussian
smoothing of tuning maps on decoding error in the open field.
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P(active| state) (Figure 4H). Importantly, it is noteworthy that
the standard-deviation of the shuffled distribution (Figure 4I)
is negatively correlated to the relative occupancy (Pearson
correlation, R2 = 0.47, P < 0.0001; Figure 4J). This suggests
that for states with high P(active| state) probabilities, significance
can be higher if the state displays high occupancy, and lower
if the state displays low occupancy. We also assessed the effect
of temporal filtering on the quality of the reconstructions and
found that in our conditions, a 1.6 s filtering window yielded
best results (1ANOVA, F(39,1160) = 72.31, P < 0.0001, n = 30
independent trials per temporal filter window size; Figure 4K).
As for one-dimensional data, Gaussian filtering of tuning maps
(2D tuning curves) consistently increased the decoding error
(Pearson correlation, R2 = 0.99, P < 0.0001, n = 30 independent
trials per Gaussian sigma value; Figure 4L).

Refining Encoding Predictions
The ultimate goal of decoding neuronal activity is to improve our
understanding of the relationship that may exist between neurons
and behavior. In other terms, in addition to predicting behavior
from neuronal activity, one should be able to predict neuronal
activity from behavior. These encoding predictions can easily be
derived from equation (3) since P (S|A) represents the likelihood
of a given neuron to be active while an animal is in a given state.
This probability distribution can be interpreted as both a direct
measure from our data, and a prediction of activity rate as a
function of the animal location. Consequently, if P (S|A) would
take the value 1 for the given states i, we would be absolutely
certain that the considered neuron would be active in these given
states. In our linear track example, we can refine our encoding
prediction since it has been previously shown that hippocampal
place cell activity on a linear track tend to be unidirectional: some
cell will fire in one given location, but only when being traversed
in one direction (McNaughton et al., 1983; Markus et al., 1995).
If the peak probability of being active P (S|A) for a neuron that
displays a prominent place field is only 0.5, it could be due to
the fact that this cell fires only 50 % of the time, when the
animal is running in one direction, but not in the other. We will
now demonstrate that it is possible to predict neuronal activity
from estimated tuning curves, and that refining our behavioral
states by including directional information can increase our
encoding prediction, i.e. the confidence we have that a neuron
will fire given that the animal is in a given state. To this end, we
extracted tuning curves from neurons being active on the linear
track using either location only (Figure 5A), or by considering
both location and direction (Figure 5B). Note that using the
later method, the peak probability P (S|A) greatly increases.
When comparing probability values obtained from the same
cells but using either technique, it seems that most cells’ P (S|A)
increase when including traveling direction (Pearson correlation,
r = 0.8781, R2 = 0.77, P < 0.0001; Figure 5C). Interestingly, this
is not the case for a minority of cells, indicating that some cells
still display preferential activity for absolute location, regardless
of direction. We then reconstructed neuronal activity using the
P (S|A) of each neuron for each known state i (location in our
example) of the mouse. For display purposes, we only show
probability values greater than 0.5 (Figure 5D). To estimate

the confidence in neuronal activity predictions, we can use the
same bootstrap method presented earlier to build 95% confidence
intervals for P (S|A) tuning curves computed by considering
left, right, or both traveling directions (Figure 5E; n = 1000
bootstrap samples). The advantage of this method is that it gives
a clear range of prediction accuracy that is easily interpretable.
In our example neuron #4, it is apparent that greater encoding
predictions can be achieved when only considering travels to the
right (Figure 5E). Furthermore, we can use mutual information
as a measure of how much uncertainty about neuronal activity
can be reduced by knowing the state of the animal. In our
example, we found that MI values were the highest when only
considering travels to the right (0.22 ± 0.0005 bits), followed
by considering both directions (0.09 ± 0.0002 bits), and only
travels to the left (0.02± 0.0001 bits; 1ANOVA, F(2,2997) = 44.84,
P < 0.0001; n = 1000 bootstrap samples; Figure 5F).

DISCUSSION

We show here that representing neuronal activity extracted from
calcium imaging data by a binary state (active vs. inactive) is
sufficient to approximate the state of a neuronal assembly. While
such binarization was previously proposed as an intermediate
step to perform decoding (Ziv et al., 2013), here we generalize
this principle and propose several additional metrics to describe
the strength of neuronal tuning to behavioral variables. In
particular, several methods can be used to binarize calcium
activity, but because the rise time of calcium transients contains
the vast majority of action potentials, binarizing methods should
aim at labeling specifically these epochs as periods of activity.
Importantly, optimizing methods and parameters using in vitro
conditions cannot necessarily be translated to data acquired
in vivo because calcium transients differ fundamentally across
conditions, even if most variables are the same (animal strain/age,
viral construct and dilution).

Information on neuronal coding can be extracted using simple
methods and minimal data processing. Importantly, three metrics
can be used to describe neurons: the likelihood of being active in
a given behavioral state P(active| state), the posterior probability
of the animal being in a state given neuronal activity P(state|
active), and mutual information – a measure of reduction in
uncertainty of the mouse state that results from knowing neuronal
activity, and vice versa. Furthermore, we propose to determine
significance by either computing a p-value value derived from
shuffled surrogates, or estimating confidence intervals using
bootstrap resampling. In particular, the later method provides
confidence in encoding predictions that are easily interpretable.

While action potentials recorded with electrophysiological
techniques constitute discrete temporal events, calcium imaging
signals take the form of a continuous vector which prevents the
direct computation of previously used information metrics: bits/s
and bits/spike. On the other hand, MI values can easily be derived
from probabilities computed above and provide useful insights in
the amount of uncertainty that is reduced about the animal state
given neuronal activity. It is noteworthy that the MI is sensitive to
the number of bins used, therefore faithful comparisons between

Frontiers in Neural Circuits | www.frontiersin.org 11 May 2020 | Volume 14 | Article 19

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-14-00019 December 7, 2020 Time: 13:23 # 12

Etter et al. Decoding Behavior From Calcium Imaging

FIGURE 5 | Reconstructing neuronal activity and refining tuning curves. (A) Tuning curves of every neuron sorted by peak activity in the linear track. (B) Same, but
after discriminating left and right trajectories. (C) Relationship between peak P(active| state) likelihood computed using either method (location only versus location
and direction). (D) Actual location of the mouse in the linear track (top), and corresponding actual and reconstructed neuronal activity using location only (purple
box), as well as actual and reconstructed neuronal activity using both location and direction (green box). (E) P(active| state) computed using either right (red), left
(blue), or both (purple) trajectories. Thickness of curves indicate 95% confidence interval computed from n = 1000 bootstrap samples. (F) Corresponding MI for each
bootstrap sample.
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electrophysiological and calcium imaging data would require to
compute MI values on electrophysiological and calcium imaging
data where neuronal activity was binarized the same way as
well as behavior discretized using the same binning parameters.
Furthermore, while bursting activity is associated with large
calcium transients that result in good decoding accuracy, single
spikes might lead to changes in GCamp6 fluorescence that are too
small to be detected, and could be associated with larger decoding
errors in some conditions.

Unsurprisingly, we found that MI values are significantly
correlated with peak P(active| state) probabilities, while in
parallel, behavioral states with low occupancy display more
variability in the surrogate data, which indicates that higher
significance can be achieved when the sampling of behavioral
states is higher. Importantly, the choice of a null hypothesis
should be considered carefully. On one hand, if it is hypothesized
that neurons become active in response to an external stimulus,
then one should permute neuronal activity in respect to the time
course of external stimuli under the null hypothesis. On the
other hand, if it is hypothesized that the temporal organization
of neurons (e.g. sequences) underlies certain cognitive processes
(e.g. replay), then permutations should be performed so as to
remove temporal patterns of neuronal activity (i.e. shuffle each
neuron activity vector independently) under the null hypothesis.

Using such a probabilistic approach allows to derive
predictions based on Bayes theorem. In our conditions, we
found that minimal a priori (uniform distribution of states
likelihood) yielded better results. Adding temporal constraints
could decrease decoding error but not decoding agreement.
Consequently, these filters have to be optimized on a case by
case basis depending on the goal of the study. Interestingly,
smoothing probability distributions had negative effects in our
conditions, most likely due to the asymmetric nature of place
fields when unfiltered. Such post-processing methods thus have
to be used with caution, and while they can improve the
visualization of particular phenomena such as place fields, they
can result in spurious interpretations. While the method we
describe here might not apply to any type of behavior, we
present examples of one- and two-dimensional datasets, and the
number of dimensions being studied should not be a limiting
factor. One of the most significant limitations with this method
arises directly from behavioral sampling, and only behaviors
that are directly sampled can be reconstructed or used to
predict neuronal activity. For alternative approaches that do not
make assumptions about behaviors being encoded in neuronal
activity, the use of dimensionality reduction techniques has been
proposed (Rubin et al., 2019), and if sequential patterns are
hypothesized to underlie behaviors, matrix factorization methods
can be used instead (Mackevicius et al., 2018). Moreover, when
multiple variables contribute to variability in neuronal activity,
generalized linear models can outperform the methods presented
here (Park et al., 2014), at the expense of requiring significantly
more data points which may or may not be compatible with
calcium imaging approaches, depending on the activity rate of
neurons being studied.

Finally, we propose a simple method to characterize neuronal
encoding and predict neuronal activity. This method is useful

in refining the behavioral components that can determine
neuronal activity. As such, the quality of models that can be
drawn from observations largely depends on the very nature
and accuracy of these observations. In particular, increasing
the amount of information concerning a certain behavior can
result in a refinement of the underlying model of neuronal
activity. Perfect predictions of neuronal activity on the simple
basis of behavior is a difficult endeavor, however, because such
activity is not only determined by external variables (behavior)
but also internal variables including animal state, and pre-
synaptic activity that is often inaccessible to the observer. In
this context, previous work has outlined organized patterns
of neuronal activity that are usually associated with spatial
location while animals did not perceive any external stimuli
other than self-motion (Villette et al., 2015). Moreover, taking
into account the interdependence of neuronal activity could
also improve the quality of predictions. In particular, including
pairwise (Pillow et al., 2008; Meshulam et al., 2017) or temporal
(Naud and Gerstner, 2012) correlations of neuronal activity could
reduce decoding error. Note that these temporal correlations
would also be taken into account when using long short-
term memory (LSTM) artificial neural networks (Tampuu et al.,
2019), thus increasing reconstruction accuracy at the expense of
interpretability. Rather than proposing a sophisticated analysis
pipeline, the methods presented here have the advantage of
remaining simple, requiring only few data points, and are easily
interpretable using metrics that can facilitate the communication
of results along with significance and confidence intervals,
making it an appropriate tool for exploration of calcium imaging
data in conjunction with behavior.

MATERIALS AND METHODS

Surgical Procedures
All procedures were approved by the McGill University Animal
Care Committee and the Canadian Council on Animal Care.
For the linear track and open field data, one adult mouse
(∼2 months) was anesthetized with isoflurane (5% induction,
0.5–2% maintenance) and placed in a stereotaxic frame
(Stoelting). The skull was completely cleared of all connective
tissue, and a ∼500 µm hole was drilled. We then injected
the AAV5.CamKII.GCaMP6f.WPRE.SV40 virus (Addgene #
100834; 200 nL at 1 nl.s−1) in hippocampal CA1 using the
following coordinates: anteroposterior (AP) −1.86 mm from
bregma, mediolateral (ML) 1.5 mm, dorsoventral (DV) 1.5 mm.
2 weeks following the injection, the mouse was anesthetized with
isoflurane and the skull was cleared. A ∼2 mm diameter hole
was perforated in the skull above the injection site. An anchor
screw was placed on the posterior plate above the cerebellum.
The dura was removed, and the portion of the cortex above
the injection site was aspirated using a vacuum pump, until
the corpus callosum was visible. These fiber bundles were then
gently aspirated without applying pressure on the underlying
hippocampus, and a 1.8 mm diameter gradient index (GRIN;
Edmund Optics) lens was lower at the following coordinates: AP
−1.86 mm from bregma, ML 1.5 mm, DV 1.2 mm. The GRIN
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lens was permanently attached to the skull using C&B-Metabond
(Patterson dental), and Kwik-Sil (World Precision Instruments)
silicone adhesive was placed on the GRIN to protect it. 4 weeks
later, the silicone cap was removed and CA1 was imaged using
a miniscope mounted with an aluminium base plate while the
mouse was under light anesthesia (∼0.5 % isoflurane) to allow
the visualization of cell activity. When a satisfying field of view
was found (large neuronal assembly, visible landmarks), the base
plate was cemented above the GRIN lens, the miniscope was
removed, and a plastic cap was placed on the base plate to
protect the GRIN lens.

Behavior and Miniscope Recordings
After baseplating, the mouse was gently handled for ∼5 min
per day for 7 days. The mouse was then water-scheduled (2 h
access per day), and placed on a 1 m long linear track for
15 min. 10% sucrose in water rewards were placed at each end
of the linear track, and the mouse had to consume one reward
before getting the next one delivered. Miniscope recordings were
performed at 30 Hz for 15 min every day, and decoding was
performed on the last training day (day 7). The following week,
the mouse was allowed to freely explore for 15 min a 45× 45 cm
dark gray open-field that contained visual cues, and miniscope
recordings were performed at 30 Hz for the entire duration of the
exploration (15 min).

Miniscope and Behavior Video
Acquisition
Miniscopes were manufactured using open source plans available
on www.miniscope.org and as described previously (Ghosh et al.,
2011; Cai et al., 2016; Aharoni and Hoogland, 2019). Imaging
data was acquired using a CMOS imaging sensor (Aptina,
MT9V032) and multiplexed through a lightweight coaxial cable.
Data was acquired using a data acquisition (DAQ) box connected
via a USB host controller (Cypress, CYUSB3013). Data was
recorded using a custom written acquisition software relying
on Open Computer Vision (OpenCV) librairies. Video streams
were recorded at ∼30 frames per second (30 Hz) and saved
as uncompressed.avi files. Animal behavior was recorded using
a webcam, and the DAQ software simultaneously recorded
timestamps for both the miniscope and behavior camera in order
to perform subsequent alignment.

Calcium Imaging Analysis
Calcium imaging videos were analyzed using the
MiniscopeAnalysis pipeline2. In particular, we first applied
rigid motion correction using NoRMCorre (Pnevmatikakis and
Giovannucci, 2017). 1000 frame videos were then concatenated
into a large video file after a 2 fold spatial downsampling. Spatial
components as well as calcium traces were then extracted using
CNMFe (Zhou et al., 2018) using the following parameters:
gSig = 3 pixels (width of gaussian kernel), gSiz = 15 pixels
(approximate neuron diameter), background_model = ’ring’,
spatial_algorithm = ’hals’, min_corr = 0.8 (minimum pixel

2https://github.com/etterguillaume/MiniscopeAnalysis

correlation threshold), min_PNR = 8 (minimum peak-
to-noise ratio threshold). When applicable, calcium traces
were deconvolved with OASIS (Friedrich et al., 2017), using
an autoregressive model with order p = 1 and using the
’constrained’ method.

In vitro Patch-Clamp Electrophysiology
One adult mouse (∼2 months) was stereotaxically injected with a
GCaMP6f construct (AAV5.CamKII.GCaMP6f.WPRE.SV40
virus, Addgene # 100834; 0.4 µL at 0.06 µl/min) in
hippocampal CA1. 2 weeks later, it was deeply anesthetized
using ketamine/xylazine/acepromazine mix (100, 16, 3 mg/kg,
respectively, intraperitoneal injection), and intracardially
perfused with cold N-methyl-D-glutamine (NMDG) recovery
solution (4◦C), oxygenated with carbogen (5% CO2/95% O2).
The NMDG solution contained the following (in mM): 93
NMDG, 93 HCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES,
25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate,
pH adjusted to 7.4 with HCl before adding 10 MgSO4 and 0.5
CaCl2. Following NMDG perfusion, brains were quickly removed
and immersed for an additional 1 min in cold NMDG recovery
solution. Coronal slices (300 µm) were cut using a vibratome
(Leica-VT1000S), then collected in a 32◦C NMDG recovery
solution for 12 min. Slices were transferred to room temperature
and oxygenated artificial cerebrospinal fluid (aCSF) containing
the following (in mM): 124 NaCl, 24 NaHCO3, 2.5 KCl, 1.2
NaH2PO4, 2 MgSO4, 5 HEPES, 2 CaCl2 and 12.5 glucose (pH
7.4). Patch pipettes (3–5 M�) were filled with internal solution,
containing the following (in mM): 140 K gluconate, 2 MgCl2,
10 HEPES, 0.2 EGTA, 2 NaCl, 2 mM Na2-ATP and 0.3 mM
Na2-GTP, pH adjusted to 7.3 with KOH, 290 mOsm. Slices
were transferred to a submerged recording chamber filled with
aCSF (2–3 ml/min flow rate, 30 ◦C), continuously oxygenated
with carbogen. All reagents were purchased from Sigma-
Aldrich, unless stated otherwise. Extracellular cell-attached
patch-clamp recordings were used for monitoring spontaneous
cell firing activity from hippocampal pyramidal neurons
expressing GcAMP6f (identified under EGFP-fluorescence). The
recording pipette was held at a potential of −70 mV. Imaging
of GcAMP6f-expressing pyramidal cells was performed with a
60x Olympus water immersion objective (LUMPLFLN60X/W,
NA 1.0) and acquired at 10 Hz using Olympus cellSens software.
Electrophysiological signals were amplified, using a Multiclamp
700B patch-clamp amplifier (Axon Instruments), sampled at
20 kHz, and filtered at 10 kHz.

Statistics
Statistical analyses were performed using GraphPad Prism
version 6.00 (GraphPad Software, La Jolla, CA, United States). All
data are presented as mean ± standard error of the mean (SEM)
and statistical test details are described in the corresponding
results. All t-tests are two-tailed. Normality distribution of
each group was assessed using the Shapiro-Wilk normality
test and parametric tests were used only when distributions
were found normal (non-parametric tests are described where
applicable). 1ANOVA: one-way ANOVA; 2ANOVA: two-way
ANOVA; RMANOVA: repeated measure ANOVA. p < 0.05
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was considered statistically significant. ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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