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The circadian rhythm is an endogenous clock system that coordinates and

optimizes various physiological and pathophysiological processes, which

accord with the master and the peripheral clock. Increasing evidence

indicates that endogenous circadian rhythm disruption is involved in the

lesion volume and recovery of ischemic stroke. As a critical recovery

mechanism in post-stroke, angiogenesis reestablishes the regional blood

supply and enhances cognitive and behavioral abilities, which is mainly

composed of the following processes: endothelial cell proliferation,

migration, and pericyte recruitment. The available evidence revealed that the

circadian governs many aspects of angiogenesis. This study reviews the

mechanism by which circadian rhythms regulate the process of

angiogenesis and its contribution to functional recovery in post-stroke at

the aspects of the molecular level. A comprehensive understanding of the

circadian clock regulating angiogenesis in post-stroke is expected to develop

new strategies for the treatment of cerebral infarction.
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Introduction

Stroke is the second leading cause of death worldwide, and with an annual incidence

of more than two million, it is the leading cause of death in China (Zhou et al., 2016; GBD

2017 DALYs, and HALE Collaborators, 2018). The incidence of stroke in China has

dramatically increased over the last decade; moreover, stroke patients suffer long-term

cognitive and behavioral deficits due to a lack of therapeutics focused on neural recovery

post-stroke (Stubblefield and Lechleiter, 2019). Although the current intravenous (IV)

recombinant tissue plasminogen activator (rt-PA) and endovascular mechanical

thrombectomy have a major impact on the outcome of recanalization of intracranial

vascular occlusions, the narrow therapeutic window and risk of hemorrhage result in less

than 22% of patients with ischemic stroke using rt-PA, and the majority of patients still
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have some degree of disability, highlighting the need for new

targets and therapies to improve neuro recovery and

rehabilitation after ischemic stroke (Fraser et al., 2017;

Barthels and Das, 2020; Marko et al., 2020).

Currently, several promising treatments have been developed

in the preclinical stage, such as normobaric hyperoxia, free

radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the

N-methyl-D-aspartic acid (NMDA) antagonist MK801, mainly

by protect neural cells primarily by preventing excitotoxicity,

oxidative stress, inflammation, or apoptosis in rodent models of

cerebral ischemia (Deng et al., 2018). However, these

experimental designs failed in large clinical trials, which may

not have taken into account two main factors, one is that current

treatments focus on neuroprotection rather than including

supportive processes (Moskowitz, 2010;Chellappa et al., 2020),

and the other is that endogenous circadian cyclicity is not

considered in clinical translational studies. Promoting

angiogenesis and subsequent increased cerebral blood flow

have been confirmed to be supportive strategies for ischemic

stroke (Kanazawa et al., 2019). The collateral circulation

reestablished by angiogenesis partially determines the recovery

of cerebral blood supply, regeneration of neurons, and

reconstruction of synaptic connections between neural cells;

all of that affect the degree of functional recovery of patients

(Ergul et al., 2012; Ma et al., 2021). Emerging evidence suggests

that angiogenesis in the penumbra and surrounding areas is a

reparative process that correlates positively with the survival rate

of ischemic stroke patients (Arenillas et al., 2007; Yin et al., 2015;

Heydari et al., 2020).

More than this, endogenous circadian cyclicity determined

the outcome of clinical translation, and circadian biology affects

the mechanism of disease and response to therapies (Cederroth

et al., 2019; Logan and McClung, 2019). In the rodent ischemic

stroke model, neuroprotective strategies, including normobaric

hyperoxia, αPBN, and MK801, were administered during the

inactive (ZT3-9) and active (ZT15-21) phases, respectively;

inactive phase administration of neuroprotective approaches is

more effective and preserves more penumbra zone (Esposito

et al., 2020). Environmental circadian disruption (ECD), induced

by 6-h phase advances of the light cycle each week for 6 weeks,

was shown to aggravate the stroke severity in the cerebral

infarction rat model, exhibiting greater infarct size and a more

pronounced inflammatory response (Ramsey et al., 2020).

The circadian clock, dominated by the mammalian

endogenous circadian system, is a comprehensive regulatory

system that controls the organism’s wake–sleep cycle, body

temperature, hormone secretion, etc., and plays a critical role

in metabolic regulation. In recent years, the effects of the

circadian clock on stroke and angiogenesis have been

extensively studied. In a clinical study of 55 stroke patients,

the result showed that core clock gene Bmal1 methylation

induced by PM2.5 exposure was negatively associated with the

National Institutes of Health Stroke Scale (NIHSS) score

(Cantone et al., 2020). More than this, Bmal1 contributes to

revascularization after ischemic injury, Bmal1−/− mice displayed

an impaired angiogenesis ability after ischemic injury, anti-

CD31-positive capillary density and VEGF protein levels

arereduced in Bmal1−/− mice (Xu et al., 2021). Even so, the

exact mechanism of the circadian in angiogenesis after

ischemic stroke remains unclear. This review focusses on

introducing the potential mechanisms underlying the role of

circadian rhythms in angiogenesis, and vascular remodeling and

neurological outcome post-stroke, to provide a reference for

investigations in related fields.

Composition of the circadian clock in
mammals

The rotation of the Earth around the axis creates an inherent

dynamic ecosystem characterized by circadian rhythmic changes

according to a periodic light–dark cycle of approximately 24 h.

Although light provides the energy required for photosynthesis,

the light–dark cycle radiation and temperature oscillations

exerted by light impose a considerable amount of evolutionary

pressure on photosensitive species (Rosbash, 2009), resulting in a

large number of species completing life activities according to the

circadian rhythm. Called “rhythms around (Circa-) a day

(-Diem)” in Latin, this phenomenon is evidenced by the

sleep–wake cycles of mammals, hormone levels, body

temperature, heartbeat, and blood pressure (Honma, 2013;

Raghow, 2018; Foster, 2020; Rhoads et al., 2020; Figure 1).

Konopka and Benzer (1971) discovered the genetic basis of

rhythmic motor activity in Drosophila. The first mammalian

circadian gene, PERIOD, was cloned in 1984, by Jeffrey Hall,

Michael Rosbash, and Michael Young (Bargiello et al., 1984;

Bargiello and Young, 1984; Reddy et al., 1984; Zehring et al.,

1984), for which they were awarded the Nobel Prize in 2017.

Subsequently, research on the molecular mechanism of

mammalian circadian rhythms has revealed many additional

genes that belong to the clock core loop (van der Horst et al.,

1999; Bae et al., 2001), which promotes the study of circadian

rhythms in the behavioral, physiological, anatomical, and

molecular levels.

Circadian rhythms are influenced by photoperiod, and

regulate the complicated pathophysiological processes through

positive and negative feedback loops, which in turn are controlled

by the central pacemaker in the suprachiasmatic nucleus (SCN)

(Walker et al., 2020). The SCN receives nerve impulses

conducted by intrinsically photosensitive retinal ganglion cells

(ipRGCs) through the monosynaptic pathway when exposed to

light on the activable spectrum (Bedrosian and Nelson, 2017).

Interlocking transcription–translation feedback loops (TTFLs)

are the foundation of the molecular circadian clock in mammals,

which take approximately 24 h to be completed. A set of

interlocked core clock genes and their protein products were
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involved in circadian biology via TTFLs, including Brain and

muscle aryl hydrocarbon receptor nuclear translocator-like

protein 1 (Bmal1, also known as Arntl), Circadian locomotor

output cycle kaput (Clock), Cryptochrome family (Cry1 and

Cry2), and Period family (Per1, Per2, and Per3) (Takahashi,

2017; Begemann et al., 2020).

Clock and Bmal1 heterodimerize transcriptional activator

complexes to rhythmically activate downstream target genes

containing e/e- box elements in their promoter and/or

enhancer regions (De Nobrega and Lyons, 2020). The first

main loop includes members of the mammalian Per and Cry

families. At the early stages of the cycle, three Per and two Cry

heterodimerize form a large nuclear complex in the cytoplasm

(Brown et al., 2005), translocate to the nucleus upon

phosphorylation by casein kinase I (CKI ε/δ) (Lee et al., 2011;

Aryal et al., 2017), combined with the CLOCK-BMAL1

heterodimers at the promoter regions of Per and Cry (Duong

et al., 2011), and form quaternary complexes that block the

transcriptional processes of Bmal1-target genes, including their

own (Kim and Lazar, 2020). Then, the Per and Cry protein levels

in the nucleus decrease, the transcriptional inhibition of CLOCK-

BMAL1 is relieved, and CLOCK-BMAL1 mediated transcription

resume, thus allowing a new circadian cycle to begin (Cox and

Takahashi, 2019).

In addition, the Per and Cry genes, the nuclear receptor (NR)

Reverbs together with retinoid-related orphan receptor (ROR)

subfamily forms a second loop that ensures the rhythmic

expression of Bmal1 (Patke et al., 2020). Both classes of

receptors have been confirmed to regulate the

Bmal1 expression (Burris, 2008): RORα/β activates the

transcription of Bmal1 (Sato et al., 2004), whereas Rev-erbα/β
suppresses its transcription (Preitner et al., 2002; Guillaumond

et al., 2005; Wang et al., 2020). Reverbα/β and RORα/β/γ
competitively bind to Reverb–ROR response elements in the

FIGURE 1
Master circadian clock and peripheral clock. Light signals the master clock, by stimulating the circadian pacemaker, SCN, which governs the
peripheral clock. On the other hand, arousal stimulation coordinates with the central clock in regulating the physiological processes of human
beings.
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promoter and enhancer regions of target genes, including Bmal1,

and inhibit or activate their transcription, respectively (Ueda

et al., 2002). The third loop consists of the proline and amino

acid-rich leucine zipper (PAR-bZIP), DBP (D-binding protein),

TEF (thyrotroph embryonic factor), HLF (hepatic leukemic

factor), and NFIL3/E4BP4 (nuclear factor, interleukin-3

regulated, E4 promoter binding factor 4) (Drolet et al., 1991;

Fonjallaz et al., 1996; Takahashi, 2017; Kim and Lazar, 2020).

Clock-Bmal1 heterodimerizes to regulate Reverbα/β, which

rhythmically represses the transcription of NFIL3. NFIL3 in

turn represses PAR-bZIP and DBP to regulate the rhythm of

the ROR nuclear receptors (Mitsui et al., 2001; Gachon et al.,

2004). The remaining factors can recognize and compete for

D-box motifs on promoters and enhancers, thus activating

transcription in a redundant manner (Fonjallaz et al., 1996;

Gachon et al., 2004, 2006). Therefore, this cascade coordinates

the interaction between the positive and negative regulation of

RORE and Reverb, and shapes the oscillating expression of

Bmal1 (Zhang and Heaney, 2020). An increasing body of

evidence has demonstrated that circadian rhythms play pivotal

roles in diverse physiological and pathological processes,

including the cardiovascular system, energy metabolism,

immunity, hormone secretion, and reproduction (Panda, 2016;

Pilorz et al., 2018; Krueger et al., 2020).

Circadian system and stroke

Circadian system disruption and
desynchronization contribute to stroke

The circadian system is involved in the physiological and

pathophysiological processes of the human body. It is now

known that the incidence of myocardial infarction and

ischemic stroke occurs significantly more often in the

morning, while respiratory and other inflammatory diseases

tend to become exacerbated at night (Paschos and FitzGerald,

2010; Tsimakouridze et al., 2015). The influence of circadian

rhythms on stroke is first manifested in the difference in stroke

onset time: the incidence of stroke increases significantly between

6 a.m. and 12 p.m., and the frequency of onset of hemispheric

stroke was significantly (p = 0.0001) higher between 6:01 a.m. and

12:00 p.m. (56.1%) than between 12:01 and 6 p.m. (20.2%), 6:

01 p.m. and 12:00 a.m. (8.2%), and 12:01 and 6 a.m. (15.5%)

(Chaturvedi et al., 1999; Ripamonti et al., 2017; Fodor et al.,

2021). With the deepening of research, the environmental

circadian disruption (ECD) model, induced by 6-h phase

advances of the light cycle each week for 6 weeks, is widely

used in the research of circadian rhythms (Sellix et al., 2012; Hill

et al., 2021). Circadian clock dislocation induced by ECD has

confirmed increased stroke severity in rats with cerebral

infarction; ECD intervention group showed greater infarct size

and a more pronounced inflammatory response (Ramsey et al.,

2020). Circadian disruption induced by a genetic mutation also

caused severe cardiovascular dysfunction (Chellappa et al., 2019),

and mutations of core clock genes (i.e., Bmal1, Clock, and Npas2)

could decrease mean blood pressure and disrupt

sympathoadrenal responses (norepinephrine and epinephrine)

to stress, which contribute to the incidence of stroke (Curtis et al.,

2007).

The core clock genes widely distributed across the brain affect

most fundamental physiological processes, including the trigger

factors of stroke, such as arterial blood pressure, heart rate,

coagulation balance, and other rhythmic events (Li et al.,

2013; Fodor et al., 2021). In recent years, with the increasing

application of ambulatory blood pressure monitoring (ABPM) in

stroke research, more and more evidence indicates that circadian

blood pressure is closely related to the incidence of stroke, an

especially circadian rhythm disturbance of blood pressure as an

independent risk factor for stroke (Pierdomenico et al., 2016; Cai

et al., 2017). Such phenotypes referred to as “non-dipper” (failure

to downregulate BP in the nocturnal phase) or “super-dipper”

(exacerbated hypotension during the nocturnal phase) are both

known as the individual risks of stroke morbidity and mortality

via the hemodynamic mechanism and cerebral hypoperfusion

(Smolensky et al., 2007; Verdecchia et al., 2012). Circadian clock

gene mutant mice were used in further study; deletion of

Bmal1 leads to the super-dipper phenotype in the nocturnal

phase, by impairing the transcriptional level of angiotensinogen

(Agt), which plays a critical role in vasoconstriction (Chang et al.,

2018).

In addition, diurnal changes were also observed in

coagulation and the fibrinolytic systems, which are closely

related to morbidity and severity degree of ischemic stroke

(Wang et al., 2018). During the morning hours of the high

incidence of stroke, due to the effects of circadian rhythms, the

human body is in a prothrombotic state of hypo-fibrinolysis and

hyper-coagulation (West et al., 2021). Furthermore, the loss of

circadian fluctuations in euglobulin clot lysis time (ELT) was

observed in Clock mutant and Cry1/Cry2 double knockout

(Cry1/2-deficient) mice (Ohkura et al., 2006). ELT is inversely

proportional to fibrinolytic activity, with ELT in wild-type mice

showing a circadian change in ELT that peaks at 21:00 (inactive

phase). The Clock and Cry mutant mice showed diametrically

opposite results: the ELT of the Clock mutant was consistently

decreased, whereas the ELT of the Cry1/2-deficient mice

increased significantly and did not differ between 9:00 and 21:

00 (inactive phase and active phase) (Ohkura et al., 2006). A

continuous reduction of clot lysis time of euglobulin was reported

in Clock deficient mice, while a significantly increased level was

detected in Cry1/Cry2 mutant mice, following the loss of

circadian rhythm. Bmal1 deficiency, manifested in a

hypercoagulable state, increases arterial and venous

thrombosis, resulting in endothelial dysfunction (Hemmeryckx

et al., 2019). In addition, the disruption of circadian rhythms in

the liver and plasma plasminogen activator inhibitor-1 (PAI-1)
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was observed in Bmal1−/− mice, as no significant difference was

observed in the expression of factor (F)VII, protein S, and anti-

thrombin, and PAI-1 at both zeitgeber time (ZT)2 and ZT14

(Hemmeryckx et al., 2019). Global Bmal1 knockout mice showed

larger areas of pathological remodeling and thrombosis in

chronically reduced blood flow than WT mice (Anea et al.,

2009). These findings suggest that circadian biology influences

blood pressure and coagulation balance; once the circadian

system is dislocated, the rhythm fluctuations of blood and

coagulation disappear, which become a potential factor for the

incidence of stroke.

Stroke induces circadian disruption

As previously described, internal circadian dysregulation

may contribute to the incidence of stroke; conversely, the

stroke itself can lead to the desynchronization of endogenous

circadian rhythms by directly affecting the SCN, or by disrupting

the clock mechanisms of neurons, glia, and endothelial cells

(Kostenko and Petrova, 2018; Fodor et al., 2021). Clinically,

strokes are positively related to anxiety-depressive and

affective disorders, and are accompanied by a high frequency

of sleep disorders, and desynchronization in daily curves of the

heart rate (HR) and blood pressure (BP) (Jain et al., 2004;

Hidehiro et al., 2007; Kostenko and Petrova, 2018). A

2004 study found that diurnal blood pressure changes were

canceled in most acute stroke patients, whose blood pressure

typically dropped by at least 10% at night (Jain et al., 2004). In

addition, ischemia injury produces a phase advance of

Per1 expression (Karmarkar and Tischkau, 2013) and alters

the rhythm of melatonin secretion in the pineal gland, thereby

regulating the expression of Bmal1, both of which are critical for

cell survival in neuronal ischemia (Eckle et al., 2012; Beker et al.,

2019).

Taken together, these results suggest that the circadian

system is involved in vascular function and regulates the

expression of key factors in the hemostatic and fibrinolytic

system, leading to an increased risk of non-dipper blood

pressure and prethrombotic phenotype, thereby increasing the

risk of stroke events. Intriguingly, the occurrence of cerebral

infarction promotes the desynchronization of endogenous

biorhythms and disrupts the expression pattern of clock

genes, suggesting that intervention of the circadian system,

FIGURE 2
Processes of angiogenesis in post-stroke. Numerous angiogenic inducer factors including VEGF, PDGF, and b-FGF are involved in this process
as proliferation,migration, lumen formation, and recruitment of pericyte; new blood vessels are formed gradually based on the original blood vessels.
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such as environmental modifications, chronotherapy, and

targeting the clock genes may be a potential target for

treatment after cerebral infarction.

Angiogenesis and stroke

Angiogenesis is critical for the recovery
process of ischemic stroke

The cerebral blood flow decreases below the critical level after

cerebral artery occlusion, resulting in neuronal cell death and

brain infarction, which leads to neuronal electrical activity

cessation and the development of functional deficit (Astrup

et al., 1981; Campbell and Khatri, 2020). Thus, the re-

establishment of a functional cerebral microvascular network

plays a far more important role in regional blood supply and

stroke recovery (Yin et al., 2015). The majority of vessels are in a

resting state under normal physiological conditions and induce

angiogenesis after ischemic cerebral stroke in humans (Marti

et al., 2000; Hayashi et al., 2003). Angiogenesis is the formation of

a new micro-vessel network that branches off from pre-existing

ones (Carmeliet and Jain, 2011; Ruan et al., 2015), which supplies

oxygen and nutrients to the affected areas that occur in the

boundary zone (Beck and Plate, 2009). Importantly, a high

degree of neovascular function facilitates neurorehabilitation

and functional recovery to some extent (Slevin et al., 2006;

Arenillas et al., 2007; Chen et al., 2018; Kanazawa et al.,

2019). Therefore, promoting post-ischemic angiogenesis is a

key conceptual target for the treatment of ischemic cerebral

stroke in clinical practice.

Angiogenesis after cerebral infarction is
regulated by considerable factors

The angiogenesis process in humans occurs 3–4 days

following ischemic injury and is complexly regulated by

angiogenic growth factors and inhibitors that promote and

induce endothelial cell migration and proliferation (Krupinski

et al., 1994). Numerous pro-angiogenic factors are involved in the

angiogenesis process, including vascular endothelial growth

factor (VEGF) (Issa et al., 1999; Sun et al., 2003; Chan et al.,

2020), basic fibroblast growth factor (bFGF) (Issa et al., 2005;

Kigel et al., 2011), platelet-derived growth factor (PDGF)

(Renner et al., 2003; Clarke, 2020), transforming growth

factor-beta (TGFβ) (Mahmoud et al., 2011; Jarad et al., 2017),

matrix metalloproteinases (MMPs) (Sounni et al., 2011; Lv et al.,

2018), and thrombospondin-1 (TSP-1) (Lin et al., 2003); the

abovementioned related genes are activated after ischemic stroke,

thereby promoting the process of angiogenesis (Yin et al., 2015).

When it comes to suffering from ischemic and hypoxia

injury, ECs were activated, and a large number of MMPs are

released to lyse the extracellular matrix (ECM), basement

membrane, and matrix so that pericytes are detached from

the vessel wall and basement membrane (Yang and

Rosenberg, 2011). Vascular permeability increases to cope

with the exudation of VEGF, thereby the plasma proteins

assist ECs to migrate by forming the configuration of the

primitive scaffold (Hong et al., 2019). Under the synergistic

action of the aforementioned growth-promoting factors, ECs

proliferate and migrate, and activated ECs aggregate and shape

the lumen by migrating to a distinct section to induce

neovascularization formation (Jain and Carmeliet, 2012).

Furthermore, adhesion molecules were secreted to pull the

sprouting blood vessel forward organizing it into a network of

new blood vessels (Marti et al., 2000). The new capillaries rely on

the coordinated remodeling of the basal matrix and the extension

of the ECs behind the terminal cells (Li and Carmeliet, 2018),

including the recruitment of pericytes and smooth muscle cells,

which grow linearly on the original blood vessels in the form of

sprouting (Chiaverina et al., 2019; Figure 2).

Angiogenesis after cerebral infarction is a tightly regulated

and complex process that involves many networked pathways.

Immune cells can secrete a variety of cytokines through a variety

of inflammation-related signaling pathways to affect the

proliferation, migration, and differentiation of endothelial

cells, thereby participating in the process of angiogenesis (Zhu

et al., 2021). Brain-resident microglia are first activated within an

hour of ischemic stroke (Planas, 2018): M1-type microglia secrete

pro-inflammatory factors, including interleukin-1 (IL-1), IL-6,

tumor necrosis factor α (TNF-α), and MMP-9, while M2-type

microglia produce IL-10, transforming growth factor β (TGF-β),
insulin-like growth factor, and VEGF, which are synergistically

involved in the process of angiogenesis (Dabrowska et al., 2019).

In addition, approximately 24 h after stroke, immune cells in the

peripheral blood are recruited into the damaged brain, including

macrophages, natural killer (NK) cells, neutrophils, and T

lymphocytes that migrate to the damaged area and interact

with components of the blood–brain barrier (Duris et al.,

2018; Planas, 2018; Chen et al., 2019). Previous studies have

shown that the increase in the number of macrophages can

significantly promote angiogenesis after stroke

(Manoonkitiwongsa et al., 2001), and T helper 17 cells

promote angiogenesis and increase cerebral blood flow in the

ischemic penumbra by partially promoting EC migration and

sprouting; cellular infiltration of Th2 increases IL-4, IL-10, and

TGF-β, and decreases IFN-γ expression, which are key factors in

promoting angiogenesis during stroke recovery (Kwee et al.,

2018; Zhu et al., 2021).

Circadian system in angiogenesis

Cells closely related to angiogenesis, whether endothelial cells

or pericytes, have been shown to have internal clocks and are
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inextricably linked to angiogenesis after ischemic stroke (Takeda

et al., 2007; Mastrullo et al., 2022). The circadian clocks govern

this event by regulating various ECs and pericyte phenotypic

processes, including oscillation parameters of angiogenic

regulatory factors, basement membrane (BM) degradation, EC

migration and proliferation, and pericyte recruitment (Figure 3).

Circadian clocks are involved in the ECM
and BM degeneration

The BM is an amorphous structure located near the lumen of

endothelial cells or at the basal side of epithelial cells, which is

composed of ECM, a complex structural entity surrounding

which containing three major molecular levels: 1) structural

proteins, collagen, and elastin; 2) specialized proteins, for

example, fibrillin, fibronectin, and laminin; and 3)

proteoglycans (Adibhatla and Hatcher, 2008). Previous studies

revealed that BM degeneration and remodeling of ECM

contribute to angiogenesis in post-stroke, which are key

responses to detach pericytes from the vessel wall and allow

ECs to migrate and invade the surrounding tissue (Liu et al.,

2014). The proteases, such as the MMP family, are critical for this

cascade centered on BM degeneration and ECM remodeling,

which allows the pericytes to detach from undergoing

angiogenesis vessels (Jabłońska-Trypuć et al., 2016). At the

same time, ECs release ECM combined angiogenesis growth

factors, exposing potential proangiogenic integrin-binding sites

in the ECM, generating promigratory ECM component

fragments, and collectively contributing to angiogenesis

(Rundhaug, 2005).

Given that MMP2 and MMP9 are expressed in SCN, and

MMP9 mRNA decreased under circadian disruption treatment,

circadian rhythms should be taken into account in the expression

and ECM degeneration of MMPs (Taishi et al., 2001; Schloss

et al., 2016). More than this, MMP2 and MMP9 are confirmed to

be elevated in Bmal1−/−mice in remodeled arteries, which further

contribute to ECM and BM degeneration (Anea et al., 2010). But

the expression of MMP9mRNA and protein uniformly increased

under the synthetic Rev-erb agonists, and SR9009 intervention

FIGURE 3
Molecular mechanism of circadian clocks involved in angiogenesis. The circadian clocks, including Bmal1, Clock, Cry, Per, Reverb, E4BP4, and
RORα, regulate the expression of the angiogenic factor and are involved in the proliferation,migration, and tube formation phenotypes in endothelial
and pericyte.
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during the acute ischemic injury phase (Stujanna et al., 2017).

Moreover, chronic circadian rhythm disruption alters matrix

degradation by increasing MMP3 and MMP13, and inhibition of

Bmal1 upregulates the mRNA and protein of MMP3 and

MMP13 (Song et al., 2021).

The PA (plasminogen activator), including uPA (urokinase

plasminogen activator) and tPA (tissue plasminogen activator),

also plays a critical role in the procession of BM degeneration and

ECM remodeling (Zhai et al., 2022). uPAR (urokinase-type

plasminogen activator receptor) binds with pro-uPA

(zymogen form) to trigger the proteolytic cascade, which leads

to the degeneration of ECM (Stephens et al., 1989). In addition,

uPA and tPA, respectively, activate the plasminogen, and target

downstream MMP2, MMP3, and MMP9 to dissolve fibrin and

mediate intercellular infiltration, which contributes to the ECM

remodeling and further enhances the angiogenic ability (Hahn-

Dantona et al., 1999; Pepper, 2001; Song et al., 2016; Su et al.,

2016). Both tPA and uPA are expressed in SCN, and the protein

of tPA exhibited a rhythmic pattern with a peak during the night

in mice (Cooper et al., 2017, 2018). In contrast to MMP9, 8 h of

sleep deprivation followed by 2 h of recovery increased tPA

mRNA expression in SCN, suggesting that tPA is involved in

modulating the circadian phase shift (Taishi et al., 2001).

Intriguingly, the expression of tPA exhibits a BmalL1-

dependent manner, and an increased mRNA level of tPA was

observed in Bmal1−/− mice brain tissue regardless of diurnal time

(Hemmeryckx et al., 2019). Taken together, these observations

may have implications if it is feasible to regulate the effect of ECM

degeneration on angiogenesis after cerebral infarction by

modulating the rhythmic expression of the circadian clock.

Circadian clocks regulate proangiogenic
regulatory factors

The number of angiogenic regulatory factors in the blood

determines the functions of endothelial and pericyte, acting as

the key parameters for the angiogenesis process of ischemic

stroke. Generally, VEGF is a well-known angiogenic mediator

in stroke that initiates different steps in the angiogenic cascade,

such as endothelial cell proliferation, migration, and

differentiation (Geiseler and Morland, 2018). As known

downstream targets of the circadian clock network, VEGF

protein displays the oscillation expression pattern, which is

regulated by the core circadian component Bmal1, Clock, Per,

and Cry genes (Koyanagi et al., 2003). The overexpression of

Bmal1 promotes the luciferase activity of VEGF; however,

knocking down the VEGF expression reversed the promoting

effects of Bmal1 in pro-angiogenesis in HUVECs Xu et al.,

(2021). The human VEGF promoter activity follows a 24-h

circadian pattern under the 12 h light–dark (LD) cycle, and

the core circadian gene Bmal1 plays a transcriptional role by

targeting the region of the VEGF promoter (Jensen et al., 2012).

In addition, the fluctuation of the serum VEGF level displayed a

rhythmic pattern peaking during noon, while ECD induced by jet

lag impaired this fluctuation by decreasing the VEGF serum level

(Tsuzuki et al., 2021). Moreover, Per2 and Cry1 act as critical

rhythmic regulators of the hypoxia-induced expression of the

VEGF; these observations indicate the existence of a negative

feedback loop that rhythmically suppresses the transcriptional

upregulation of VEGF under hypoxic conditions, resulting in the

circadian fluctuation of VEGF expression and angiogenesis

(Koyanagi et al., 2003; Figure 4).

The FGF family and their receptors are known to govern

angiogenic functions in post-stroke, by activating FGF receptors

on endothelial cells, inducing the release of angiogenic factors

from other cell types, promoting the proliferation and migration

of ECs, and enhancing the biological activity of VEGF (Beenken

and Mohammadi, 2009). FGF21, the subtype of the FGF family,

has been confirmed to promote angiogenesis and endothelial

progenitor cell function when suffering ischemic injury (Dai

et al., 2021). Many research studies showed that circadian clocks

are involved in the regulation of FGF21, due to the mRNA and

protein of FGF21 displaying a circadian oscillation in both

rodents and humans (Oishi et al., 2008; Yu et al., 2011; Foo

et al., 2013). Furthermore, research determined that the up-

regulation of FGF21 by berberine is abided by the Bmal1-

dependent mechanism, and the knockdown of

Bmal1 abolished the increased expression of FGF21 in

response to berberine (Hirai et al., 2019). In the human cell

lines, FGF21 displayed a circadian rhythm expression pattern;

however, its mRNA altered when the major component of

circadian clocks, E4BP4 (E4-binding protein 4), was

knockdown. E4BP4 directly binds the region of the

FGF21 promoter, thereby playing the transcriptional

suppressor role (Tong et al., 2010). More than this, other two

kinds of circadian components, RORα and Rev-erbα, have also
been found to directly regulate the expression of FGF21 (Estall

et al., 2009; Wang et al., 2010). These research studies have

implicated that the rhythmicity of the VEGF and FGF are directly

controlled by the circadian clocks. Enhancing the angiogenic

regulatory factor circadian oscillation by regulating the circadian

clock’s gene expression may be a novel treatment for

angiogenesis in ischemic stroke.

Circadian clock components affect the
phenotypes of endothelial pericytes

The chemotaxis, migration, and proliferation phenotypes of

ECs play a promoting role in angiogenesis under the

participation of various growth factors and chemokines. The

chemokines, a family of small proteins, are represented by SDF1

(stromal cell-derived factor-1, also known as cysteine-X-cysteine

chemokine ligand 12, CXCL12), which is a critical regulator for

vascular morphogenesis and angiogenesis by inducing
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chemotactic migration and the invasive response of ECs,

stimulating ECs to become motile and protrude filopodia,

forming the tip cells (Salvucci et al., 2002; Jakobsson et al.,

2010; Carmeliet and Jain, 2011). Intriguingly, SDF1 and

receptor CXCR4 (cysteine-X-cysteine chemokine receptor 4)

have also been demonstrated to exhibit rhythmic expression

patterns, by detecting the oscillating expression in mice,

Pelteobagrus vachellii, and human organisms (Scheiermann

et al., 2012; Spinosa et al., 2017; Qin et al., 2021). While this

pattern is circadian clock-dependent, fluctuations of CXCR4 at

ZT5 and ZT13 disappeared in Bmal1−/− mice housed for 1 week

in the 12 h light–dark (LD) cycle (Lucas et al., 2008). Moreover,

the expression of CXCR4 was decreased in Per2−/− mice, which

may be the potential mechanism of the circadian clock involved

in the process of angiogenesis (Sun et al., 2014).

As for other phenotypes of ECs, the circadian clock genes in

ECs, such as Bmal1, and Per2, are correlated with the angiogenic

ability of ECs, such as migration, and proliferation. In HUVECs,

overexpression of Bmal1 promotes angiogenic activity, including

proliferation, migration, and tube formation ability.

Furthermore, in vitro research, Bmal1−/− mice impaired

angiogenesis by labeling CD31 and measuring the decreased

VEGF protein level after peripheral ischemic injury (Xu et al.,

2021). Similarly, endothelial isolated from Per2−/− mice

substantially lost the vascular networks and proliferation

ability, further contributing to increasing senescence (Wang

et al., 2008). Following research explored the impact of Per2

in EPCs (endothelial progenitor cells); Per2−/− EPCs displayed

impaired proliferation, migration, tube formation, and adhesion

(Sun et al., 2014). Jet lag plays an antiangiogenic role and inhibits

blood reperfusion after ischemic injury; further loss-of-function

studies explore the relation between Cry and HUVEC (human

umbilical vein endothelial cell) phenotypes, which confirmed

that knockdown of Cry1 and Cry2 in HUVECs inhibited

proliferation, migration, and tubular morphological features

(Tsuzuki et al., 2021).

Pericytes are involved in the above three phases of

angiogenesis, including 1) BM degeneration and ECM

remodeling, 2) sprouting migration and formation, and 3)

maturation and termination of angiogenesis (Armulik et al.,

2011). For blood vessels to function properly, neovascular

must recruit mature pericytes and be covered with parietal

cells. Then, pericytes attach to EC and regulate the deposition

of extracellular matrix and the formation of endothelial tight

FIGURE 4
Core circadian clock genes regulate the expression of angiogenic factors. The Bmal1: Clock initiates the transcriptional process of the Per, Cry,
Rev-erb, and ROR families. In return, Per and Cry suppress the transcriptional process of Bmal1, Clock through the E-box. Critical angiogenic factors,
including VEGF, CXCR4, FGF, PA, and MMP, are regulated by circadian clocks to varying degrees in molecular mechanisms.
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junction proteins, contributing to the stabilization of the new

lumen. Progressive loss of pericyte was observed in Bmal1−/−

mice, which contributes to the blood–brain barrier

hyperpermeability and weakened angiogenesis (Nakazato

et al., 2017). Recent studies further explored the potential

mechanism of circadian clocks in pericytes. First, human

primary pericytes indeed display a rhythmic activity and

induced the circadian rhythmicity of HUVECs in the

EC–pericyte contact co-culture environment. Also, core

circadian gene Bmal1 was confirmed to involve in the

maturation and morphology of the vascular structure

(Mastrullo et al., 2022).

The pericyte marker, PDGF-β (platelet-derived growth

factor), is also worth mentioning. To stabilize endothelial

channels, a large amount of PDGF-B is released, which is

essential for physiologic angiogenesis through a moderate

VEGF dose (Hellberg et al., 2010). Its co-delivery normalizes

high VEGF angiogenesis and expands the therapeutic window of

PDGF (Banfi et al., 2012). In the maturation and termination

phase of angiogenesis, the survival of endothelial relies on the

VEGF secretion of pericytes; thus, the close interaction between

pericyte and endothelial protects endothelial cells from VEGF

withdrawal and confers resistance to VEGF blockade (Sennino

et al., 2009). PDGF-B regulates pericyte proliferation and

migration, and induces their recruitment to the nascent sprout

by binding to the PDGF receptor β (Dubrac et al., 2018; Imhof

et al., 2020). PDGF and circadian genes interact with each other,

and jointly regulate cell proliferation. PDGF-BB increased

Bmal1 protein and mRNA expression in a time-dependent

manner while transiently up-regulating Clock, Per1, Per2,

Cry1, and Cry2 mRNA expression, in turn; Bmal1 is involved

in the regulation of PDGF-BB, and the knockdown of

Bmal1 impaired the proliferation induced by PDGF-BB

(Takaguri et al., 2020).

Circadian participates in angiogenesis by
regulating the immune response

The acute immune response of stroke is a characteristic of

cerebral ischemia and is mediated by a large number of immune

cells, chemokines, growth factors, hormones, and cytokines

(Iadecola et al., 2020). As aforementioned, the M1 and

M2 polarized phenotypes of microglia/macrophages

participated in the brain damage and repair; the polarization

of microglia to the M2 phenotype increases angiogenesis in the

ischemic penumbra, and reduces infarct volume and neural

validation (Jetten et al., 2014; Liu et al., 2018; Shang et al.,

2020). Far beyond these, a large number of immune response-

inducing cytokines are closely related to angiogenesis, including

VEGF, MMP, ILs, PDGF, and monocyte chemotactic protein-1

(Mcp-1/Ccl2) involved in immune response-mediated

angiogenesis (la Sala et al., 2012; Zhu et al., 2021).

Circadian governs the immune response. First, the expression

of immune mediators follows a circadian oscillatory pattern, and

the number of immune cells peaks in the circulation during the

resting phase (nighttime in humans and daytime in rodents) and

decreases during the active phase, whereas levels of related

cytokines peak at the onset of active phase (Haus and

Smolensky, 1999; Scheiermann et al., 2013). In addition,

circadian clock proteins regulate the immune mediators. The

genes of intrinsic circadian clocks, such as Bmal1, can regulate

IL-6 production by modulating the transactivation process

(Nakazato et al., 2017). The activation of the nuclear receptor

Rev-erbα can reduce the M1 polarization of macrophages induced

by inflammation (Cui et al., 2021). Moreover, Rev-erbα and

Per1 have been shown to mediate the inflammatory response of

chemokine and cytokines (Gibbs et al., 2012); significantly

increased expression of Ccl2 and IL-6 was observed in glial

cells with Per1 knockdown, and Ccl2 is elevated in Rev-erbα
knockout mice (Sugimoto et al., 2014). Furthermore, studies

have shown that Rev-erbα directly binds the specific binding

motif of the Ccl1 promoter region that suppresses the

Ccl2 expression, and impairs cell adhesion and migration (Sato

et al., 2014). Ccl2 affects cell adhesion and migration, and

acknowledges as a proangiogenic factor (Hong et al., 2005; Zhu

et al., 2021). The overexpression of Ccl2 increased the human

umbilical cord-derived mesenchymal stem cell (hUC-MSC)

migration ability, thereby promoting angiogenesis in the

ischemic penumbra region of MCAO rat (Lee et al., 2020).

Numerous studies have repeatedly confirmed that the

inflammatory response plays a multi-stage and complex role in

the progression and pathogenesis of cerebral infarction. As

aforementioned, pro-inflammatory cytokines can promote

angiogenesis after cerebral infarction, but excessive pro-

inflammatory cytokines have adverse effects. Conversely, anti-

inflammatory cytokines exert protective effects after cerebral

infarction, but excessive anti-inflammatory cytokines produce

immunosuppressive effects. Therefore, there is an urgent need

to strike a balance between pro- and anti-inflammatory signaling

to improve outcomes in cerebral infarction (Zhu et al., 2021). ECD

leads to the disruption of the balance between pro-inflammatory

and anti-inflammatory cytokine gene expression, which may be

closely related to the abnormal oscillation of immune cells and the

regulation of circadian clock proteins (Ramsey et al., 2020). The

regulation of various immune cells, cytokines, and immune cell

subtypes by the circadian system plays a critical role in the process

of angiogenesis after cerebral infarction; thus, further studies are

needed to elucidate the exact mechanism by which the circadian

system regulates immune responses and induces angiogenesis.

Conclusion and perspectives

Although no circadian clock-related drugs have been reported

for ischemic stroke by targeting angiogenesis in so far, collectively,
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these research studies provide new therapeutic insights into the

angiogenesis of ischemic stroke. Currently, several strategies have

been proposed to correct clock disruption and desynchronization,

to restrain the negative consequences if circadian rhythm impacts

are unavoidable. These applications mainly include three aspects:

environmental modifications, chronotherapy, and targeting the

clock genes.

Environmental modifications also contain the high intensity

of light, activity, and therapy during the day and night. Previous

experiments proved that ambient light influences the occurrence

and development of diseases. Mice exposed to low-dose light

(5 lux) at the rest phase displayed a reduction of hippocampal

VEGF and BDNF levels, and were accompanied by depressive-

like symptoms (Walker et al., 2020). Thus, environmental light

modifications may be the potential therapy for post-stroke. In

addition, some ongoing clinical trials are carried out to explore

whether light therapy and blue light exposure interventions are

helpful for neuroplasticity in post-stroke (NCT05247125); bright

intensive care unit rooms, especially exposed to visible daylight,

have been proven to reduce delirium and its complications

(Oldham et al., 2016).

Given the differences between important physiological

parameters affecting stroke incidence and recovery, such as

blood pressure and fibrinolytic status in humans during the

active and inactive phases, and the resulting differences in

circadian rhythm that may affect drug response,

chronotherapy is growing in popularity (Hermida et al., 2016).

Clinical studies indicated that the incidence of cardiovascular

and cerebrovascular diseases decreased significantly after

ingesting the entire daily dose of ≥1 hypertension drug before

bedtime compared to the active period (Bowles et al., 2018;

Hermida et al., 2020). Similarly, intravenous thrombolysis

with rt-PA between the active phase (6:00-18:00) appears to

be less effective. Also, compared with the inactive phase (18:00-6:

00) interval, intravenous thrombolysis was safer and had lower

rates of hemorrhagic transformation in patients who started

intravenous thrombolysis between noon and midnight

(Cappellari et al., 2014). Other studies have also shown a

circadian variation of rt-PA in patients with ischemic stroke;

intravenous thrombolysis with rt-PA during the active phase can

significantly improve the modified Rankin scale compared with

the inactive phase (21:00-9:00) (Vilas et al., 2012).

As aforementioned, circadian clocks regulate the molecular

expression and function state of angiogenesis to various extent;

therefore, another therapeutic strategy may be the changes of the

phase of the circadian clock, by manipulating the rhythmic phase

of circadian clocks closer to the physiological state. Many

synthetic compounds, such as small-molecule modifiers, that

affect the phase, amplitude, and cycle of circadian rhythm have

been extensively studied, and it is expected to be realized soon in

clock-targeted therapy of angiogenesis after cerebral infarction

(Chen et al., 2013).

The circadian rhythm and angiogenesis modulate the

majority of the processes involved in mammalian physiology

and pathology. Increasing evidence indicates interactions

between circadian rhythm and angiogenesis; various states

during post-stroke state recovery revealed direct interactions

between rhythmically angiogenesis and stroke. A better

comprehension of the molecular mechanisms of the

interaction between the circadian rhythm and ischemic stroke

angiogenesis would help accelerate the future development of

stroke therapies.
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