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One Sentence Summary: In severe COVID-19 patients, the immune system fails to generate cells 
that define mild disease; antibodies in their serum actively prevents the successful production of 
those cells. 
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Abstract.  
While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many 
others experience milder symptoms. We sought a holistic understanding of the 
severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-
blood preserving single-cell analysis protocol to integrate contributions from all major cell 
types including neutrophils, monocytes, platelets, lymphocytes and the contents of 
serum.  Patients with mild COVID-19 disease display a coordinated pattern of interferon-
stimulated gene (ISG) expression across every cell population and these cells are 
systemically absent in patients with severe disease. Severe COVID-19 patients also 
paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load 
as compared to mild disease. Examination of the serum from severe patients 
demonstrates that they uniquely produce antibodies with multiple patterns of specificity 
against interferon-stimulated cells and that those antibodies functionally block the 
production of the mild disease-associated ISG-expressing cells.  Overzealous and auto-
directed antibody responses pit the immune system against itself in many COVID-19 
patients and this defines targets for immunotherapies to allow immune systems to 
provide viral defense. 
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Main 
To understand immune biology amongst COVID-19 patients, we compared them to 
patients presenting with similar respiratory symptoms but who were not infected with 
the SARS-CoV-2 virus. We prospectively enrolled 21 SARS-CoV-2 positive inpatients, 11 
inpatients with similar clinical presentations consistent with acute lung injury (ALI) or 
acute respiratory distress syndrome (ARDS), who were SARS-CoV-2 negative—those 
caused by other infections or of unknown origin—and 14 control individuals. We further 
categorized these over the next weeks as ‘mild/moderate’ (M/M: typically short stays in 
hospital with no need for mechanical ventilation and intensive care) or ‘severe’ (requiring 
intubation and intensive care) according to the full clinical course of their disease (Fig 
1A/S1A and Table S1). Hence, our study includes patients with mild/moderate (n=11) or 
severe (n=10) COVID-19 and patients with mild/moderate (n=6) or severe (n=5) non-
COVID-19 ALI/ARDS. With the exception of one individual, all our patients who presented 
with mild/moderate disease remained mild/moderate during hospitalization (Fig S1A), 
suggesting that mild/moderate and severe are more stable states rather than transient 
phases of disease in this cohort. 
 
Since the majority of COVID-19 mortality is among patients with the (ARDS)—
characterized by an exuberant immune response with prominent contributions from 
neutrophils, monocytes, platelets—we focused upon faithfully collecting these cells along 
with other major populations.  We thus processed early morning blood samples from all 
individuals within 3 hours of sampling, and after red blood cell lysis, we analyzed the 
remaining white blood cells by single-cell RNA sequencing (scRNA-seq). After merging, 
batch-correction and doublet-removal our data comprised 116,517 cells (Fig 1B/S1B) 
among which we identified neutrophils, platelets, mononuclear phagocytes, T/NK cells, B 
cells, plasma cells and eosinophils (Fig S1C). We confirmed a positive association between 
neutrophil count and disease severity and an inverse correlation for lymphoid populations 
(Fig 1B/S1D) (1-3). At this level of resolution, findings were similar between SARS-CoV-2 
negative and positive individuals (Fig S1E). 
 
Within the neutrophils, we identified seven subtypes (Fig 1C/D), consistent with previous 
studies (2, 4). One population, harboring a strong interferon-stimulated gene (ISG) 
signature and henceforth termed ISG neutrophils, was highly enriched in SARS-CoV-2 
positive patients but not in those whose disease was severe (Fig 1E/F/G). Analysis of 
populations using a pseudotime method to estimate differentiation trajectories (5) 
assigned the starting population as the stem LCN2 population (Fig 1H/S1F-G) and 
suggested three putative late populations: the ISG-expressing population (state 1), a 
collection of populations sharing expression of NEAT1, MALAT1 and FTH1 (state 2), and a 
population enriched for ribosomal genes (RIBO.; state 3) which may be en route to cell 
death. Of these late stages, the ISG subtype was the only one found significantly altered 
between mild/moderate and severe patients (Fig 1I) and specifically within the SARS-CoV-
2 positive individuals (Fig 1J/S1H). ISG signature genes include master anti-viral regulators 
such as ISG15 and IFITM3 which restricts viral entry into the cytosol (6). 
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We also undertook a second form of analysis of differentially expressed genes (DEG) from 
SARS-CoV-2 positive versus negative patients, and from mild/moderate versus severe 
patients across all neutrophils (Fig S1I-L). This demonstrated that ISG signature genes are 
differentially higher in all neutrophils, of all subsets, specifically in SARS-CoV-2 positive 
mild/moderate patients, than in SARS-CoV-2 positive patients with severe disease (Fig 
1K/S1M-O). In contrast, a separate neutrophil degranulation gene program is 
upregulated in mild/moderate as compared to severe disease regardless of COVID status 
(Fig S1P-Q). This suggests a shared program of degranulation enhancement in all 
respiratory infections regardless of causative pathogen, and a global rise of the ISG 
program in all neutrophils in mild/moderate SARS-CoV-2 positive cases that is absent in 
severe SARS-CoV-2 infection (3). 
 
Assessing the mononuclear phagocytes—monocytes, macrophages, dendritic cells and 
plasmacytoid dendritic cells (pDC)—yielded 7 clusters of transcriptionally distinct cells 
subsets, evenly distributed across our cohort with a heterogenous number of genes and 
unique molecular identifiers detected for each cluster (Fig 2A-B/2SA-D). We identified 
ISG classical monocytes as being enriched in SARS-CoV-2 positive patients, and 
particularly those having mild/moderate disease, similarly to neutrophils (Fig 2B-C/S2E-
G). pDCs which are substantial producers of the cytokine IFNa are also typically elevated 
in mild/moderate SARS-CoV-2 positive patients although this falls short of statistical 
significance in our dataset (Fig 2C). In contrast, elevated DCs that were previously 
considered a hallmark of COVID-19 patients when compared to healthy controls (2) are 
also elevated in SARS-CoV-2 negative patients (Fig 2C). ISG monocytes also expressed 
genes associated with glycolysis, compared to the S100A12 subset that were enriched for 
genes associated with OxPhos metabolism, consistent with previous reports in bacterial 
sepsis (7) (Fig S3A). As for neutrophils, differential gene expression analysis demonstrated 
that ISGs were the dominant genes associated with mild/moderate phenotypes when the 
entire mononuclear phagocyte pool was assessed (Fig 2D). 
 
ISG monocyte and ISG neutrophil frequencies were strongly correlated with one another 
in mild/moderate SARS-CoV-2 positive individuals (Fig 2E). Correlating multiple neutrophil 
subsets versus mononuclear phagocyte subsets across the entire cohort confirmed the 
strong correlation between ISG neutrophils and ISG monocytes and highlighted a 
significant correlation between pDCs and NEAT1 neutrophils, which have been previously 
described in viral infection (30072977) (Fig 2F). Similarly, we performed a comprehensive 
analysis of T cell and B cell frequencies (Fig S4) and found again that both cell types are 
significantly enriched in ISG signatures, specifically in mild/moderate COVID-19 patients 
(Fig 2G). On a patient-by-patient basis, the populations of ISG+ in one compartment 
correlated with the frequency of ISG expressing cells in another, for example of  ISG+ T 
cells and ISG+ neutrophils, uniquely in mild/moderate patients (Fig 2H). Spearman 
correlation analysis across multiple cell types in all patients thus showed a collection of 
correlated ISG populations and a second anti-correlated block of other cell populations, 
notably those expressing S100A12 (Fig 2I).  
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Platelets are the mediators of blood coagulation and their activation can be associated 
with inflammation and infectious diseases, termed immunothrombosis(8). In patients 
infected with SARS-CoV-2, 25-33% of patients present with thrombocytopenia or 
thromboembolic events(9). We sought to determine how this might be reflected in 
changes in the expressed genes and concomitantly in the heterotypic cell doublet 
frequencies in SARS-CoV-2 infections versus other respiratory infections. Our scRNA-seq 
whole blood data set allowed us to identify and subset platelets based on established 
platelet signature genes: PPBP, PF4, CLEC1B, RGS10, RGS18 (Fig 1B/S1C). Analysis of these 
platelets revealed six clusters (Fig 3A/B), including three subsets (“H3F3B”, “HIST1H2AC”, 
and “RGS18”) characterized by high expression levels of histone protein-encoding 
transcripts. Such populations may represent early platelets, based upon the suggestion 
that these anucleated cells carry transcripts acquired from their parental cells, 
megakaryocytes, during recent platelet formation(10). One by one comparison of these 
platelet subtypes among healthy controls and patients with mild/moderate and severe 
disease revealed only minor depletion of HIST1H2AC platelets with disease severity and 
increase in ACTB platelets—expressing genes associated with cytoskeletal functions—in 
both mild/moderate and severe patients (Fig 3C). 
 
To compare platelet turnover between disease severity groups, we overlaid the 
expression of BCL2L1 onto our platelet data set. This transcript encodes the anti-
apoptotic protein Bcl-xL, which has been identified as a ‘molecular clock’ for platelet 
lifetime(11). This identified the H3F3B cluster as representing ‘young’ platelets (Fig 3D), a 
result supported by a second signature of transcripts in young, reticulated platelets(12) 
(Fig S5A). This population was thus supported as the starting point for a pseudotime 
analysis, in which the histone-high clusters (H3F3B, HISTH2AC, RGS18) and cytoskeletal 
protein-high clusters (ACTB, PPBP, TMSB3X) were observed at the start and end of the 
pseudotime trajectory, respectively (Fig 3E/S5B). Plotting the platelet cell frequencies of 
our cohort along the trajectory suggested that platelets from all patients with disease 
were broadly overrepresented at the end of the trajectory (Fig 3F), supporting a discrete 
and systemic relative loss of young platelets in all patients as compared to controls. 
Platelets did not harbor an ISG-specific cell cluster (Fig S5C), but akin to myeloid and 
lymphoid cells, the ISG score in all platelets from mild/moderate patients was increased 
relative to controls and was comparatively decreased in severe patients, particularly in 
SARS-CoV-2 infected individuals (Fig 3G). 
 
Taking advantage of this unique dataset, we explored the identification of heterotypic 
aggregates between platelets and non-platelets by using a ‘Platelet First’ approach (Fig 
3H, see methods). This approach analytically prioritized capture of every cell that was 
aggregated with a platelet, prior to doublet assessment. The ‘Platelet First’ object 
revealed the presence of platelet transcripts associated with cells that also bore 
signatures of other major blood cell types (Fig 3H/S5D-E). We separately analyzed a 
smaller object that included only libraries containing samples pooled prior to cell 
encapsulation, allowing us to assess inter-patient doublets to conclude that the majority 
of these aggregates were not formed during the scSeq pipeline (Fig S5F). In plotting the 
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blood cell frequencies within the ‘Platelet First’ object against the cell frequencies within 
the original data set, we found a largely linear relationship between the frequency of a 
given aggregating population (x-axis) and the frequency with which that cell is found in 
an aggregate (y-axis) (Fig 3I). This first-order linear relationship suggests that, at least in 
circulating blood, platelets form aggregates indiscriminately with varying other cell types 
without favoring one or the other. Possibly activated vasculature would provide a cue 
that would change this pattern of aggregation.  
 
After observing that ISG expression profiles were elevated in every cell type among 
pateints with mild/moderate disease and COVID-19 but globally reduced with severe 
COVID-19 disease, we turned our attention to a hypothesis generating holistic approach 
to data analysis. In an attempt to visualize the global shift in gene expression data across 
cell types to identify trends with clinical correlates. We first undertook a phenotypic earth 
mover's distance (PhEMD) approach (13) that identifies and differentiates joint cell 
frequency patterns to highlight sources of patient-to-patient variation. PhEMD 
embedding of patients based on their subtype frequencies revealed eight distinct groups 
of patients (Fig 4A/S6A) where progression from A through H represent patients with 
generally increasing relative frequency of neutrophils, C, D, G and H include patients with 
relative enrichment in monocytes and E represents patients with an enrichment of ISG 
neutrophils and mostly consists of SARS-CoV-2 positive patients with mild/moderate 
disease (Fig 4B-C). In contrast, Group G, which is an alternative and ‘severe’ fate for 
patients is enriched for neutrophil and has a high ratio of cell frequency of S100A12 to 
ISG neutrophils (Fig S6A).   
 
When we examined serum IFNa levels, we found that mild/moderate individuals made 
more of this cytokine on average as compared to severe patients, which would be 
consistent with higher levels of ISG cell populations, however there were patient with 
severe disease individuals who also made high levels of IFNa (Fig 4D). To integrate the 
scRNA-Seq cell populations in the context of other clinical and serum fractions, we 
constructed a Spearman correlation matrix comparing all subtype frequencies described 
above with a collection of serum cytokines, antibodies and clinical variables (Fig 4E). 
Following hierarchical clustering of variables, ISG subtypes cluster together and are 
correlated with serum IFNa concentrations, consistent with these cells arising in response 
to globally high concentrations of this cytokine as shown previously (3) (Fig S6B). ISG-
expressing populations are also associated with low severity of COVID-19 illness, lower 
plasma levels of SP-D (indicative of alveolar epithelial injury) and, only modestly, with IL-
6 levels. We also note the absence of significant correlation between ISG populations and 
days after symptoms onset, indicative of a disease ‘state’ (Fig 4E and Fig S1A). We further 
correlated our subtype frequencies against a high-dimensional panel of plasma protein 
levels (Fig S6B) and again observed clustering of most ISG subtypes, which correlated with 
a host of factors indicative of a strong ISG and Th1 response (CXCL1/6/10/11, TNFB, IL-
12B, MCP-2/4), while inversely correlated with others (CCL23, MMP10, HGF).  An 
unexpected anticorrelate of the ISG state was the concentration of serum antibodies 
against the SARS-CoV-2 Spike and Nucleocapsid proteins. 
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This anticorrelation was profound (Fig 4F) and we considered it a paradox that severe 
patients have higher levels of potentially neutralizing antibodies. This is in apparent 
contradiction with a previous report showing that viral load is associated with severity 
and mortality in COVID-19(14, 15) a difference which could be explained by the fact that 
these studies focus on patients with high mortality, which was a very rare event in our 
cohort (Sup Table S1). Both antibody specificities were anticorrelated with the viral load 
as assessed from nasal swabs (Fig 4G) consistent with though not definitive for being 
neutralizing. As increased antibody titers and decreased viral load have been reported to 
be a feature of later disease stage(16), we considered the hypothesis that mild/moderate 
disease – characterized by high frequency of ISG+ signatures –  would simply precede 
severe disease states. However, antibody titers in severe patients are consistently higher 
compared to mild/moderate patients even two weeks beyond symptom onset (Fig 4H), 
and only one of our 11 mild/moderate patients would go on to exhibit a severe disease 
(Fig S1A). Moreover, we observed no statistical correlation between days of onset and 
the presence of ISG+ cell populations (Fig 4E). These elements would seem to argue 
against a simple time relationship between mild/moderate and severe states. 
 
Returning to the profound antibody reactivity and the global loss of ISG populations even 
in the presence of serum IFNa (Fig 4D), we hypothesized that phenotypic differences in 
our two groups of COVID-19 patients might also be mirrored or influenced or by systemic 
factors such as those carried in the blood and affecting all cell populations.  We thus first 
asked whether serum from severe patients contained antibodies against ISG-expressing 
cells by directly applying serum to healthy peripheral blood mononuclear cells (PBMCs) 
from heathy individuals that were first induced to express IFITM3 (part of our ISG 
signature, encoding a protein that blocks viral entry (6)) by culturing them with IFNa for 
24 hours, followed by flow cytometry analysis of  monocytes and lymphocytes (Fig S7A). 
While we observed only low levels of serum IgG binding in serum from 1/9 mild/moderate 
patients, sera from 5/7 patients with severe COVID-19 illness displayed significant binding 
(Fig 5A/S7B). Staining was more pronounced on monocytes as compared to T and B cells 
which were largely stained with similar frequencies when using mild/moderate or severe 
serum (Fig S7C). When examining specificities in those patients that did not stain ISG-
differentiated cells directly, we found that serum from patient 1050 produced antibodies 
that were specific for IFNa (right inset Fig5A), consistent with a very recent study (17) 
that also found these in approximately 12% of COVID patients. This finding nevertheless 
does not explain patients lacking ISG cells despite presence of IFNa in their serum (Fig 
4D). 
 
We then asked whether factors in the serum of severe patients affect the induction of the 
ISG signature gene pattern, including IFITM3, in response to culture with IFNa. We thus 
added patient serum at 10% into the IFNa stimulation conditions and found that, whereas 
control serum or serum from mild/moderate patients had no effect on differentiation as 
measured by either IFITM3 level or the frequencies of CD14+CD16+ intermediate 
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monocytes produced (Fig 5B/5D and Fig S7D), all severe patient serum tested had 
profound effects on differentiation, varying from absolute block to partial inhibition.  
 
To test whether these effects on IFN-induced production of ISG cell populations were in 
fact mediated by antibodies, we pre-adsorbed patients’ sera with Protein A/G beads to 
deplete them. This antibody depletion restored both IFITM3 induction and the total yield 
of interferon-stimulated monocyte cells (Fig 5C/D S7D). A similar block of ISG signature 
generation in response to IFNa was observed for other populations including 
lymphocytes, showing that this effect was global and similarly mediated by antibodies in 
serum severe patient (Fig 5E/S7D-E). 
 
Taken together, this shows that an antibody response in severe patients targets ISG cell 
populations and their generation. In our cohort, this general effect of antibody manifests 
in all severe patients, whereas antibodies against the cytokine IFNa itself were seen only 
in one of seven patients, a similar frequency recently reported(17). Antibodies in many of 
these patients have direct specificity for determinants on the surface of ISG monocytes. 
The molecular specificities of these other antibodies are likely to be many and varied 
based on the differing patterns in this relatively small sample set and it will remain to be 
determined how and why tolerance is broken to the ISG pathway, in the course of 
infection. One likely candidate for modulation of B cell response is direct infection of 
monocytes by SARS-CoV-2.  In vitro incubation of the virus with healthy cells indeed 
results in intracellular expression of both IFITM3 (indicating activation of this program) 
and spike protein (Fig S7F).  If, in an early immune response, the ISG program is 
preferentially presented alongside the proteins from the pathogen, and the immune 
system of the patient is not already self-tolerant to those ISG proteins due perhaps to a 
lifelong absence of their profound expression, tolerance to those cells and those proteins 
may be broken. Conversely, as inflammatory monocytes normally restrict antibody 
generation (18), their infection and lysis by virus may in turn release overexuberant B cell 
responses to many antigens, not just those that are newly produced during the infection. 
Regardless, this work suggests that targeting overexuberant and autoreactive B cells with 
drugs such as rituximab (19) or through introduction of IVIG(20), perhaps alongside 
introduction of convalescent serum-derived antibodies to provide ongoing viral 
protection, may be an avenue to defeat the global suppression of protective ISG mediated 
viral immunity. 
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FIGURE LEGENDS 
 
Figure 1: Severe COVID-19 disease is characterized by the lack of IFN-responsive neutrophils. A. 
Gender, SARS-CoV-2 status and disease severity in patients and control individuals (left) and 
description of study design (right). B. UMAP visualization of cells merged from the entire cohort 
with specific populations overlaid (left), and frequencies of these populations across control, 
mild/moderate (M/M) and severe individuals (right). C. Dotplot representation of top 
differentially-expressed-genes (DEG) between neutrophil subsets. D. UMAP visualization of 
neutrophil subsets. E. and F. Overlay of SARS-CoV-2 status and disease severity, respectively, on 
the neutrophil UMAP. G. Frequencies of neutrophil subsets among all neutrophils across control, 
SARS-CoV-2 negative and SARS-CoV-2 positive individuals. H. Pseudotime trajectory of neutrophil 
subsets. I. Frequencies of the neutrophil subsets among all neutrophils at later stages of 
pseudotime trajectories across control, mild/moderate and severe individuals. J. Frequency of ISG 
neutrophils among all neutrophils across SARS-CoV-2 status and disease severity. K. Score of ISG 
signature across neutrophil subtypes and disease severity in SARS-CoV-2 positive patients. 
Statistical significance was assessed using a two-way ANOVA test with multiple comparisons for 
panels B, G, I and J, and using a Wilcoxon test for panel K. * p-value < 0.05; ** p-value < 0.01; *** 
p-value < 0.001; **** p-value < 0.0001. 
 
Figure 2: Severe COVID-19 disease is defined by the lack of a concerted IFN-response across 
peripheral blood immune cells. A. Dotplot representation of the top differentially-expressed-
genes (DEG) between clusters identified in blood mononuclear phagocytic cell (MPC) subsets. B. 
UMAP visualization of the 19,289 MPC isolated from the entire dataset (left) and splitted by SARS-
CoV-2 status (right). C. Frequencies of MPC subsets among all MPC across control, mild/moderate 
(M/M) and severe individuals D. Volcano plot showing results of differential gene expression 
(DGE) analysis performed on all MPC between mild/moderate (right) and severe (left) patients. E. 
Scatter plot between neutrophil and monocyte ISG positive subsets patient by patient. F. 
Correlation matrix using Spearman Rank Correlation between the frequency of all neutrophils and 
monocytes subtypes in all SARS-CoV-2 negative and SARS-CoV-2 positive patients. (n=32) G. Violin 
plot of ISG signature on all T cells (top) and all B/Plasma cells (bottom) across SARS-CoV-2 status 
and disease severity. H. Scatter plot between neutrophil and CD4 T cell ISG positive subsets 
patient by patient. I. Correlation matrix using Spearman Rank Correlation between the most and 
the least correlated cell subsets to the Neutrophils ISG positive cells (data include all SARS-CoV-2 
negative and positive patients). Statistical significance was assessed using Spearman method 
(n=32) (G.) Kruskal Wallis test with multiple comparisons (C.). * p-value < 0.05; ** p-value < 0.01; 
*** p-value < 0.001; **** p-value < 0.0001. 
 
Figure 3: Platelet subtypes and putative platelet aggregates in COVID-19 disease. A. Dotplot 
representation of the top DEG between clusters identified in the platelet subset. B. UMAP 
visualization of 16,903 platelets isolated from the entire dataset showing various subsets, colored 
distinctly by their identity.  C. Frequencies of the identified clusters among all platelets in healthy 
donors and all patients with mild/moderate (M/M) and severe disease. D. UMAP visualization of 
all platelets colored by BCL2L1 (top) and violin plot of BCL2L1 expression level across all identified 
platelet subsets. E. UMAP visualization of all platelets with overlay of Pseudotime trajectory. F. 
Violin plot of the relative Pseudotime of all platelets split by healthy donors, mild/moderate and 
severe patients. G. ISG signature score in all platelets across SARS-CoV-2 status and disease 
severity. H. Outline of ‘Platelet First’ assessment to identify platelet aggregates in entire whole 
blood scRNA-seq data set. UMAP visualization of the 52,757 putative platelet aggregates with 
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specific populations overlaid. I. Bottom: Scatter plot of cell type frequency within merged object 
of entire cohort shown in Figure 1B (x-axis) versus same cell type frequency within ‘Platelet First’ 
object (y-axis). The identity line x=y is drawn as a reference. Each dot represents a healthy control 
or SARS-CoV-2 positive patient sample and are color-coded by disease severity. Pearson r 
correlation coefficient and two-tailed p value are shown for each cell type. Top: Box plots of y/x-
ratio for each healthy control or patient sample, separated by disease severity. Differences in C. 
and I. were calculated using a two-way ANOVA test with multiple comparisons. * p.value < 0.05; 
** p.value < 0.01; *** p.value <0.001; **** p.value < 0.0001; ns: non-significant.  
 
Figure 4:  Integrated view of Blood Composition in COVID-19 Patients. A-B. 3D PhEMD 
embedding of all patients, colored by A. de novo patient clusters A-H, B. SARS-CoV-2 status, and 
C. disease severity. D. Measurement of serum IFNa concentration from SARS-CoV-2 positive and 
negative patients by ELISA. Patients 1055 and 1060 are highlighted in red and their Monocytes 
ISG frequency from Fig 2C is noted as well as the median for mild COVID-19 mild/moderate 
patients. E. Matrix of Spearman correlation coefficients between all subtype frequencies (out of 
major cell types, e.g. Neut ISG out of all Neutrophils) obtained from scRNA-Seq versus patient 
metadata, viral load, Ab titers, and serum analyte levels on a patient-by-patient basis excluding 
healthy controls. Patients for which data were unavailable were excluded from correlation 
analysis for each comparison. Variables on both axes were ordered via hierarchical clustering with 
the computed dendrogram displayed for subtype frequencies. This dendrogram was divided into 
6 groupings with the one containing ISG+ subtypes highlighted in brown. Clinical variables 
generally correlated with severity highlighted in red and anti-correlated in brown. (n for 
correlation comparisons ranged from n=14 to 32) * p<0.05, ** p<0.005, *** p<0.0005. F.  
Measurement of anti-SARS-CoV-2 antibody levels in serum from patients by Luminex assay (M/M: 
Mild/Moderate). G. Scatter plots showing viral load versus levels of antibody binding SARS-CoV-2 
Nucleocapsid and Full Spike protein for patients in the cohort with severity overlaid. Antibody 
levels are shown as arbitrary units of MFI from Luminex assay while viral load is represented by 
an inverse CT number from QRT-PCR with target amplification of the SARS-CoV2 Nucleocapsid 
sequence. Correlation coefficient and significance calculated using Spearman’s method. Patients 
for which data was unavailable were excluded. (n=16) H. Scatterplot for SARS-CoV2 Full Spike 
protein antibody titers relative to days post symptom onset. Patients for which data was 
unavailable were excluded. (n=22) 
 
Figure 5: Neutralization of ISG induction by Antibodies from Severe COVID-19 Patients. 
A. Contour plots and histograms of CD14 Monocytes from healthy blood cultured with IFNa to 
induce expression of ISGs and stained with serum from heathy donor, mild/moderate (M/M) or 
severe SARS-CoV-2 positive patients with secondary staining with α-human IgG. Bottom right: 
histogram of beads coated with IFNa and stained with an antibody raised against IFNa or serum 
from severe SARS-CoV-2 positive patient #1050 or healthy donor. Black histograms represent non 
coated beads. B-C. Contour plots and histograms of CD14 Monocytes from healthy blood cultured 
with IFNa and serum from heathy donor, mild/moderate or severe SARS-CoV-2 positive patient 
quantifying levels of intracellular IFITM3 staining. C. Mild/Moderate (light yellow) or Severe (pink) 
sera were pre-treated with protein G/A before incubation with PBMC. D. Box plot of IFITM3 
induction in CD14 monocytes (left) and intermediate to classical monocytes ratio (right) from 2 
different experiment and 2 different healthy donors.  E. Left: Contour plots and histograms of 
pooled CD3+/CD19+ lymphocytes from healthy blood cultured with IFNa and serum from heathy 
donor, mild/moderate or severe SARS-CoV-2 positive patients. Mild/moderate (light yellow) or 
Severe (pink) sera were pre-treated with protein G/A before incubation with PBMC to deplete 
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antibodies. Right: Box plot of IFITM3 induction in lymphocytes. Differences in D. and E. were 
calculated using a two-way ANOVA test with multiple comparisons. * p.value < 0.05; ** p.value < 
0.01; *** p.value <0.001; **** p.value < 0.0001; ns: non-significant. 
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Supplemental Table 1  

 
Supplementary Table 1:  COVID-19 Whole Blood Study Cohort.  Patients were enrolled as described in 
Material and Methods and blood was collected from 4:30AM rounds on the first day after admission. 
Healthy controls were from volunteers who fasted overnight and were collected between 6am and 9am.  
Data on individuals is shown along with average and standard deviations. 

  

COMET ID SARS-CoV-2 
Status

Disease 
Severity

Age Gender
(1=MALE, 2 =F)

Days between 
symptoms and sampling

(* = asymptomatic)

Other 
Infection(s)

ICU during 
hospital stay

Days under 
mechanical 
Ventilation

Discharged 

1008 NEG Mild/Moderate 35.7 1 20 Bacterial No 0 Yes
1016 NEG Mild/Moderate 63.5 2 4 None No 0 Yes
1017 NEG Mild/Moderate 65.2 2 9 None No 0 Yes
1045 NEG Mild/Moderate 82.6 1 NA None Yes 0 Yes
1049 NEG Mild/Moderate 68.8 2 1 Bacterial No 0 Yes
1062 NEG Mild/Moderate 75.8 2 NA Bacterial No 0 Yes

COVID Negative Mild Average Data: 65 1.7 9
n=6 SD: 16 8

1009 NEG Severe 67 1 NA Bacterial Yes 5 yes
1010 NEG Severe 50.7 2 9 Bacterial Yes 5 Yes
1020 NEG Severe 78.6 1 5 Bacterial Yes 2 Yes
1021 NEG Severe 77 2 2 Bacterial Yes 5 Yes
1046 NEG Severe 49.6 1 3 Bacterial Yes 1 Yes

COVID Negative Severe Average Data: 65 1.4 5
n=5 SD: 14 3

1005 POS Mild/Moderate 83.4 1 9 None No 0 Yes
1006 POS Mild/Moderate 71.9 2 16 None No 0 Yes
1007 POS Mild/Moderate 55.3 1 13 Bacterial No 0 Yes
1012 POS Mild/Moderate 41.1 1 3 None No 0 Yes
1014 POS Mild/Moderate 58.6 1 4 None Yes 0 Yes
1025 POS Mild/Moderate 73.2 1 NA* None No 0 Yes
1026 POS Mild/Moderate 45.5 2 6 None No 0 Yes
1029 POS Mild/Moderate 85 2 2 Viral No 0 Yes
1044 POS Mild/Moderate 73.9 1 NA* None No 0 Yes
1052 POS Mild/Moderate 37.9 2 4 Viral No 0 Yes
1054 POS Mild/Moderate 25.8 1 NA* None No 0 Yes

COVID Positive Mild Average Data: 59 1.4 7
n=11 SD: 20 5

1001 POS Severe 34.8 2 12 Viral Yes 10 Yes
1002 POS Severe 79.6 1 4 Bacterial Yes 7 Yes
1003 POS Severe 43.6 2 13 Viral Yes 5 Yes
1031 POS Severe 44.2 1 20 Viral Yes 28 Yes
1038 POS Severe 61.4 2 14 None Yes ND Yes
1047 POS Severe 48.3 2 6 Viral + Bacterial Yes 28 Yes
1050 POS Severe 55 1 13 Bacterial Yes 29 Yes
1051 POS Severe 63.3 1 19 Bacterial Yes 33 Yes
1055 POS Severe 62.4 1 4 Viral Yes 31 Yes
1060 POS Severe 44.1 1 6 Bacterial Yes 5 Yes

COVID Positive Severe Average Data: 54 1.4 11
n=10 SD: 13 6

ICC_0001 CTRL CTRL 39 1 NA NA NA NA NA
ICC_0003 CTRL CTRL 24 1 NA NA NA NA NA
ICC_0666 CTRL CTRL 45 2 NA NA NA NA NA
ICC_1084 CTRL CTRL 34 1 NA NA NA NA NA
ICC_1117 CTRL CTRL 41 1 NA NA NA NA NA
ICC_1367 CTRL CTRL 52 1 NA NA NA NA NA
ICC_3231 CTRL CTRL 28 2 NA NA NA NA NA
ICC_3954 CTRL CTRL 37 2 NA NA NA NA NA
ICC_4096 CTRL CTRL 31 1 NA NA NA NA NA
ICC_4117 CTRL CTRL 59 2 NA NA NA NA NA
ICC_4319 CTRL CTRL 30 1 NA NA NA NA NA
ICC_4444 CTRL CTRL 34 2 NA NA NA NA NA
ICC_4799 CTRL CTRL 40 2 NA NA NA NA NA
ICC_4923 CTRL CTRL 34 1 NA NA NA NA NA

Healthy Controls Average Data: 38 1.4 NA
n=14 SD: 9 NA
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Supplementary Figures S1-S5 

 
Supplementary Figure 1: A. Patient symptoms plot: symptom at day of sampling (first day of admission to the hospital) is represented in 
black, while symptom based on the entire course of hospitalization is in green. In the rest of the manuscript we categorized patient into 
mild or severe cases based on all the entire course of hospitalization (green).  B. Quantification of the batch effect using neighbor diversity 
score in the global object UMAP before (left) and after (middle) batch correction, along with the neutrophil (right) UMAP plot, as in Fig1B 
and Fig1D, using the diversity in neighborhood method.  C. Dotplot representation of landmark genes expressed by global populations in 
Fig1B. D. Spearman’s correlation comparison between between disease severity and population frequencies calculated from 10X scRNAseq 
analyses (10X) or complete blood cell counts (CBC). Patients for which CBC counts were unavailable were excluded. Significance was 
calculated using Spearman’s method. * p value<0.05; ** p value <0.05; *** p value<0.005 (n=29) E. Frequency of the global populations in 
Fig1B among all cells across SARS-CoV-2 status. F and G. Frequencies of the neutrophil subsets among all neutrophils across control, 
mild/moderate (M/M) and severe individuals at the overall start/late states of the trajectories (F) or at specific early stages of the 
pseudotime (G). H. Frequency of the LCN2, S100A12, RIBO., NEAT1, G0S2 and SLPI neutrophils among all neutrophils across SARS-CoV-2 
status and disease severity. I to L. Volcano plots showing DEG (I and K) and bar plots showing GO term enrichment from these DEG (J and 
L) between all neutrophils from either SARS-CoV-2 positive vs negative patients (I and J) or mild/moderate vs severe patients (K and L) M 
to Q. Scores of ISG signature (M to O) and neutrophil degranulation (P and Q) in either all neutrophils across control, mild/moderate an 
severe patients (P), all neutrophils across SARS-CoV-2 status and disease severity (M and Q) or specific neutrophil subtypes across severity 
in either all patients (N) or only SARS-CoV-2 negative patients (O). Statistical significance was assessed using a two-way ANOVA test with 
multiple comparisons for panels E, F and H, and using a Wilcoxon test for panel M. * p.value < 0.05; ** p.value < 0.01; *** p.value < 0.001; 
**** p.value < 0.0001. 
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Supplementary Figure 2: A. Quantification of the batch effect before and after batch correction using neighbor diversity 
score in the mononuclear phagocytic cells (MPC) object from UMAP plot in Fig2C, using the diversity in neighborhood 
method. B. Violin plot of number of unique genes (bottom) and number of unique molecules (top) detected from Single 
cell sequencing for each cluster identified in the MPC dataset. C.  Overlay of previously described blood mononuclear 
phagocytic cell signature from healthy individual on MPC from UMAP plot in Fig2C. D. Violin plots of canonical genes 
previously described as expressed by blood MPC for each for each cluster identified in the MPC dataset. E. Frequencies 
of the MPC subsets among all MPC across control, SARS-CoV-2 negative and SARS-CoV-2 positive individuals. F. UMAP 
visualization of the 19,289 MPC colored (left) and split by (right) by disease severity. G. Frequencies of the classical 
monocytes, cycling monocytes, non-classical monocytes and C1Q+ non classical monocytes among all MPC across SARS-
CoV-2 negative and SARS-CoV-2 positive individuals split it by disease severity. Statistical significance was assessed 
using a two-way ANOVA test with multiple comparisons. * p.value < 0.05; ** p.value < 0.01; *** p.value < 0.001; **** 
p.value < 0.0001. 
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Supplementary Figure 3. A. Overlay of previously described glycolytic and oxidative phosphorylation gene signature on 
mononuclear phagocytic cells (MPC) from UMAP plot in Fig2C.   
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Supplementary Figure 4: A. Dotplot representation of the top DEG between clusters identified in the T and NK cell 
subset. B. UMAP visualization of 16,708 T and NK cells in the entire dataset showing various subsets, colored distinctly 
by their identity. C. Overlay of the above UMAP of all T and NK cells, colored by disease severity underlining the lack of 
batch effects while merging the datasets from all patients. D. Abundance of the Interferon-stimulated-gene (ISG) + 
subset among all T and NK cells in healthy donors, SARS-CoV-2 negative and SARS-CoV-2 positive patients (top) and in 
healthy donors and patients with mild/moderate (M/M) and severe disease (bottom). E. ISG signature score between 
healthy controls, SARS-CoV-2 negative and SARS-CoV-2 positive patients. F. Dotplot representation of the top DEG 
between clusters identified in the B and plasma cell subset.  G. UMAP visualization of 4,380 B and plasma cells isolated 
from the entire dataset showing various subsets, colored distinctly by their identity. H. Violin plots of canonical genes 
previously described as expressed by B and plasma cells for each identified cluster. I. Frequencies of the identified 
clusters among all B and plasma cells in healthy donors and patients with mild/moderate and severe disease. 
Differences in D. and E. were calculated using Kruskal-Wallis non-parametric ANOVA with multiple comparisons. * p 
<0.05 and **** p< 0.001. Differences in I. were calculated using a two-way ANOVA test with multiple comparisons. * 
p.value < 0.05 and **** p.value < 0.0001. ns, non-significant. 
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Supplementary Figure 5: A. Violin plots of genes identifying young, reticulated platelets (1) in the platelet dataset. B. 
Violin plots of the relative pseudotime of each platelet cell subset present in Figure 3B. C. UMAP visualization of all 
platelets colored by ISG score. D. Dotplot representation of the top DEG between clusters identified in the ‘Platelet 
First’ object. In this object (see also Fig 3) no doublet removal filtering step was applied to include all heterotypic cell-
cell aggregates (Step 1). This was followed by retaining all cells with >1 platelet-specific transcripts PF4 or PPBP (Step 
2). Step 2 guaranteed analysis of cell events and aggregates containing platelets. Identically to our original data set in 
Figure 1B, integration of data was done using Harmony (Step 3), and the ‘Platelet First’ object was then analyzed using 
the Seurat v3 pipeline (Step 4).  E. Violin plots of the percentage of mitochondrial and ribosomal genes within clusters 
identified in the ‘Platelet First’ object. F. Inter-sample doublet rates in inferred platelet-involved heterotypic doublets 
show that platelet aggregates occur in vivo. DBL, doublet. SNG, singlet. Differences in F. were calculated using a one-
sided Student’s t test * p.value < 0.05 and ** p.value < 0.01. 
 
 

  



Combes et al. 

Systemic Immune Progression In COVID-19 

 
Supplementary Figure 6: Identifying Immune System Correlates in SARS-CoV-2 positive and negative Patients Data 
A. Cell fraction histograms representing bin-wise mean of relative frequency (i.e., cell fraction) of each immune cell 
subtype for all patients in a given group, colored as described in Fig4A. B. Matrix of Spearman correlation coefficients 
between all subtype frequencies (out of major celltypes e.g. Neut ISG represents % out of all Neutrophils) obtained 
from scRNA-Seq versus protein analyte abundance in plasma as measured using Olink assay on a patient-by-patient 
basis excluding healthy controls. Patients for which data were unavailable were excluded from correlation analysis for 
each comparison. Variables on both axes were ordered via hierarchical clustering. ISG subtypes and protein levels 
strongly correlated with their frequency highlighted in brown. Subtypes and proteins strongly anti-correlated with ISG+ 
subtypes highlighted in red. (n=31 for all comparisons) * p<0.05, ** p<0.005, *** p<0.0005. 
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Supplementary Figure 7.  Quantification of Serum Staining and ISG Generation in the Presence of Patient Serum.  A. 
Gating strategy for PBMCs to identify different subpopulations. B.  Geometric MFI of serum staining on CD14+ 
monocytes treated with IFNa, quantifying data in Figure 5A.  C. Geometric MFI of serum staining of CD3+ and CD19+ 
lymphocytes, following treatment with IFNa, quantifying data in Figure 5A.  D.  Modulation of intermediate to classical 
CD14 monocytes transition by mild/moderate (orange) and severe (red) patient serum.  Each plot represents a single 
serum sample. Representative experiment from three independent trials and two different healthy PBMC donors.  E. 
Histograms CD3+ CD19+ lymphocytes from healthy donor cultured with IFNa and serum from heathy donor (blue), 
mild/moderate (orange) and severe (red) SARS-CoV-2 positive patients. Mild/Moderate (light yellow) or Severe (pink) 
sera were pre-treated with protein G/A before incubation with PBMC. Each plot represents a single serum sample. 
Representative experiment from two independent trials and two different healthy PBMC donors. F. Contour plots and 
histograms of CD14+ monocytes from healthy donor co-cultured with SARS-COV-2 virus for 48h at 0.1 (pink) and 1 (red) 
MOI. Differences in B. and C. were calculated using a two-way ANOVA test with multiple comparisons. * p.value < 0.05; 
** p.value < 0.01; *** p.value <0.001; **** p.value < 0.0001. ns, non-significant. 
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Material and Methods 

 

Patients, participants, severity score, and clinical data collection 	
Patients admitted to the Hospital of the University of California with known or presumptive 
COVID-19 were screened within 3 days of hospitalization. Patients, or a designated surrogate, 
provided informed consent to participate in the study. This study includes a subset of patient 
enrolled between April 8 and May 1 in the COMET (COVID-19 Multi-immunophenotyping projects 
for Effective Therapies; https://www.comet-study.org/) study at UCSF. COMET is a prospective 
study that aims to describe the relationship between specific immunologic assessments and the 
clinical courses of COVID-19 in hospitalized patients. Healthy donors (Ctrl) were adults with no 
prior diagnosis of or recent symptoms consistent with COVID-19.  This analysis includes samples 
from participants who provided informed consent directly, via a surrogate, or otherwise in 
accordance with protocols approved by the regional ethical research boards and the Declaration 
of Helsinki. For inpatients, clinical data were abstracted from the electronic medical record into 
standardized case report forms. We used both a severity score at the time of sampling and at the 
end of hospitalization (Fig S1A). In both cases, severity assessment was based on three main 
parameters: level of care, need for mechanical ventilation, and time under mechanical ventilation. 
Mild/moderate patients are floor/ICU patients who did not require mechanical ventilation during 
their time of hospitalization and spent no more than 1 day in ICU. Severe patients are patients 
who required intensive care and mechanical ventilation (typically 5 days or more). Therefore, our 
cohort is composed of 21 COVID-19 positive patients (11 mild/moderate and 10 severe), 11 
COVID-19 negative patient (6 mild/moderate and 5 severe), and 14 Healthy participants. 
Information on age, sex, type of infection, days of on onset, viral load, and CBC count are listed in 
Table S1. The study is approved by the Institutional Review board: IRB# 20-30497. 	
 
Isolation of blood cells and processing for scRNA-seq: 
ScRNA-seq was performed on fresh whole blood in order to preserve granulocytes. Briefly, 
peripheral blood was collected into EDTA tubes (BD, catalog no. 366643). Whole blood was 
prepared by treatment of 500µL of peripheral blood with RBC lysis buffer (Roche, 11-814-389-
001) according to manufacturer’s procedures. Cells were then counted and 15.000 cells per 
individual were directly loaded in the ChromiumTM Controller for partitioning single cells into 
nanoliter-scale Gel Bead-In-Emulsions (GEMs) following manufacturer’s procedures (10x 
genomics). Some samples were pooled together (at 15,000 cells/ sample) prior to GEM 
partitioning.  Single Cell 5’ reagent kit v5.1 was used for reverse transcription, cDNA amplification 
and library construction of the gene expression libraries (10x Genomics) following the detailed 
protocol provided by 10x Genomics. Libraries were sequenced on an Illumina NovaSeq6000 using 
28 cycles for R1 and 98 cycles for R2.  All samples were encapsulated, and cDNA was generated 
within 6 hours after blood draw. 
 
Bulk RNASeq library preparation for Genotyping: 
RNA was extracted from aliquots of 250K Peripheral Blood Mononuclear Cells (PBMCs) utilizing 
the ZYMO Research Quick RNA MagBead kit (R2133) on a Thermofisher KingFisher Flex system 
following manufacturer’s procedures. RNA integrity was inspected with Agilent Fragment 
Analyzer. Ribosomal and hemoglobin depleted total RNA-sequencing library were created using 
FastSelect (Qiagen cat#: 335377) and Tecan Universal Plus mRNA-Seq (0520-A01) with 
adaptations for automation of a Beckmen BioMek FXp system. Libraries were subsequently 
normalized and pooled for Illumina sequencing using a Labcyte Echo 525 system available at the 
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Center for Advanced Technology at UCSF. The pooled libraries were sequenced on an Illumina 
NovaSeq S4 flow cell lane with paired end 150bp reads. 
 
Computational Processing for Genotyping: 
Sequencing reads were aligned to the human reference genome and Ensembl annotation 
(GRCh38 genome build, Ensembl annotation version 95) using STAR v2.7.5c (PMID: 23104886) 
with the following parameters: --outFilterType BySJout --outFilterMismatchNoverLmax 0.04 --
outFilterMismatchNmax 999 --alignSJDBoverhangMin 1 --outFilterMultimapNmax 1 --
alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000. Duplicate reads were 
removed and read groups assigned by individual for variant calling using Picard Tools v2.23.3 
(http://broadinstitute.github.io/picard/). Nucleotide variants were identified from the resulting 
bam files using the Genome Analysis Tool Kit (GATK, v4.0.11.0) following the best practices for 
RNA-seq variant calling (PMID: 25431634; PMID: 21478889). This include splitting spliced reads, 
calling variants with HaplotypeCaller (added parameters: --dont-use-soft-clipped-bases -stand-
call-conf 20.0), and filtering variants with VariantFiltration (added parameters: -window 35 -
cluster 3 --filter-name FS -filter FS > 30.0 --filter-name QD -filter QD < 2.0). Variants were further 
filtered to include a list of high quality SNP for identification of the subject of origin of individual 
cells by removing all novel variants, maintaining only biallelic variants with MAF greater than 5%, 
a mix missing of one individual with a missing variant call at a specific site and requiring a 
minimum depth of two (parameters: --max-missing 1.0 --min-alleles 2 --max-alleles 2 --remove-
indels --snps snp.list.txt --min-meanDP 2 --maf 0.05 --recode --recode-INFO-all –out). 
 
Data pre-processing of 10x Genomics Chromium scRNA-seq data: 
Sequencer-obtained bcl files were demultiplexed into individual sample the mkfastqs command 
on the Cellranger 3.0.2 suite of tools (https://support.10xgenomics.com). Feature-barcode 
matrices were obtained for each sample by aligning the raw fastqs to GRCh38 reference genome 
(annotated with Ensembl v85) using the Cellranger count. Raw feature-barcode matrices were 
loaded into Seurat 3.1.5(2) and genes with fewer than 3 UMIs were dropped from the analyses. 
Matrices were further filtered to remove events with greater than 20% percent mitochondrial 
content, events with greater than 50% ribosomal content, or events with fewer than 100 total 
genes. The cell cycle state of each cell was assessed using a published set of genes associated with 
various stages of human mitosis (3). 
 
Inter-sample doublet detection 
Libraries containing samples pooled prior to loading were processed using Freemuxlet 
(https://github.com/statgen/popscle), the genotype-free version of Demuxlet(4), to identify 
clusters of cells belonging to the same patient via SNP concordance. Briefly, the aligned reads 
from Cellranger were filtered to retain reads overlapping a high-quality list of SNPs obtained from 
the 1000 Genomes Consortium (1KG)(5). Freemuxlet was run on this filtered bam using the 1KG 
vcf file as a reference, the input number of samples/pool as a guideline for clustering groups of 
cells by SNP concordance, and all other default parameters. Cells are classified as singlets arising 
from a single library, doublets arising from two or more libraries, or as ambiguous cells that cannot 
be accurately assigned to any existing cluster (due to a lack of sufficient genetic information). 
Clusters of cells belonging to a unique sample were mapped to patients using their individual 
Freemuxlet-generated genotype, and ground truth genotypes per patient identified via bulk 
RNASeq. The pairwise discordance between inferred and ground-truth genotypes was assessed 
using the bcftools gtcheck command(6).  Ambiguous, and doublet events were filtered from the 
major analysis (see platelet-first analysis). 
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Data quality control and Normalization: 
The filtered count matrices were normalized, and variance stabilized using negative binomial 
regression via the scTransform method offered by Seurat(7). The effects of mitochondrial content, 
ribosomal content, and cell cycle state were regressed out of the normalized data to prevent any 
confounding signal. The normalized matrices were reduced to a lower dimension using Principal 
Component Analyses (PCA) and the first 30 principal coordinates per sample were subjected to a 
non-linear dimensionality reduction using Uniform Manifold Approximation and Projection 
(UMAP). Clusters of cells sharing similar transcriptomic signal were identified using the Louvain 
algorithm, and clustering resolutions varied between 0. 6 and 1.2 based on the number and 
variety of cells obtained in the datasets. Clusters were loosely grouped into major cell types (T/NK, 
B/Plasma, mononuclear phagocytes, Neutrophil, Platelet, and Erythrocytes) using a curated list of 
5 genes per cell type (5-gene signature) and the Seurat AddModuleScore function. Briefly, genes 
in the library are binned into one of 12 bins based on average expression in the dataset. The 
average expression of the genes in each signature are compared to a background list of randomly 
selected from the bins and used to generate a score per cell for each signature.  
 
Intra-sample heterotypic doublet detection 
All libraries were further processed to identify heterotypic doublets arising from the 10X sample 
loading. Processed, annotated Seurat objects were processed using the DoubletFinder package 
(8). Briefly, the cells from the object are modified to generate artificial duplicates, and true 
doublets in the dataset are identified based on similarity to the artificial doublets in the modified 
gene space. The prior doublet rate per library was approximated using the information provided 
in the 10x knowledgebase (https://kb.10xgenomics.com/hc/en-us/articles/360001378811) and 
this was corrected to account for homotypic doublets using the per-cluster numbers in each 
dataset.  Heterotypic doublets were removed from the major analysis (see platelet-first analysis). 
 
Data integration and Batch correction: 
The individual processed objects per library were filtered to remove Erythrocyte contamination. 
The raw and log-normalized counts per library were then pruned to retain only genes shared by 
all libraries. Pruned counts matrices were merged into a single Seurat object and the batch (or 
library) of origin was stored in the metadata of the object. The log-normalized counts were 
reduced to a lower dimension using PCA and the individual libraries were aligned in the shared 
PCA space in a batch-aware manner (Each individual library was considered a batch) using the 
Harmony algorithm (9). The resulting Harmony components were used to generate a batch 
corrected UMAP, and to identify clusters of transcriptionally similar cells. Clusters were broadly 
labeled based on the 5-gene signature (Fig S1) using a modified, bootstrapped version of the 
Seurat AddModuleScore to account for the numerous sequencing batches in our dataset. The 
modified function ran the AddModuleScore on random subsets of the data (subsampling rate = 
0.6) 10 times and averaged the score to provide a stable score per signature. A Seurat object was 
generated for each broad cell type containing clusters scoring highly for that cell type.  Each broad 
cell-type object was subjected to the same harmony analysis to generate batch-aware log 
normalized counts that were used for visualization and subtype identification. To visualize the 
effect of harmonizing our single cell data, we identified the library diversity in the neighborhood 
of every cell on the plot.  The neighborhood of a cell is defined as the collection of n nearest 
neighbors in the UMAP space (where n = sqrt(total cells)), pruned to retain cells lying within the 
90th percentile of all calculated neighbor distances. The diversity is the set of all libraries 
represented within the neighborhood. 
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Differential expression tests and cluster marker genes, cluster annotation and volcano plot 
Differential gene expression (DGE) tests were performed on log-normalized gene counts using the 
Poisson test (with a latent batch variable to account for multiple library preparations) provided 
by the FindMarkers/FindAllMarkers functions in Seurat. Genes with > 0.35 log-fold changes, an 
adjusted p value of 0.05 (based on Bonferroni correction), at least 25% expressed in tested groups, 
were regarded as significantly differentially expressed genes (DEGs). Cluster marker genes were 
identified by applying the DE tests for upregulated genes between cells in one cluster to all other 
clusters in the dataset. Top ranked genes (by log-fold changes) from each cluster of interest were 
extracted for further illustration. The exact number and definition of samples used in the analysis 
are specified in the legend of Figure 1, 2 and 3 and summarized in Table S1. The neutrophils, 
mononuclear phagocytic cells, T cells, B cells and platelets subtypes were identified by comparing 
cluster marker genes with public sources referenced in the text.  The R package EnrichR were used 
to generate volcano plot from differential gene expression using FindMarkers function in Seurat. 
 
Platelet First scSeq Analysis 
To identify the differential coagulation of platelets, we reintroduced heterotypic doublets to each 
library and filtered them to extract cells expressing at least 1 UMI of PF4 or PPBP, both platelet-
specific marker genes. The raw and log-normalized counts per library were integrated using 
Harmony and processed as above. Broad cell types were identified using the score generated with 
the bootstrapped AddModuleScore and the per-sample rate of platelet aggregation with each cell 
types was inferred to be the fractions of cell counts in this dataset to the fractions of cell counts 
in the overall analysis. Significance testing was conducted using a non-parametric Kruskal-Wallis 
test with multiple comparisons. 
 
Monocle analysis 
Raw counts from the Individual cell-specific were used to create a monocle3 (10-12) cell_data_set 
object, and the batch-corrected PCA and UMAP embeddings were imported directly from the 
Seurat object. Each cell-specific trajectory was inferred by reverse embedding the UMAP 
coordinates using the DDRTree method. The root cell states for the trajectory in monocytes and 
neutrophils were chosen based on literature, and for platelet cell based on the signature list 
defined in Figure S1. Relative pseudotime was obtained through a linear transformation relative 
to the cells with the lowest and highest pseudotimes ( (1-min_pseudotime)/max_pseudotime ).  
 
Generation of gene expression scores 
ISG and Degranulation scores were generated by taking the mean of log-normalized expression 
for a particular set of genes related to the specific pathway or phenotype. The following gene lists 
were used to generate the scores-ISG: MT2A, ISG15, LY6E, IFIT1, IFIT2, IFIT3, IFITM1, IFITM3, 
IFI44L, IFI6, MX1, IFI27; Degranulation: 486 genes from Neutrophils degranulation GO term 
#GO:0043312. To visualize the distribution of these scores across cells, we binarized the 
distribution of the score at the 75th percentile and overlaid on the calculated UMAP coordinates. 
 
Correlation plots and heatmap visualization 
Correlation coefficients used in variable against variable comparisons were calculated using 
Spearman’s method to avoid assumption of linearity. Significance testing of correlation was 
performed with the following tests: Spearman’s for continuous v. continuous, Kruskal-Wallis or 
Wilcoxon rank sum test for categorical v. continuous depending on number of categories and 
Fisher’s exact for categorical v. categorical comparisons. Unless otherwise specified, variables on 
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both axes were hierarchically clustered based on the distance matrix computed from the 
correlation coefficient. 
 
Embedding a low-dimensional representation of patients using PhEMD: 
PhEMD was employed to generate a three-dimensional embedding of patients based on their 
immune cell profiles (13). Briefly, PhEMD first generates a reference map of cell subtypes, then 
uses Earth Mover’s Distance (EMD) to compute pairwise dissimilarities between patients 
(incorporating patient-to-patient differences in cell fractions of each cell subtype as well as 
intrinsic dissimilarities between subtypes based on the cell subtype reference map), and finally 
applies a dimensionality reduction technique to the patient-to-patient distance matrix to 
generate a final embedding of patients. The Seurat implementation of 3D Uniform Manifold 
Approximation and Projection (UMAP) was used to map the cell-subtype space using the Harmony 
batch-corrected components as input and a “min.dist” parameter of 0.4, and cell subtypes (i.e., 
clusters) were defined as described in the “Data quality control and Normalization” section of 
Methods (2, 9). Dissimilarity between each pair of cell subtypes was defined as the distance 
between the centroids (in UMAP space) of all cells assigned to the two respective subtypes. PHATE 
was applied to the EMD patient-to-patient distance matrix to generate the final 3D embedding of 
patients (14). 
 
Luminex Assay for Antibody Titer 
Highly immunogenic linear regions of the SARS-CoV-2 proteome were isolated by ReScan and 
conjugated to Luminex beads as previously described (15). Briefly, high concentration T7 phage 
stocks displaying immunodominant epitopes of the S, N and ORF3a proteins were propagated and 
grown to high (>1011 PFU/mL) titer then were each conjugated to unique bead IDs according to 
manufacturer’s Antibody Coupling Kit instructions (Luminex). Whole N protein (RayBiotech) beads 
were conjugated similarly using manufacturer instructions with 5µg of protein per 1 million beads. 
For other whole protein Luminex-based beads, MagPlex-Avidin Microspheres (Luminex) were 
coated with either the S protein RBD (residues 328-533) or the trimeric S protein ectodomain 
(residues 1-1213). All beads were blocked overnight before use and pooled on day of use. 2000-
2500 beads per ID were pooled per incubation with patient serum at a final dilution of 1:500 for 
1 hour, washed, then stained with an anti-IgG pre-conjugated to phycoerythrin (Thermo Scientific, 
#12-4998-82) for 30 minutes at 1:2000. Primary incubations were done in PBST supplemented 
with 2% nonfat milk and secondary incubations were done in PBST. Beads were processed in 96 
well format and analyzed on a Luminex LX 200 cytometer. Median Fluorescence Intensity from 
each set of beads within each bead ID were retrieved directly from the LX200 and log transformed 
after normalizing to the mean signal across two intra-assay negative controls (glial fibrillary acidic 
protein (GFAP) and Tubulin phage peptide conjugated beads).  
 
Luminex Assay for Serum Cytokines 
Soluble proteins were quantified in EDTA anticoagulated plasma using the Luminex® multiplex 
platform (Luminex, Austin TX) with custom-developed reagents (R&D Systems, Minneapolis, MN), 
as described in detail ((16) or single-plex ELISA (R&D Systems, Minneapolis, MN). Analytes 
quantified using the Luminex® multiplex platform were read on the MAGPIX® instrument and raw 
data were analyzed using the xPONENT® software. Analytes quantified using single-plex ELISA 
were read using optical density. Values outside the lower limit of quantification were assigned a 
value of 1/3 of the lower limit of the standard curve for analytes quantified by Luminex and 1/2 of 
the lower limit of the standard curve for analytes quantified by ELISA. 
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O-link Assay for Serum Factors 
Circulating proteins were measured in plasma using the multiplexed Proximity Extension Assay 
(PEA) from Olink Proteomics AB (Uppsala, Sweden). 20 μL each of plasma collected from the 
COMET patient cohort (21 COVID-19 positive, 13 COVID-19 negative, and 14 healthy individuals) 
were analyzed using the Olink® Target 96 Inflammation panel, which is a set of 92 inflammation-
related protein biomarkers. Plasma for all samples regardless of COVID-19 status were inactivated 
using a final concentration of 1% (v/v) Triton-X-100 solution over 2 hours. Data from the analyzed 
protein biomarkers is presented as Normalized Protein eXpression (NPX) values, an arbitrary unit 
on a log2 scale. 
 
ELISA Method for Serum IFNa Measure 
IFN- α levels were quantified from serum by an ELISA (catalog numbers 41115 for IFN-α; PBL Assay 
Science). ELISA was performed according to the manufacturer’s instructions with minor 
modifications. Briefly, an 8- point standard curve was prepared and diluted in sample buffer. 
Serum was also diluted by adding 80-90 ul serum to 30 ul sample buffer (depending on availability 
of serum). Samples were prepared in duplicates, whereas standards were prepared in triplicates. 
Initial incubation was performed for 20 hours at 4C. Antibody was added and incubated at 4C 
overnight. HRP was added and incubated 1hr at room temperature, TMB substrate was added for 
30min and incubated in the dark at room temp, stop solution was added and samples were read 
using a SpectraMax M2 Microplate Reader (Molecular Devices) at 450nm. For analysis, a 4-
parameter logistic fit was applied to OD values of the standards after background subtraction. 
Samples with ODs below blank samples were considered as 0 pg/ml IFN- α. 
 
PBMC co-culture experiment with patient serum and flow cytometry analysis 
PBMCs were isolated from EDTA-anticoagulated whole blood from healthy donors using 
Polymorphprep (Alere Technologies), and resuspended in culture medium (RPMI 1640 + 10% FBS). 
For detection of neutralization of interferon stimulation, autologous serum or clinical study 
participant sera (10 µl) were plated with IFNα (Stemcell IFN alpha-2A; final concentration of 1 
pg/ml) in a total volume of 100µl before addition of 4×105 PBMCs. After incubation for 24 hours, 
PBMCs were assayed for IFNα-induced IFITM3 upregulation and CD14/CD16 levels and fractions 
by flow cytometry. After surface staining and addition of fixable live/dead violet dye 
(ThermoFisher; #L34955), intracellular detection of IFITM3 was done using the eBioscience Foxp3 
/ Transcription Factor Staining Buffer Set (ThermoFisher; #00-5523-00) and following the 
manufacturer’s instructions. For autoantibody assays, PBMCs were cultured with media or 1-100 
pg/ml IFNα for 38-46 hours. Samples were harvested and unconjugated AffiniPure Fab Fragment 
Goat anti-human IgG (H+L) (Jackson Immunoresearch; #109-007-003) and Human TruStain FcX 
block (BioLegend; #422302) were used to block pre-bound antibodies and Fc receptors. After 
washing with fluorescence-activated cell sorting (FACS) buffer (2% fetal bovine serum, 1 mM 
EDTA, PBS), PBMCs were then stained for surface markers 30 min on ice. After staining incubation, 
cells were washed 3x times with FACS buffer (1500 rpm, 5 min, 4°C) and incubated with 5µl 
autologous or clinical study participant sera for 90 min on ice. After washing the cells with FACS 
buffer, cell-bound antibodies were detected using an AffiniPure Donkey anti-human IgG-Alexa 
Fluor 647 antibody (Jackson Immunoresearch; #709-605-149), which was incubated with the cells 
for 30 min on ice. Cells were washed again and resuspended in 1 µg/ml DAPI solution for live/dead 
discrimination. The following antibodies were used for flow cytometric analysis: anti-human CD3-
BB700 (clone SK7; BD Biosciences; #566575), anti-human CD14-BV711 (clone MSE2; BioLegend; 
#301838), anti-human CD15-BV786 (clone W6D3; BD Biosciences; #741013), anti-human CD16-
BV605 (clone 3G8; BioLegend; #302040), anti-human CD19-BB700 (clone SJ25C1; BD Biosciences; 
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566396), anti-human CD45-APCeFluor780 (clone HI30; ThermoFisher; 47-0459-42), anti-human 
IFITM3-AlexaFluor 647 (clone EPR5242; Abcam; ab198573). 
 
Bead ELISA: 
107 5um Sulfate latex polystyrene beads (Thermo Fisher) were resuspended in 1ml of PBS to which 
1ug of proteins (BSA, huIFNa (Stemcell IFN alpha-2A) were added to bind by passive absorption 
over 1 hr on ice.  Beads were washed 1x in PBS and blocked with 1ml of blocking buffer (PBS 
containing 1mM EDTA and 2%FCS) for one hour.  Beads were spun and resuspended in 1ml of 
blocking buffer and 10ul (105 beads) were moved to individual tubes to which 5ul of sera was 
added followed by incubation for 1hr on ice). These were washed, resuspended in 50ul of blocking 
buffer containing Goat anti-human IgG-Alexa Fluor 647 (Jackson Immunoresearch) and incubated 
for 1hr on ice followed by a final wash and analysis by flow cytometry. 
 
SARS-CoV-2 detection by PCR 
PCR testing for SARS-CoV-2 was carried out on respiratory specimens mixed 1:1 in DNA/RNA 
Shield (Zymo Inc) using an in-house Clinical Laboratory Improvement Amendments 
(CLIA) validated assay at the UCSF Clinical Microbiology Laboratory. PCR primers targeted the 
SARS-CoV-2 envelope (E) and RNA-dependent RNA polymerase (RdRp) genes plus human RNAse 
P as a positive control. 
 
SARS-CoV-2 infection of PMBC 
SARS-CoV-2 isolate USA-WA1/2020 was provided by Dr. Melanie Ott and propagated in Vero E6 
(ATCC CRL-1586) cells in Dulbecco's Modified Eagle Medium (UCSF Cell Culture Facility) 
supplemented with 10% FBS. Vero E6 cells were infected with the SARS-CoV-2 virus for 72h at 37C 
and 5% CO2. The supernatant was collected and viral titer was quantified using a plaque assay in 
Vero E6 cells. All work was done under BSL3 conditions. PBMC were infected with SARS-CoV-2 
virus at a multiplicity of infection (MOI) 0.1 or 1 for 72 hours. Cells were then harvested and 
stained with fixable Live/Dead Zombie NIR (Biolegend) in PBS followed by fixation with 4% 
paraformaldehyde for 1 hour. Intracellular staining to Spike (SARS-CoV-2 Spike S1 Antibody, 
Rabbit mAb (SinoBiological) and IFITM3 was subsequently performed using eBioscience 
Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific) followed by surface 
antigen staining. 
 
Statistical Analysis and Data visualization 
Statistical analyses were performed using GraphPad prism or the R software package. Null 
hypotheses between two groups were tested using the non-parametric Mann-Whitney test to 
account for non-normal distribution of the data. Likewise, for multiple groups, comparisons were 
made by two-way ANOVA or non-parametric Kruskal–Wallis test followed by multiple 
comparisons. The specific statistical tests and their resultant significance levels are also noted in 
each figure legend. The R packages Seurat, ggplot2 (version 3.1.0) (Wickham, 2016) GraphPad 
Prism and Adobe Illustrator were used to generate figures.  
 
Data Resources and Code Sharing:  
Raw Gene expression matrices will be available on GEO at the time of publication. Scripts used to 
process all data will be shared on Github along with relevant clinical information for each patient. 



Combes et al. 

Systemic Immune Progression In COVID-19 

References 
 

1. D. Bongiovanni et al., Transcriptome Analysis of Reticulated Platelets Reveals a 
Prothrombotic Profile. Thrombosis and haemostasis 119, 1795-1806 (2019). 

2. T. Stuart et al., Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 
e1821 (2019). 

3. D. Dominguez et al., A high-resolution transcriptome map of cell cycle reveals novel 
connections between periodic genes and cancer. Cell research 26, 946-962 (2016). 

4. H. M. Kang et al., Multiplexed droplet single-cell RNA-sequencing using natural genetic 
variation. Nat Biotechnol 36, 89-94 (2018). 

5. C. Genomes Project et al., A global reference for human genetic variation. Nature 526, 
68-74 (2015). 

6. H. Li, A statistical framework for SNP calling, mutation discovery, association mapping 
and population genetical parameter estimation from sequencing data. Bioinformatics 
27, 2987-2993 (2011). 

7. C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq 
data using regularized negative binomial regression. Genome biology 20, 296 (2019). 

8. C. S. McGinnis, L. M. Murrow, Z. J. Gartner, DoubletFinder: Doublet Detection in Single-
Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337 e324 
(2019). 

9. I. Korsunsky et al., Fast, sensitive and accurate integration of single-cell data with 
Harmony. Nat Methods 16, 1289-1296 (2019). 

10. X. Qiu et al., Reversed graph embedding resolves complex single-cell trajectories. Nat 
Methods 14, 979-982 (2017). 

11. X. Qiu et al., Single-cell mRNA quantification and differential analysis with Census. Nat 
Methods 14, 309-315 (2017). 

12. C. Trapnell et al., The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386 (2014). 

13. W. S. Chen et al., Uncovering axes of variation among single-cell cancer specimens. Nat 
Methods 17, 302-310 (2020). 

14. K. R. Moon et al., Visualizing structure and transitions in high-dimensional biological 
data. Nat Biotechnol 37, 1482-1492 (2019). 

15. C. R. Zamecnik et al., ReScan, a Multiplex Diagnostic Pipeline, Pans Human Sera for 
SARS-CoV-2 Antigens. medRxiv, 2020.2005.2011.20092528 (2020). 

16. A. Leligdowicz et al., Validation of two multiplex platforms to quantify circulating 
markers of inflammation and endothelial injury in severe infection. PLoS One 12, 
e0175130 (2017). 

 

  



Combes et al. 

Systemic Immune Progression In COVID-19 

Supplementary Table of Authors from the UCSF COMET Consortium 

Name Institution 
Cathy Cai Department of Pathology and ImmunoX, UCSF, San Francisco, California, 

USA. 
Jenny Zhan Department of Pathology and ImmunoX, UCSF, San Francisco, California, 

USA. 
Bushra Samad Department of Pathology and ImmunoX, UCSF San Francisco, California, 

USA. 
Kwok W. Im Department of Pathology and ImmunoX, UCSF San Francisco, California, 

USA. 
Nina K. Serwas 
 

Department of Pathology and ImmunoX, UCSF San Francisco, California, 
USA. 

Suzanna Chak Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
UCSF, San Francisco, California, USA. 

Rajani Ghale  Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
UCSF, San Francisco, California, USA. 

Jeremy Giberson Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
Zuckerberg San Francisco General Hospital and Trauma Center, UCSF, San 
Francisco, California, USA. 

Ana Gonzalez Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
Zuckerberg San Francisco General Hospital and Trauma Center, UCSF, San 
Francisco, California, USA. 

Alejandra Jauregui Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
UCSF, San Francisco, California, USA. 

Deanna Lee Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
Zuckerberg San Francisco General Hospital and Trauma Center, 
Cardiovascular Research Institute, UCSF, San Francisco, CA, USA. 

Viet Nguyen Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
Zuckerberg San Francisco General Hospital and Trauma Center, 
Cardiovascular Research Institute, UCSF, San Francisco, CA, USA. 

Kimberly Yee Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
University of California San Francisco, Cardiovascular Research Institute, 
UCSF, San Francisco, CA, USA. 

Yumiko Abe-Jones Division of Hospital Medicine, UCSF, San Francisco, California, USA. 
Logan Pierce Division of Hospital Medicine, UCSF, San Francisco, California, USA. 
Priya Prasad Division of Hospital Medicine, UCSF, San Francisco, California, USA. 
Pratik Sinha Division of Pulmonary and Critical Care Medicine, Department of Medicine, 

UCSF, San Francisco, California, USA. 
Alexander Beagle Department of Medicine, UCSF San Francisco, California, USA 
Tasha Lea Department of Pathology, UCSF San Francisco, California, USA. 
Armond Esmalii Division of Hospital Medicine, University of California, San Francisco, CA, 

USA. 
Austin Sigman Division of Pulmonary and Critical Care Medicine, Department of 

Medicine, University of California San Francisco, San Francisco, 
California, USA. 

Gabriel M Ortiz Department of Medicine, Zuckerberg San Francisco General Hospital 
and Trauma Center, University of California San Francisco 

Kattie Raffel Division of Hospital Medicine, University of California, San 
Francisco, CA, USA. 



Combes et al. 

Systemic Immune Progression In COVID-19 

Chayse Jones Division of Pulmonary and Critical Care Medicine, Department of 
Medicine, University of California San Francisco, San Francisco, 
California, USA. 

 
 
Kathleen Liu  

 
Division of Nephrology, Department of Medicine, University of 
California at San Francisco School of Medicine, San Francisco, CA, 
United States 
Division of Critical Care Medicine, Department of Anesthesia, 
University of California at San Francisco School of Medicine, San 
Francisco, CA, United States. 
 

Walter Eckalbar Division of Pulmonary and Critical Care Medicine, Department of Medicine, 
Cardiovascular Research Institute and CoLabs, UCSF, San Francisco, CA, 
USA. 

 


