
StRAP: An Integrated Resource for Profiling High-
Throughput Cancer Genomic Data from Stress Response
Studies
Seth Johnson1,2, Biju Issac3, Shuping Zhao1,2, Mohit Bisht1, Orieta Celiku1, Philip Tofilon1,

Kevin Camphausen1, Uma Shankavaram1*

1 Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 2 SAIC-Frederick, Inc., National Cancer

Institute-Frederick, Frederick, Maryland, United States of America, 3 Division of Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami, Florida, United

States of America

Abstract

The increasing availability and maturity of DNA microarray technology has led to an explosion of cancer profiling studies for
identifying cancer biomarkers, and predicting treatment response. Uncovering complex relationships, however, remains the
most challenging task as it requires compiling and efficiently querying data from various sources. Here, we describe the
Stress Response Array Profiler (StRAP), an open-source, web-based resource for storage, profiling, visualization, and sharing
of cancer genomic data. StRAP houses multi-cancer microarray data with major emphasis on radiotherapy studies, and takes
a systems biology approach towards the integration, comparison, and cross-validation of multiple cancer profiling studies.
The database is a comprehensive platform for comparative analysis of gene expression data. For effective use of arrays, we
provide user-friendly and interactive visualization tools that can display the data and query results. StRAP is web-based,
platform-independent, and freely accessible at http://strap.nci.nih.gov/.
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Introduction

DNA microarrays are successfully being used to classify tumors

and identify novel biomarkers associated with cancer (for some

recent reviews see [1]). Genetic variants and differences in

personal genomes not only impact cancer profiles but are often

responsible for how the patient and the cancer respond to

treatment. In particular, the response to cellular stress, whether

induced by cytotoxic drugs, hypoxia, or ionizing radiation can

vary greatly, and its genetic basis is subject of much interest. We

are especially interested in elucidating the genetic basis of

radiotherapy response in search of highly-predictive genetic

signatures. Radiotherapy is a core component of cancer treatment

[2] but has been relatively under-studied: a glimpse at public

resources like Pubmed or array databases shows that radiotherapy

studies constitute less than 1% of the total number of records.

Typically, each individual study involves a number of statistical

and quantitative analysis steps (see [3] for a summary of typical

steps), and can point to gene and gene products that are crucial for

disease and treatment. However, the sparse, high-dimensional

nature of the microarray data space [4], and the large number of

genes involved in often subtle and complex pathways, necessitate

meta analyses for comparing and aggregating results from different

studies. Cross-platform compatibility can only be achieved once

within-platform consistency issues have been fully addressed and

the results of such studies are as good as the gene identification

method. MAQC consortium has generally found that proper

sample preparation is sufficient to dramatically enhance multilab

and multiplatform correlations [5]. The utility of such analyses was

documented in the implementation of the CellMiner tool, a web

based program for the integration of molecular profiling data at

DNA, RNA, protein, and pharmacological levels on the widely

studied NCI-60 cancer cells [6]. Several other studies found added

complexity for meta analysis due to considerable diversity in

source, sample, and platform types [7–9]. The two major

technologies of microarrays differ in the basic design, cDNA

microarrays use full-length transcripts printed onto the slides and

oligonucleotide based arrays constitute a shorter- oligonucleotides

synthesized in situ. A major design question is whether to measure

the expression levels from each sample on a different microarray

(using single-color, or single-channel, arrays), or instead to

compare relative expression levels between a pair of samples on

each microarray (two-color or two-channel arrays). There are

tradeoffs between the two approaches. Single-color arrays allow

for more flexibility in analysis, while two-color arrays can control

for some technical issues by allowing a direct comparison in a
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single hybridization [10]. A recent comparison of single- and two-

color methods on the same platforms found good overall

agreement in the data produced by the two methods [11]. The

Z score transformation procedure for normalizing data is a

familiar statistical method in both neuroimaging and psychological

studies and recently been used in the meta analysis of microarray

datasets from different platforms [12], and is especially suited for

database development [13].

The wealth of data has also brought about the creation of a wide

range of resources. On one end of the spectrum, data repositories

like Gene Expression Omnibus (GEO) [14] provide access to raw

experimental data; on the other end, tools like ONCOMINE [15]

more ambitiously, but typically at a cost, provide facilities for meta

analysis of array data. However, to our knowledge, none of the

existing free resources focus on stress response or radiotherapy

studies combined with visualization outputs.

We develop StRAP, a free web-accessible resource to address

the need to query, compare, profile, and visualize results from

different microarray experiments. StRAP hosts data from diverse

cancer studies (currently from 12 different tissue types), and will be

further extended in the future. We used Z scoring method to

standardize data, since the internally normalized values do not

change with subsequent addition of new datasets. All data are

mapped to Entrez Gene identifiers for consistency in comparison.

The user-friendly interface facilitates exploration by a wide-range

of researchers, including those with little expertise in bioinfor-

matics.

In the remainder of this paper we briefly describe StRAP’s

construction and core features.

Materials and Methods

Architecture
The runtime architecture of StRAP is described in Figure 1.

The architecture is 3-tiered. The basic design of the architecture is

an enhancement of our previously published CellMiner tool [6].

The bottom tier represents the sources of experimental (micro-

array), meta (cell line) data, and external tools that are invoked to

visualize the data. The middle tier represents how the data are

processed, stored, and made available to the user. The pre-

processing steps were performed before deployment. At this stage,

data from the lower tier were accessed, processed (using R

scripting), and stored in the StRAP data repository (comprised of a

MySQL database, and other files stored on the server file system).

The right hand side of the middle tier represents the analysis

‘‘services’’ that are available at runtime to the user. These include

filtering of data (according to user constructed queries), visualiza-

tion of results, and the options to download the data. These

services are made available as web-services and are hosted on an

Apache server. The top tier represents the user interface

(implemented using PHP, Javascript, AJAX, and HTML), and is

organized around three main modules (Genes, Cell lines, and

Arrays).

Data Repositories
Four main data repositories reside at the backend of StRAP: (1)

Gene associated annotation information derived from the National

Center for Biotechnology Information (NCBI, http://www.ncbi.

nlm.nih.gov/), (2) Pre-processed gene expression microarray

molecular profile data (including pre-computed statistics), (3)

Metadata on cell lines, and (4) Metadata on platform-associated

information.

The structured layout of the tables promotes efficient querying

and integration of phenotypic data, metadata and molecular

profile information from various studies. The database supports

multiple concurrent query sessions.

The repositories are stored as a MySQL relational database

(http://www.mysql.com).

Data Preparation
The microarray data were obtained as raw files whenever

available or else as author deposited normalized files from the

GEO database [14], ArrayExpress [16], or in-house experiments.

Two platform types are predominantly used in these studies:

cDNA two-color (National Cancer Institute- ROSP 8K Human

Array and Agilent whole human genome microarrays), and single

color arrays (currently we house Affymetrix and Illumina gene

chip data).

The raw data were assessed for quality and normalized by the

Lowess [17], or MAS5 [18]methods for cDNA, and Affymetrix

arrays, respectively. Z-score transformation was used to obtain a

uniform scale across different studies and platforms, which is

necessary for comparing data from different studies. Pre-computed

statistical tests were performed at three nested-level complexity.

N At the top level, each study is subjected to ANOVA analysis

performed between all controls and cases to give an overall

significance of the study design.

N A tissue level ANOVA analysis is implemented as a second tier

of comparison between all the controls and cases for each

tissue type in a study.

N At the experiment level, for each cell-line/sample, a case-

control comparison is performed by t-test analysis.

Pre-processing and computation of statistical tests are per-

formed in the R environment (http://www.r-project.org/).

Interface
The front end interface is a web-based application implemented

using R, PHP (http://www.php.net/) and Python (http://www.

python.org/). The application is deployed on an Apache HTTP

server (http://httpd.apache.org/) at the National Cancer Institute

(NCI).

Core Features
Data access and presentation is organized around three main

concepts or modules: (1) Genes, (2) Cell lines, and (3) Arrays.

Flexible user-defined data queries can be initiated from any of the

modules; the data visualization options for the results are displayed

in integrated views and may, depending on the query, involve

cross-talk between modules. Several links to external resources

promote a systems biology approach. Table 1 gives a summary of

core features for each module. Pre-computed statistics (as

described in the previous section) enable display of efficient and

intuitive graphs.

Genes
The genes module enables gene-centric queries of the StRAP

microarray studies. Queries can be based on gene or protein

identifiers, synonyms, gene descriptions, or chromosome location.

The results include associated arrays and studies, and a

compilation of gene-annotation information, spatial localization

within the genome visualized in the UCSC Genome browser [19],

and network neighborhood maps generated from protein-protein

interaction networks [20]. Queries can also be constructed using

gene lists defined by the user or generated, for example, from

Gene Ontology (GO) terms [21].

Cancer Profiling Database
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A typical gene-centric query (see Figure 2 for an example

workflow) starts by identifying studies profiling the expression of a

gene (list) of interest. The expression profiles and their statistical

significance are then visualized via boxplots, and barplots (showing

study-level, and experimental-level case-control differences). If the

input involves a list of genes, an interactive heatmap option

enables viewing expressions of genes in selected studies. The

heatmap is visualized using the Java Treeview program [22].

As an added convenience, the genes module includes a gene

identifier conversion utility, which can be used to map from one

type of gene identifier (for example, Entrez gene symbol) to

another (for example, Entrez geneid).

Cell Lines
The cell lines module provides metadata on available cell lines

and associated studies. Queries in this module are tailored to allow

selection of complete studies, by tissue of origin, or individual cell

line. Comparisons can be made for samples within a study or

across studies. (See Figure 3 for an example workflow.) Differen-

tially expressed genes in studies of interest are identified based on

case-control t-test analyses (cell line selection) and ANOVA

analysis (studies with more than one group). The default filter is

set to p#0.05, but can be customized by the user.

Arrays
The arrays module provides an overview of the current contents

of the database, including the number of studies, information on

platforms, contributors, and available meta-information. Pre-

processed data or data from the original source can be

downloaded from this module. Integrated queries from this

module allow performing comparison of studies by common

samples or union of genes within the selected studies.

An example workflow is shown in Figure 4. Arrays can be

filtered by the select stimulus used in the study. Given our interest

in effects of ionizing radiation, most of the arrays in the repository

have ‘‘radiation’’ as stimulus.

Validation
Radiation therapy is a core component of cancer treatment.

However, radiation response often varies considerably among

different patients [23]. Therefore, it is important to identify genes

predictive of radiation response. Equally important is to validate

Figure 1. StRAP architecture diagram. The diagram represents a runtime view of the architecture of StRAP. The lower tier represents the sources
of experimental data, meta data, and external tools that are invoked to visualize the data. The middle tier represents how the data are processed,
stored, and made available to the user. The right hand side of the middle tier represents the analysis ‘‘services’’ that are available at runtime to the
user. The higher tier represents the user interface, and is organized around three main modules (Genes, Cell lines, and Arrays).
doi:10.1371/journal.pone.0051693.g001
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the results of an analysis in independent data with similar

experimental design.

To illustrate the functionality of StRAP, we used a study by

Rieger and colleagues [24] on peripheral blood lymphoblastoid

cells derived from patients with acute radiation toxicity and

control group of patients with mild toxicity. Using gene expression

profiling, the authors reported 24 highly predictive genes of

radiation response. We sought to explore the expression of these

24 genes in several independent studies from StRAP database, and

found 18 genes significantly changed among the selected studies.

Figure 2. Example of a workflow initiated from the Genes module. Typically, a workflow initiated from the Genes module involves 1)
entering a gene of interest (or list of genes), 2) displaying and selecting studies featuring the gene, 3) choosing a visualization option, and 4+)
displaying and inspecting the chosen visualization. The example shown is for gene ‘‘ABL1.’’.
doi:10.1371/journal.pone.0051693.g002

Cancer Profiling Database
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Figure 3. Example of a workflow initiated from the Cell lines module. The Cell lines initiated workflow typically starts with 1) selection of a
cell line (or tissue) of interest (here ‘‘LCL’’), 2) inspection of the cell line metadata, and associated studies, 3) comparison of studies of interest with a
metamap showing significance of differential expression of individual genes for the given cell line, and 4+) inspecting individual genes via barplots
and boxplots.
doi:10.1371/journal.pone.0051693.g003

Cancer Profiling Database
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Figure 4. Example of a workflow initiated from the Arrays module. The Arrays workflow typically starts with 1) inspection of available arrays
and selection of a study of interest, 2) viewing of experimental conditions and selection of a p-value threshold for significance of gene expression
differentiation, and 3) study of expressions heatmap. Comparison of several arrays can also be initiated from the overview page.
doi:10.1371/journal.pone.0051693.g004
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To test if we can reproduce the authors findings, we first selected 3

studies, 2 studies (studies 4 and 6) containing lymphoblastoid cells

treated with different doses of radiation, and as a negative control,

we chose 1 study (Study 14) with stem cells from CNS tissue with

hypoxia stimulus. A multi-study heatmap (Figure 5, Step 1) on the

gene subset showed a selective up regulation of the gene subset in

studies 4 and 6 but, not in study 14, confirming the role of these

genes in response to radiation. Of particular, CDKN1A is a DNA

damage response, cell cycle regulating gene reported to be induced

by radiation [25,26]. We explored the comparative profiling of

CDKN1A gene in a range of studies with diverse cell lines from

our database that are treated with (Studies 2–5) or without

radiation as stimulus (Study 14). A comparative gene profiling

across multiple studies (Figure 5, Step 2) showed a significant

induction of the gene selectively in radiation treated studies. In

addition the induction is found to have no effect at low dose

radiation (0.4 Gy in Study 3) indicating cellular response to

radiation is dependent on dose rate used.

Conclusions

StRAP is an open-access resource developed primarily to

support research on the effects of stress with major emphasis on

ionizing radiation on cancer in a systems-biology context.

Currently data from twenty one studies have been integrated

and made accessible through extensive query options, and a user-

friendly web-based interface. Supported by statistical and quan-

titative analysis methods in the background, the resource

overcomes the limits of databases dedicated to raw data

exploration, making it possible to infer nontrivial knowledge (such

as the differentially expressed genes in multiple studies).

Currently because of the limitation of the number of studies

available, it may have limited biological significance. However, the

framework of the database is flexible and would allow extensions

with data from other types of cancer studies that will help in novel

findings.

The database will be periodically updated with new studies and

features. We plan, for example, to enable construction of

interaction networks using literature text-mining, and information

from the Human Protein Reference Database (HPRD) [27] and

gene set enrichment analyses and visualizations.
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