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Abstract

The increasing availability and maturity of DNA microarray technology has led to an explosion of cancer profiling studies for
identifying cancer biomarkers, and predicting treatment response. Uncovering complex relationships, however, remains the
most challenging task as it requires compiling and efficiently querying data from various sources. Here, we describe the
Stress Response Array Profiler (StRAP), an open-source, web-based resource for storage, profiling, visualization, and sharing
of cancer genomic data. StRAP houses multi-cancer microarray data with major emphasis on radiotherapy studies, and takes
a systems biology approach towards the integration, comparison, and cross-validation of multiple cancer profiling studies.
The database is a comprehensive platform for comparative analysis of gene expression data. For effective use of arrays, we
provide user-friendly and interactive visualization tools that can display the data and query results. StRAP is web-based,
platform-independent, and freely accessible at http://strap.nci.nih.gov/.
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Introduction

DNA microarrays are successfully being used to classify tumors
and identify novel biomarkers associated with cancer (for some
recent reviews see [l]). Genetic variants and differences in
personal genomes not only impact cancer profiles but are often
responsible for how the patient and the cancer respond to
treatment. In particular, the response to cellular stress, whether
induced by cytotoxic drugs, hypoxia, or ionizing radiation can
vary greatly, and its genetic basis is subject of much interest. We
are especially interested in elucidating the genetic basis of
radiotherapy response in search of highly-predictive genetic
signatures. Radiotherapy is a core component of cancer treatment
[2] but has been relatively under-studied: a glimpse at public
resources like Pubmed or array databases shows that radiotherapy
studies constitute less than 1% of the total number of records.

Typically, each individual study involves a number of statistical
and quantitative analysis steps (see [3] for a summary of typical
steps), and can point to gene and gene products that are crucial for
disease and treatment. However, the sparse, high-dimensional
nature of the microarray data space [4], and the large number of
genes involved in often subtle and complex pathways, necessitate
meta analyses for comparing and aggregating results from different
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studies. Cross-platform compatibility can only be achieved once
within-platform consistency issues have been fully addressed and
the results of such studies are as good as the gene identification
method. MAQC consortium has generally found that proper
sample preparation is sufficient to dramatically enhance multilab
and multiplatform correlations [5]. The utility of such analyses was
documented in the implementation of the CellMiner tool, a web
based program for the integration of molecular profiling data at
DNA, RNA, protein, and pharmacological levels on the widely
studied NCI-60 cancer cells [6]. Several other studies found added
complexity for meta analysis due to considerable diversity in
source, sample, and platform types [7-9]. The two major
technologies of microarrays differ in the basic design, cDNA
microarrays use full-length transcripts printed onto the slides and
oligonucleotide based arrays constitute a shorter- oligonucleotides
synthesized in situ. A major design question is whether to measure
the expression levels from each sample on a different microarray
(using single-color, or single-channel, arrays), or instead to
compare relative expression levels between a pair of samples on
each microarray (two-color or two-channel arrays). There are
tradeofls between the two approaches. Single-color arrays allow
for more flexibility in analysis, while two-color arrays can control
for some technical issues by allowing a direct comparison in a
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single hybridization [10]. A recent comparison of single- and two-
color methods on the same platforms found good overall
agreement in the data produced by the two methods [11]. The
7 score transformation procedure for normalizing data is a
familiar statistical method in both neuroimaging and psychological
studies and recently been used in the meta analysis of microarray
datasets from different platforms [12], and is especially suited for
database development [13].

The wealth of data has also brought about the creation of a wide
range of resources. On one end of the spectrum, data repositories
like Gene Expression Omnibus (GEO) [14] provide access to raw
experimental data; on the other end, tools like ONCOMINE [15]
more ambitiously, but typically at a cost, provide facilities for meta
analysis of array data. However, to our knowledge, none of the
existing free resources focus on stress response or radiotherapy
studies combined with visualization outputs.

We develop StRAP, a free web-accessible resource to address
the need to query, compare, profile, and visualize results from
different microarray experiments. StRAP hosts data from diverse
cancer studies (currently from 12 different tissue types), and will be
further extended in the future. We used Z scoring method to
standardize data, since the internally normalized values do not
change with subsequent addition of new datasets. All data are
mapped to Entrez Gene identifiers for consistency in comparison.
The user-friendly interface facilitates exploration by a wide-range
of researchers, including those with little expertise in bioinfor-
matics.

In the remainder of this paper we briefly describe StRAP’s
construction and core features.

Materials and Methods

Architecture

The runtime architecture of StRAP is described in Figure 1.
The architecture is 3-tiered. The basic design of the architecture is
an enhancement of our previously published CellMiner tool [6].
The bottom tier represents the sources of experimental (micro-
array), meta (cell line) data, and external tools that are invoked to
visualize the data. The middle tier represents how the data are
processed, stored, and made available to the user. The pre-
processing steps were performed before deployment. At this stage,
data from the lower tier were accessed, processed (using R
scripting), and stored in the StRAP data repository (comprised of a
MySQL database, and other files stored on the server file system).
The right hand side of the middle tier represents the analysis
“services” that are available at runtime to the user. These include
filtering of data (according to user constructed queries), visualiza-
tion of results, and the options to download the data. These
services are made available as web-services and are hosted on an
Apache server. The top tier represents the user interface
(implemented using PHP, Javascript, AJAX, and HTML), and is
organized around three main modules (Genes, Cell lines, and
Arrays).

Data Repositories

Four main data repositories reside at the backend of StRAP: (1)
Gene associated annotation information derived from the National
Center for Biotechnology Information (NCBI, http://www.nchi.
nlm.nih.gov/), (2) Pre-processed gene expression microarray
molecular profile data (including pre-computed statistics), (3)
Metadata on cell lines, and (4) Metadata on platform-associated
information.

The structured layout of the tables promotes efficient querying
and integration of phenotypic data, metadata and molecular
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profile information from various studies. The database supports
multiple concurrent query sessions.

The repositories are stored as a MySQL relational database
(http://www.mysql.com).

Data Preparation

The microarray data were obtained as raw files whenever
available or else as author deposited normalized files from the
GEO database [14], ArrayExpress [16], or in-house experiments.
Two platform types are predominantly used in these studies:
cDNA two-color (National Cancer Institute- ROSP 8K Human
Array and Agilent whole human genome microarrays), and single
color arrays (currently we house Affymetrix and Illumina gene
chip data).

The raw data were assessed for quality and normalized by the
Lowess [17], or MAS5 [18]methods for cDNA, and Affymetrix
arrays, respectively. Z-score transformation was used to obtain a
uniform scale across different studies and platforms, which is
necessary for comparing data from different studies. Pre-computed
statistical tests were performed at three nested-level complexity.

® At the top level, each study is subjected to ANOVA analysis
performed between all controls and cases to give an overall
significance of the study design.

® A tissue level ANOVA analysis is implemented as a second tier
of comparison between all the controls and cases for each
tissue type in a study.

® At the experiment level, for each cell-line/sample, a case-
control comparison is performed by t-test analysis.

Pre-processing and computation of statistical tests are per-
formed in the R environment (http://www.r-project.org/).

Interface

The front end interface is a web-based application implemented
using R, PHP (http://www.php.net/) and Python (http://www.
python.org/). The application is deployed on an Apache HT'TP
server (http://httpd.apache.org/) at the National Cancer Institute
(NCI).

Core Features

Data access and presentation is organized around three main
concepts or modules: (1) Genes, (2) Cell lines, and (3) Arrays.
Flexible user-defined data queries can be initiated from any of the
modules; the data visualization options for the results are displayed
in integrated views and may, depending on the query, involve
cross-talk between modules. Several links to external resources
promote a systems biology approach. Table 1 gives a summary of
core features for each module. Pre-computed statistics (as
described in the previous section) enable display of efficient and
Intuitive graphs.

Genes

The genes module enables gene-centric queries of the StRAP
microarray studies. Queries can be based on gene or protein
identifiers, synonyms, gene descriptions, or chromosome location.
The results include associated arrays and studies, and a
compilation of gene-annotation information, spatial localization
within the genome visualized in the UCSC Genome browser [19],
and network neighborhood maps generated from protein-protein
interaction networks [20]. Queries can also be constructed using
gene lists defined by the user or generated, for example, from
Gene Ontology (GO) terms [21].
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Figure 1. StRAP architecture diagram. The diagram represents a runtime view of the architecture of StRAP. The lower tier represents the sources
of experimental data, meta data, and external tools that are invoked to visualize the data. The middle tier represents how the data are processed,
stored, and made available to the user. The right hand side of the middle tier represents the analysis “services” that are available at runtime to the
user. The higher tier represents the user interface, and is organized around three main modules (Genes, Cell lines, and Arrays).

doi:10.1371/journal.pone.0051693.g001

A typical gene-centric query (see Figure 2 for an example
workflow) starts by identifying studies profiling the expression of a
gene (list) of interest. The expression profiles and their statistical
significance are then visualized via boxplots, and barplots (showing
study-level, and experimental-level case-control differences). If the
input involves a list of genes, an interactive heatmap option
enables viewing expressions of genes in selected studies. The
heatmap is visualized using the Java Treeview program [22].

As an added convenience, the genes module includes a gene
identifier conversion utility, which can be used to map from one
type of gene identifier (for example, Entrez gene symbol) to
another (for example, Entrez geneid).

Cell Lines

The cell lines module provides metadata on available cell lines
and associated studies. Queries in this module are tailored to allow
selection of complete studies, by tissue of origin, or individual cell
line. Comparisons can be made for samples within a study or
across studies. (See Figure 3 for an example workflow.) Differen-
tially expressed genes in studies of interest are identified based on
case-control t-test analyses (cell line selection) and ANOVA
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analysis (studies with more than one group). The default filter is
set to p=0.03, but can be customized by the user.

Arrays

The arrays module provides an overview of the current contents
of the database, including the number of studies, information on
platforms, contributors, and available meta-information. Pre-
processed data or data from the original source can be
downloaded from this module. Integrated queries from this
module allow performing comparison of studies by common
samples or union of genes within the selected studies.

An example workflow is shown in Figure 4. Arrays can be
filtered by the select stimulus used in the study. Given our interest
in effects of ionizing radiation, most of the arrays in the repository
have “radiation” as stimulus.

Validation

Radiation therapy is a core component of cancer treatment.
However, radiation response often varies considerably among
different patients [23]. Therefore, it is important to identify genes
predictive of radiation response. Equally important is to validate
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Step 1: Enter gene of interest

Cancer Profiling Database

Step 2: Select studies of interest

Enter any keyword, such as Entrez ID Number: 14", or Symbol "AAMP", or any part of a Description: "Cancer"
Search by List of Terms

Step 1: Select Input Step 2: Input a List of Terms

4 N\ [ ABL1 gene details A
Gene Search -
Option:
Option: -
Array udie ]( UCSC Browser 1 Gene Info M GO Terms | GeneRIFs 1
Search by Keyword

[ PubMed Info] Pathways 1

Studies featuring the gene

 Study
# Name

Type Choose File | No file chosen All
@ Gene Symbal or = 1 K562-Med5_RadiationinducedTranscriptomeChanges; 1 gene
‘ Z“"QIDGE“E“’f F' 2 MCF7_RadiationinducedMarkersOfPrematureSenescence: 1 gene
o Deeen " 3 HYhESCs_RadiationEffect; 1 gene
© GO description r 4 Lymphocytes_LateRadiationTherapyToxicity; 1 gene
© GenBank Accassion r 5 THPI_R EffectOnPr g Activity: 1 gene
r— . r 6§ Lymphoblastoid_RadiationTherapyToxicity. 1 gene
r 7 SCC_RadioresisianiTumerResponse; 1 gene
~ r 8 ALL_RadiationSensitivityAndResistance; 1 gene
#~Show/Hide Conversion Tool r 9 SCC_TimeCourseRadioresistantTumorResponse; 1 gene
r 10 MCF10A_EMT-initiation; 1 gene
o v f 11 MulticancerCells_RadiationEffectOnPolysomeRNA; 1 gene
. . . . r 12 Lymphocytes_ATM-regulationOfDNADamageResponse; 1 gene
Step 3: Select visualization of interest r 13 GliemaCells_HypoxiaEffectOnTotalRNA: 1 gane
( \ r 14 StemCells_HypoxiaEffectOnTotalRNA: 1 gens
H H H 3 r 15 U251-U87_ComparisonOfGrowthModelsUnderRadiation; 1 gene
V'suallzatlon optlons r 16 NCIG0_RadiatiecnResponse; 1 gene
Instructions: Pl ick an i to ¢h isualization t O 17 Lymphocytes_TranscriptionalResponseToUVAandIR; 1 gene
nstructions: Flease Cick an image o choose visuaizaton Lype r 18 MNCs_SIgnaturesForRadiaﬂonBiodoslmetry: 1gene
. r 19 LCL_LowDoseRadiationResponse; 1 gene
. r 20 SCC81_STAT1-modulationOfWarburgEffectinTumorGrowthAnd
Radioresistance: 1 gene
Barplot: Boxplot: r 21 SCC_RadiationinducedCell-deathSignalingPathwayActivation; 1 gene
#15how/Hide Help
. AN J
. . . .
Steps 4+: Display visualizations
f . . N ] ] N
ABL1 Expression across Cell Lines for Selected Studies ABL1 Expression Across Selected Studies
Gene: ABL1 Gene: ABL1
Studies: KS62-Me45_RadiationInducedTranscriptomeChanges (Study: 1) vs. Studies:
MCF7_RadiationInducedMarkersOfPrematureSenescence (Study: 2) t"l_'e{s' Med iationln Tran meChan

'Gy' - Gray J'-Joules ‘pct’- percent 'W'- weeks 'D'-days 'H'-hours ‘Cont' -
controls T' - Wild type ‘AT’ - Mutant  'IC' - Intracranial  'IV' - In vitro '5C' -
Subcutaneous ‘Gy' - Gray  'I'- Joules ‘pct’ - percent 'W'- weeks 'D'-days H'-
Study 1 Study 2 hours  'Cont’ - controls 'WT' - Wild type AT’ - Mutant 'IC' - Intracranial 'IV'-1In
p: 0.05784 p: 1e-06 vitro  'SC’ - Subcutaneous
Study 1 Study 2
p: 0.05784 p: 1e-05
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Figure 2. Example of a workflow initiated from the Genes module. Typically, a workflow initiated from the Genes module involves 1)
entering a gene of interest (or list of genes), 2) displaying and selecting studies featuring the gene, 3) choosing a visualization option, and 4+)
displaying and inspecting the chosen visualization. The example shown is for gene “ABL1.".

doi:10.1371/journal.pone.0051693.9g002

the results of an analysis in independent data with similar
experimental design.

To illustrate the functionality of StRAP, we used a study by
Rieger and colleagues [24] on peripheral blood lymphoblastoid
cells derived from patients with acute radiation toxicity and
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control group of patients with mild toxicity. Using gene expression
profiling, the authors reported 24 highly predictive genes of
radiation response. We sought to explore the expression of these
24 genes in several independent studies from StRAP database, and
found 18 genes significantly changed among the selected studies.
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Step 1: Display available cell lines and select cell line of interest

(~  CellLines )
Options: Select Tissue: [ - General Search:
(For General Search enter any keyword, such as Cell Line Name: "MCF" or Tissue: "breast” or Histology: "gliosarcoma” or Institution: "Duke" or Contributor: "Lieber” or
Reference: "Cell")
I All Study # Available Studies Available Cell Lines
r 1 KS582-Med5_RadiationinducedTranscriptomeChanges; 2 cell lines 786.0 A4d9B A549 ALL
r 2 MCF7_Radiati Premate : 1 cell line AsPC1 BJ BT.549 CAKL1
r 3 HIhESCs_RadiationEffect. 1 cell line CCRF.CEM COLO.205 DU145 MO2184
r 4  Lymphocytes_LateRadiationTherapyToxicity: 1 cell line GM03332 H9.hESCs HCC.29%8 116 HCT15
r 5 THPi_ i gulantactivity: 1 cell line HLEO HOP§2  HOPS2 S578T  HT29
r &  Lymphoblastoid_RadiationTherapyToxicity: 2 cell lines IGROV1 K562 KM12 LcL LOXIMVI
r 7 SCC_RadioresistantTumorResponse; 2 cell lines Mi4 MALME.3M MCF.10A MCF.7 MDA MB.231
r -] ALL_RadiationSensitivityAndResistance; 1 cell line MDAMB.435 MDAN MDNSC11 MDN: MDNSC23
r 9  SCC_TimeCourseRadioresi TumorResp ; 2 cell lines Me4s MEC MiaPacaZ MNCs MOLT.4
r 10 MCF10A_EMT-initiation; 1 cell line MRCS MRC9 NCLH226 NCLH23  NCILH322M
r 11 MulticancerCells_RadiationEffectOnPolysomeRNA; 18 cell lines NCLH460 NCILH522 NCIADR RES NuB1 OVCAR3
r 12 Lymphocytes_ATM-reg 'OfDNAD ponse: 2 cell lines OVCAR4 OVCARS5 OVCARS PANC1 PC3
r 13 GliomaCells_HypoxiaEffectOnTotalRNA: 2 cell lines RPMLB226 RXF.393 SCCE1 SF126 SF288
r 14 StemCells_HypoxiaEffectOnTotalRNA; 3 cell lines SF295 SF539 SKMEL2 SKIMEL.28 SKMEL.S
r 15 U251-U87_ComparisonOfGrowthModelsUnderRadiation: 2 cell lines SK.OV.3 SkCa SN12C SNB.19  SNB.7S
r 16  NCIB0_RadiationResponse; 60 cell lines SR SW.620 T47D THP1 TK.10
r 17  Lymphocytes_TranscriptionalResponse ToUVAandIR; 1 cell line U118 U251 u3z3 uaz JACC.257
r 18  MNCs_SignaturesForRadiationBiodosimetry; 1 cell line UACC 62 uo.31
© 19 LCL_LowDoseRadiationResponse; 1 cell line (Dark background indicates cell lines that are not associated with
r 20 SCCB1_STATI1-medulationOfwarburgEflectinTumorGrowthAnd Radioresistance; 1 cell line any microarrays)
r 21 SCC_RadiationinducedCell-deathSignalingPathwayActivation: 1 cell line
\ S
Step 2: Select studies of interest Step 3: Display comparison visualization
(-— ) ) ) 4 Array Comparisons by Genes for LCL Cell Line N
LCL Cell Line Details
Option:
Option:
Search by Keyword
Sample ID 74 ’7
Cell Line Name LCL Enter any keyword, such as Entrez ID Number: *14°, or Symbol: *AAMP*, or any part of a Description: *Cancer*
Disease State Multi: normal; prostate: PEMC Study #4: Lymphﬂ(yles_LateRadialmnThErapmifu(ity LCL P-Value Gene Gene Box Bar
Study £6: Lymphoblastoid_RadiationTherapyToxicity 4 g (min) =] Symbol Plot Plot
Patient's Age 21-26 00000 64782 AEN  B®
Patient's Sex 0.0000 307 ANXA4 BB g,
Prior Treatment Cells imortalized with Epstein Barr Virus 0.0000 23204 ARLGIP1 B2 dh
B 00000 10973 ascc3 BB
Tissue Type Blood 0.0000 467 ATF3 B8 g
Histology Normal; lymphocyte 0.0000 468 ATF4 B
00000 8704 B4GALT2 BB g
ps3 Status 00000 681  BAx BB g
ECAD Methylation 0.0000 638 BIK BB g
AT 00000 9577 BRE BB g
0.0000 57103 Ci2orfs B8 g,
I Check Al Il 00000 10241 cALCOCO? BB gy
: Lvm T Iastoid Radlat‘\o;T:\Ter:a: laTmT; -{bfld 0.0000 | 366 gars MR i
Arrays Using This GellLine  — = 0t o sl e 0.0000 60482 CCDCI0E B8 g
I LCL LowDoseRadistionRaspanse [19] 00000 900 CCNG1 B8 g,
00000 970 cD70 BB g
. . 00000 1019 CDKs BB
Institution Stanford University School of Medicine 0.0000 1026 DKN1 86 g
Contributor Rieger, KE and Chu, G 00000 1534 CYB561 B8
Reference Nucleic Acids Res. 32(16):4786-803, 2003 - 00000 1843 ppE2 BB
\‘ / \‘ Genes 1 to 20 of 12801 /

Steps 4+: Focus on individual genes and display associated visualizations

(Array Comparisons by Genes for LCL Cell Line

Option: Shudy 4 Sty &
B 057220 B 027630
Search by Keyword al —T T T 3
BL 2
Enter any keyword, such as Entrez ID Number: "14", or Symbol: "AAMP®, or any part of a Description: 1 - - T -
"Cancert - _
EEEEEEEEEEEEEE
H i il Q] i) (R T 3
m. Lymphocytes_LateRaidl.atlonTherapyTaxtclty LCL V;uc Gene Gene Box Bar A A E 33348 8 § § § % ;: R § § § 5L
Study #6: Lymphoblastoid_RadiationTherapyToxicity 46 (min) ID  Symbol Plot Plot g g Ew g § $ 5 g ? § 4 § H g § ;
07137 25 ABL1 89 4
Genes L to 1 of 1
~ J

Figure 3. Example of a workflow initiated from the Cell lines module. The Cell lines initiated workflow typically starts with 1) selection of a
cell line (or tissue) of interest (here “LCL"), 2) inspection of the cell line metadata, and associated studies, 3) comparison of studies of interest with a
metamap showing significance of differential expression of individual genes for the given cell line, and 4+) inspecting individual genes via barplots
and boxplots.

doi:10.1371/journal.pone.0051693.g003
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Step 1: Display available array studies and select study of interest

4 Directory of Array Studies N
Options: Select Stimulus: |
Select
Study Study cell
.?_II # Thn Stimulus o Genes Type Institution Contributor Reference Download
O 1 K562-Me45_RadiationinducedTranscriptomeChanges Radiation 2 12509 Affymetrix Silesian University of Technology Jaksik, R E-MEXP- Data File
2623
r 2 MCF7_Radiati kersOfPr lescence Radiation 1 18081 llumina Korea Institute Kim, BC et al. 20596626 Data File
r 3 H9nESCs_RadiationEffect Radiation 1 16046 Agilent Stanford Wilson, KD etal. 20530673 Data File
r 4 Lymphocytes_LateRadiationTherapyToxicity Radiation 1 12704 Affymetrix Leiden University Medical Center Svensson, JP etal. 17076557 Data File
r 5 THP1_RadiationEffectOnProcoagulantActivity Radiation 1 19621 Affymetrix Max Planck Institute Goldin-Lang, Pet 17640852 Data File
al.
= 6 Lymphoblastoid_RadiationTherapyToxicity Radiation 2 8038 Affymetrix Stanford Rieger, KE etal. 15096622 Data File
r 7 SCC_RadioresistantTumorResponse Radiation 2 12704 Affymetrix The University of Chicago Khodarev, NN etal. 17909027 Data File
r 8 ALL_RadiationSensitivityAndResistance Radiation 1 12704 Affymetrix University of Birmingham Stankovic, T etal. 18941120 Fil
T 9 SCC_TimeCourseRadioresistantTumorResponse Radiation 2 12704 Affymetrix The University of Chicago Khedarev, NN etal. 17903027 Data File
r 10 MCF10A_EMT-initiation Radiation 1 12704 Affymetrix Lawrence Berkeley Andarawewa, KL et 17875706 Data File
al.
r 11 MulticancerCells_RadiationEffectOnPolysomeRNA Radiation 18 5593 c¢DNA Lee Moffitt Cancer Center Tofilen, PJ 18483266 Data File
r 12 Lymphocytes_ATM-regulationOfDNADamageResponse Radiation 2 11430 lllumina NIA Mazan-Mamezarz, 21209379 Data File
Ketal.
r 13 GliemaCells_HypoxiaEffectOnTotalRNA Hypoxia 2 13147 Affymetrix Lee Moffitt Cancer Center Tofilen, PJ 19372578 Data File
r 14 StemCells_HypoxiaEffectOnTotalRNA Hypoxia 3 13147 Affymetrix Lee Moffitt Cancer Center Tofilon, PJ 19372578 Data File
r 15 U251-U87_ComparisonOfGrowthMedelsUnderRadiation Radiation 2 4283 c¢DNA ROB Camphausen, Ket 15928080 Data File
al.
r 16  NCIB0_RadiationResponse Radiation 60 2826 <¢DNA  Columbia University Medical Center Amundson, Setal. 18199535 Data File
r 17 Lymphocytes_TranscriptionalResponse ToUVAandIR Radiation 1 8818 cDNA Stanford Rieger, KE & Chu, 16356296 Data File
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Figure 4. Example of a workflow initiated from the Arrays module. The Arrays workflow typically starts with 1) inspection of available arrays
and selection of a study of interest, 2) viewing of experimental conditions and selection of a p-value threshold for significance of gene expression
differentiation, and 3) study of expressions heatmap. Comparison of several arrays can also be initiated from the overview page.
doi:10.1371/journal.pone.0051693.g004
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Figure 5. StRAP validation. Differential expression of twenty-four genes identified by Rieger and colleagues [24] to be important for radiation
response. In Step 1 shows a multi-study heatmap (for Studies 4, 6, and 14). In Step 2 CDKN1A gene profile was compared in studies with (Studies 2-5),

and without radiation as stimulus (Study 14 with hypoxia response).
doi:10.1371/journal.pone.0051693.9005

To test if we can reproduce the authors findings, we first selected 3
studies, 2 studies (studies 4 and 6) containing lymphoblastoid cells
treated with different doses of radiation, and as a negative control,
we chose 1 study (Study 14) with stem cells from CNS tissue with
hypoxia stimulus. A multi-study heatmap (Figure 5, Step 1) on the
gene subset showed a selective up regulation of the gene subset in
studies 4 and 6 but, not in study 14, confirming the role of these
genes in response to radiation. Of particular, CDKNI1A is a DNA
damage response, cell cycle regulating gene reported to be induced
by radiation [25,26]. We explored the comparative profiling of
CDKNIA gene in a range of studies with diverse cell lines from
our database that are treated with (Studies 2-5) or without
radiation as stimulus (Study 14). A comparative gene profiling
across multiple studies (Figure 5, Step 2) showed a significant
induction of the gene selectively in radiation treated studies. In
addition the induction is found to have no effect at low dose
radiation (0.4 Gy in Study 3) indicating cellular response to
radiation is dependent on dose rate used.

Conclusions

StRAP is an open-access resource developed primarily to
support research on the effects of stress with major emphasis on
lonizing radiation on cancer in a systems-biology context.
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