
Review

Lu Wen* and Fuchou Tang*

Organoid research on human early development
and beyond

https://doi.org/10.1515/mr-2022-0028
Received August 31, 2022; accepted October 3, 2022;
published online October 31, 2022

Abstract: The organoid field has been developing rapidly
during the last decade. Organoids for human pre-, peri- and
post-implantation development have opened an avenue to
study these biological processes in vitro, which have been
hampered by lack of accessible research models for long
term. The technologies of four fields, single cell omics
sequencing, genome editing and lineage tracing, micro-
fluidics and tissue engineering, have fueled the rapid
development of the organoid field. In this review, we will
discuss the organoid research on human early develop-
ment as well as future directions of the organoid field
combining with other powerful technologies.
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Introduction of organoids

Cell self-organization is a fundamental nature of animal
development in vivo. The development of a whole human
body from a fertilized egg can be regarded as a highly
complex and highly ordered self-organization process.
Two-dimensional (2D) cell culturing has made great contri-
butions to our knowledge of nearly all basic biological
processes such as DNA replication, transcription, trans-
lation, cell cycling and signaling transduction.However, the
2D cultured cells usually show no self-organization char-
acteristics as they do during development. An organoid is
defined as a structure in which pluripotent stem cells
(PSCs), multipotent stem cells, or adult stem cells (ASCs)

are differentiated into multiple cell populations that self-
organize or assemble into a tissue that resembles a mini-
organ in vivo in three-dimensional (3D) culture. Yoshiki
Sasai’s group and Hans Cleves’ group are the first to show
that, when cultured in 3D conditions, pluripotent stem
cells (PSCs) and adult stem cells (ASCs) are able to self-
organize into mini-organ-like structures. Sasai’s group
showed that aggregates of mouse embryonic stem cells
(ESCs) in 3D culture were able to autonomously generate
polarized cortical neuroepithelia, elegant optic cups and
anterior pituitary structures [1–3]. At the same time, Sato
et al. in Cleves’ group showed that a single Lgr5-positive
murine intestine stem cell cultured in 3D matrigel was
able to form an intestine crypt–villus structure [4]. These
works demonstrated the remarkable self-organization
capacity of in vitro cultured cells and opened the avenue
of the organoid field. In the last decade, the organoid field
has been boosting [5, 6]. Since the work of Sasai, Clevers,
Sato and colleagues, organoids for most mouse and hu-
man organs including brain, intestine, stomach, liver,
lung, kidney, blood vessel and heart have been
reported [7–13]. In this review, we will focus on organoids
of mammalian (particularly human) early development,
which are also termed as embryoid, blastoid or gastruloid
for different structures. We will also discuss on future
directions of the organoid field in general.

Organoids of mammalian early
development

The mammalian early development, including pre-, peri-
and post-implantation development, starts from the fertil-
ized egg or the zygote. After several rounds of cleavage
divisions and two waves of asymmetric divisions, a zygote
forms a blastocyst which then implants into the uterus.
Then, a series of complexmorphological changes including
polarization and lumenogenesis of the epiblast, primitive
streaking and gastrulation occur for building three germ
layers of the body, as well as primordial germ cells which is
generated to faithfully transmit genetic information from
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generation to generation to complete the life cycle of an
individual [14]. Thus, themammalian earlydevelopment is a
natural self-organization process. Since the nutritious and
oxygen problem is still not serious during the stage due to
the relatively small size of the embryos, one can imagine
that it is possible to reconstitute parts or even whole of this
process in vitro using cultured stem cells [15, 16].

The blastocyst is the first well-organized structure
in mammalian early development. It contains three cell
types: the outer extra-embryonic trophectoderm (TE), the
inner pluripotent epiblast (EPI) andprimitive endoderm (PE).
In morphology, it contains a fluid-filled cavity within the
spherical thin-walledTEcells. For reconstitutingablastocyst-
like structure, Nicolas et al. reached the first success in 2018
by assembly of mouse ESCs and trophectoderm stem cells
(TSCs) [17]. In the approach, mouse ESCs were firstly added
to microwells to allow formation of aggregates and then
mouse TSCs were added that leaded to spontaneous orga-
nizationof TSCcystswith internal ESCaggregates,whichwas
termed blastoids by the authors. Stimulation of cyclic aden-
osine monophosphate (cAMP) and Wingless/INT-1 (WNT)
signaling pathway greatly increased TSC cavitation and
blastoid formation, reaching efficiency as high as 70% at a
certain combination ratio of 8 ESC cells and 20 TSC cells per
microwell. Later, several groups generatedmouse blastocyst-
like structures using various protocols, including the one
using extended pluripotent stem cells as the single starting
cell type [18–21]. In 2021, several groups reported the gener-
ation of human blastocyst-like structures [22–27]. In one of
these studies also by Nicolas and colleagues, naive human
pluripotent stem cells (hPSCs) were aggregated in non-
adherent hydrogel microwells upon inhibition of the Hippo,
transforming growth Factor β (TGF-β) and extracellular
regulated protein kinases (ERK) pathways [24]. They showed
that this approachwasable togeneratehumanblastoidswith
more than 70% efficiency.

Implantation is a highly complex maternal-fetal inter-
action process including attachment of the blastocyst to the
uterine surface epithelium, mature of polar TE, invasion of
the trophoblast into endometrium, and transformation of
endometrium into decidua [28]. The mouse and human
blastoids show key characteristics for implantation. After
transferred into the uterus of pseudo-pregnant mice, blas-
toids were able to induce deciduae formation [17]. Also, the
human blastoids were able to attach to hormonally stimu-
latedendometrial cells [24]. Interestingly, results showed that
pseudo-blastoidswithout epiblast component cannot attach,
indicating that EPI induces polar TE maturation for attach-
ment [24]. Except for the blastoids, researchers also devel-
oped other organoid systems for modeling implantation.
Trophoblasts derived from human placentas can be cultured

in Matrigel-based 3D system to form trophoblast organoids,
which can be kept for long term and showed complex
structures resembling the organization of placental villi in
vivo [29, 30]. Also, Park et al. developed an implantation-on-
a-chip micro-engineered system to model the invasion of
fetal extravillous trophoblasts into the maternal uterus [31].

During peri-implantation development, EPI polarizes
and forms a pro-amniotic cavity, and a bipolar embryonic
sac is generated with specification of primitive streak cells
setting for gastrulation. Bedzhov et al. showed that TE and
PE derived laminin provided a basal membrane niche for
polarization and lumenogenesis of EPI in ex vivo cultured
mouse peri-implantation embryos [32, 33]. This process can
bemimicked in cultured ESCs.When ESCs are cultured in a
2D environment with laminin, they form an epithelium
structure. While they are dissociated and then put in a 3D
environmentwith extracellularmatrix (ECM) proteins, they
will self-assemble into a lumen structure with an epithe-
lium [32, 34]. The 3D cultured ESCs can also be transformed
into an amnion-like squamous cyst structurewith activated
bone morphogenetic protein- (BMP)/small mother against
decapentaplegic (SMAD) signaling [35]. Further, using a
microfluidic device, Zheng et al. generated an asymmetric
epiblast-like cyst structure resembling the human embry-
onic sac before the onset of gastrulation at 7 to 12 days post-
fertilization [36].

Gastrulation is a highly ordered and complex process to
build the animal body plan, together with differentiation of
three germ layers: the ectoderm, mesendoderm and endo-
derm. While the above-mentioned organoid models reca-
pitulate key aspects of peri-implantation development,
none of them reach the gastrulation stage. It has long been
known that suspended ESCs aggregate into a structure
termed embryoid body (EB) that can differentiate into
various cell types of all three germ lays. However, it shows
little ordered self-organization features. So EBswere usually
regarded as a disorganized embryo-like structure. Warm-
flash et al. demonstrated that colony size andgeometrywere
important factors for reproducibly spatially ordered differ-
entiation. When confining the colony size using micro-
patterns, humanESC colonies can robustly differentiate into
outer trophectoderm-like, intermediate mesendoderm-like
and an inner ectoderm-like cells, in response to BMP4 [37].
Using themicropatterned culture system, human ESCs were
induced into a human organizer that was able to induce
and contribute to a secondary axis when grafted into chick
embryos [38]. To promote an ESC-derived cell aggregate to
initiate a gastrulation-like event, one should first break
symmetry of the aggregate. Simunovic et al. showed that a
defined uniform BMP can spontaneously break symmetry
of 3D-cultured human ESCs via activating both the WNT
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signaling and its inhibitor Dickkopf (DKK) [39]. Alfonso
Martinez Arias and colleagues showed that mouse and
human ESC aggregates, when pretreated by Wnt agonist
before aggregating,wereable to break symmetry and further
undergo gastrulation-like events and elongation along an
anterior-posterior axis [40–42]. This 3D structure, which
they termed gastruloids, showed patterned expression of
neural, mesodermal and endodermal cell types, and when
put into a low concentration of Matrigel, induced somato-
genesis [43]. Together, these results demonstrate the
remarkable capacity of self-organization in vitro cultured
ESCs that canmimic a developmental process as complex as
gastrulation.

Future directions of the
development of organoid systems

The organoid technology is closely associated or inter-
connected with technologies of other fields. Advances of
single cell omics sequencing, genome editing and lineage
tracing, microfluidics and tissue engineering technolo-
gies not only have supported and promoted the devel-
opment of the organoid field during the last decade, but
will also further fuel its future progressions (Figure 1).

Combining organoid systemswith single cell
omics sequencing technologies

For the organoid culture systems, the most valuable usage
is to use them to mimic the in vivo embryonic development
process under physiological conditions. Comparing with

conventional 2D cell culture strategy, the cellular heteroge-
neities are greatly elevated in 3D organoid culture systems.
Immunostaining is generally applied for organoids, always
providing a first clue on whether a certain cell type exists in
an organoid. However, evenwhen a cell in culture expresses
a number of marker genes specific to a certain cell type in
vivo, one cannotmake a conclusion that the given cell type is
captured in the organoid. Furthermore, it is difficult to
determine if all types of the cells in an organoid faithfully
resemble those in an embryo of the exact developmental
stage, the exact cell types, and the exact proportions and
spatial organizations. In contrast to immunostaining, single
cell RNA-seq provides a much higher dimensional view on
the transcriptome state of individual cells, and thus infor-
mation on how many cell types or cell states exist in the
organoids and how closely the examined cell type in orga-
noids resemble the corresponding cell type in vivo [44]. The
Human Developmental Cell Atlas, which is a critical part of
the Human Cell Atlas project, plans to give an accurate atlas
of human embryonic development at single-cell resolution
and whole-transcriptome scale [45]. Several scRNA-seq
databases of the human and monkey pre-, peri-, and post-
implantation development have been available during
recently years, which provide invaluable references of com-
parison for evaluating the in vitrohumanearlydevelopmental
organoid models [46–53]. Niu et al. group also generated
organoids from monkey blastocysts, which have great
values for stem cell line derived organoid studies [52]. With
these powerful resources in hand, we will know whether
all cell types and their proportions and spatial organization
in an organoid faithfully resemble those in an embryo. In
this way, we will have a gold standard for the quality of the
organoids from mimicking the in vivo embryonic develop-
ment point of view. This will resolve many potential debates
in the field, for example, among many different protocols
and strategies from different labs to generate the same type
of organoids, which is a better one. The one most faithfully
mimic the in vivo developmental process based on single cell
omics sequencing results will probably be the best one.

For human blastoids, scRNA-seq showed that they
comprised only three distinct transcriptomic states, and
these states matched with the TE, EPI and PE cell types in
vivo, thus confirming their resembling to human blasto-
cysts [24]. Also, scRNA-seq analysis of mouse gastruloids
showed that the gastruloids contained various cell types
from three germ layers; yet, the anterior neuronal cell types
were absent [43]. For the ASC-derived organoids, as an
example, scRNA-seq for mouse intestinal organoids distin-
guished cell groups corresponding to enterocytes, enterocyte
precursors and transit amplifying cells, as well as rare
enteroendocrine cells, thus confirming the differentiation

Figure 1: A diagram shows interconnection between the organoid
field and other technologies. Four technologies including single cell
omics sequencing, gene editing and lineage tracing, microfluidics
and tissue engineering promote the organoid field.
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features of the intestinal organoids [54]. These scRNA-seq
data indicate that the organoids both closely resemble and
have discernible differences with the corresponding type of
cells in vivo.

Another layer of single cell omics is the epigenome. It
comprises a complex set of features on genome that regulate
gene expression in a DNA sequence-independent manner,
including the chromatin accessibility, DNA methylation,
histone modifications, transcription factor binding to
genomic loci and chromatin structure conformation. Single
cell epigenome sequencing techniques have been developed
fast during recent years [55]. Epigenome should provide
regulatory layers of information for comparisons between
the organoid and the corresponding in vivodevelopment. For
example, the trophoblast organoids were shown to display
global DNA hypomethylation and local hypermethylation
patterns similar to in vivo TE, thus verifying their character-
istics [29]. Since the transcriptome differences between the
organoid cell types and their corresponding in vivo cell types
usually have an epigenetic reason, the single cell epigenome
sequencing shouldhelp elucidate thisand thusprovideclues
for improving the organoid culture conditions. Recently
single-cell chromatin accessibility data have identified
approximately 1.2 million candidate cis-regulatory elements
(cCREs) in 222 distinct cell types in human fetal and adult
tissues, which enrich hundreds of genome wide association
study (GWAS) variants of traits/diseases [56]. Combined
analysis of human trait/disease modeling organoids and
single-cell epigenome sequencing should help explore
molecular mechanisms about how these GWAS variants are
involved in human traits/diseases.

Further, the spatial transcriptomics technologies will
help elucidate the spatially resolved gene expression pat-
terns of an organoid structure [57]. A spatial transcriptomics
technique, tomo-seq, has been applied to analyzing the
mouse gastruloids. The results showed a reproducible
expression pattern shift from the anterior to the posterior
sections of the gastruloids, which was similar to the E8.5
mouse embryos in vivo, thus providing reliable evidence that
the gastruloid showed anterior-to-posterior axis formation
resembling the in vivo gastrulation development [43]. The
organoid formation generally has much lower reproduc-
ibility comparing with their corresponding in vivo organs.
This makes it more difficulty for the spatial transcriptomics
analyses of an organoid comparing with a normal embryo
or organ. The spatial transcriptomics technologies are
rapidly developing regarding easiness, cost, throughput
and particularly single-cell resolution. These improvements
should increase their powerfulness for analysis of organoids.

Combining organoid systems with genome
editing and lineage tracing technologies

The CRISPR/Cas-based genome editing technology has
revolutionized the biological and medical fields. It provides
very powerful tools for functional analysis to reveal the
causal genotype-phenotype relationships at whole genome
scale in one experiment, permitting thousands or even all of
the twenty thousand protein-coding genes in our genome
being functionally screened [58]. One of the most important
advantagesof theorganoid is that a largenumberof subjects
are available for functional screening, which alleviates the
ethical problems related to acquiring human embryo or fetal
tissues for experimental analyses. The combination of
organoid systems and genome editing technologies will be
an ideal strategy to address the functions of thousands of
genes involved in human embryonic and fetal development.

However, one disadvantage of the organoid is the
relatively high variabilities and high batch effects. To over-
come these limitations, Esk et al. developed a strategy that
compared the wild-type and the mutant cells within the
same individual organoid bymixing thewild-type stemcells
and the mutant stem cells before generating individual
organoids, and screened for microcephaly candidate genes
using cerebral organoids [59]. They also incorporated
another powerful strategy, genetic lineage tracing, into the
organoid analysis by tagging different barcodes to the wild-
type and mutant (CRISPR)/Cas constructs. By counting the
ratio of the barcodes of the mutant to the wild-type Cas-
transfected cells, the authors were able to discern whether a
candidate gene specifically affected cell proliferation after
neurogenesis or cell proliferation when in 2D stem cell
culture.

There are over one million cis-regulatory elements in
humangenome, includingpromoters, enhancers, insulators,
and silencers. The cis-regulatory elements are the essential
nodesof gene regulatorynetwork that controls development,
yet the function and mechanism of most cis-regulatory ele-
ments inhumangenome for embryonic development are still
unexplored. The organoid is an excellent model for studying
the function and mechanism of a cis-regulatory element
during human development. However, since a cis-regulatory
element usually play fine-tuned roles in gene expression
regulation, the high variability of the organoid system
impedes such analysis. Besides the strategy to compare the
wild-type and the mutant cells in the same individual orga-
noids, another strategy is to compare gene expression
between the mutant allele and the wild-type allele (which
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serves as the most stringent control currently) in the same
individual cell, since generally the cis-regulatory element
solely control the expression of the gene on the same chro-
mosome [60] (Figure 2). Although heterozygous single
nucleotide polymorphism (SNP) information in the exons of
the analyzed gene is needed, this is themost stringentway to
remove experimental variations and batch effects for gene
functional studies in organoid systems.

An interesting strategy is to study the evolutionary
molecular mechanisms of the cis-regulatory elements using
allele-specific expression in organoids. Human has many
species-specific characters even comparing to non-human
primates. Themost striking one is the evolution of our brain.
The evolutionary molecular mechanisms underlying these
characters should on a large part be genetic changes of the
cis-regulatory elements of brain development related genes.
However, direct comparative analyses of the brain devel-
opment in human and non-human primate is very limited.
Agoglia et al. fused the induced pluripotent stem cells
(iPSCs) of human and chimpanzee to generate a set of
tetraploid hybrid stem cells, and successfully generate brain
organoids from these cells [61]. By comparing the allele-
specific gene expression and allele-specific epigenetic
modifications, this platform was great to investigate the
differences of cis-regulatory elements between human and
chimpanzee, since the alleles of human and chimpanzee
existed in the same individual cell and thus essentially all of
the systematical experimental variations were eliminated.

Lineage tracing is a powerful approach for understand-
ing the developmental relationships among different cell
types. This is generally achieved in animal models based on
genetic tools. Endogenous genomic changes information
has recently opened the door of lineage tracing for human
development [62, 63]. However, this requires enoughsomatic
mutation information to be covered, and is suitable for
human clinical samples but cannot be combined with
functional studies. The organoid system provides a unique
opportunity for the lineage tracing study for human devel-
opment and related diseases. Genetic lineage tracing tech-
niques based on transgenic fluorescent proteins, Cre-
mediated recombination or CRISPR/Cas9-mediated genome
editing have already been established for the animal model
study [64]. Using tamoxifen-inducible Cre-mediated fluo-
rescent protein knock-in alleles of LGR5 and KRT20, the
LGR5-positive and KRT20-positive cells of colorectal cancer
organoids were traced after xenotransplanted under the
renal capsules of immune-deficient mice. This revealed that
the self-renewal anddifferentiationof the LGR5-positive cells
as potential cancer stem cells, general post-mitotic feature of
the KRT20-positive cells and the plasticity of KRT20-positive
cells to revert back to proliferative stem cells [65]. Further
multiphoton microscopy-based live cell lineage tracing of
individual LGR5-positive cells in subcutaneous xenograft of
colorectal cancer organoids identified p27 as a marker for
dormant LGR5-positive cells [66]. Besides these traditional
genetic lineage tracing approaches, the recently developed
CRISPR/Cas9-based genetic lineage tracing techniques are
able to build a high-resolutionmap for viewing all branching
of the developmental lineage tree by sequential introducing

Figure 2: Allele-specific analysis of a cis-regulatory element allevi-
ates high variation of the organoid system. For one gene locuswithin
an individual cell, there are two alleles (allele A and B marked by
single nucleotide polymorphism [SNP] C and T, respectively). Upper
panel: The gene on each allele is activated by a distant enhancer
(green box) under normal condition. Lower panel: When the
enhancer on allele A is disrupted by gene editing (grey box with a
cross), the gene on allele A is inactivated while the one on allele B
keeps expression, which can be discerned by specific reduction of
the transcript with SNP C. In this way, one can perform functional
study for the relationship between a putative cis-regulatory element
and a gene in a well-controlled manner at single-cell level despite of
the high variation of the organoid system.
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DNA barcodes to multiple endogenous or transposon-
integrated loci [67, 68]. When the DNA barcodes can be
transcribed, scRNA-seq is able to be integrated to provide
reliable lineage tracing and developmental trajectory infor-
mation [68]. These techniques are particularly useful for the
PSC-derived organoids that have more complexity of many
different cell types and states.

Combining organoid systems with
microfluidics technologies

The current organoid culture systems generally require
milliliter volumes of medium with expensive cytokines and
growth factors and are expensive. Combination of organoid
systems with microfluidics technologies will be an ideal
strategy to reduce the cost for several orders ofmagnitudeby
culturing individual organoids in microliter volumes. More
importantly, microfluidics systemswill allowmore accurate
control of the culture condition by providing better organi-
zation of different compartments, better control of the con-
centrationanddurationof cytokine treatment, better control
of shearing forces, etc. In this way, the variations among
individual organoids can be minimized, allowing for better
removing of batch effects.

Park et al. built a microfluidic device to model 3D struc-
tural organization of human maternal-fetal interfaces [31].
The device contains three parallel channels. The center
channel was injected with ECM hydrogel to create a 3D
hydrogel scaffold that mimics the maternal endometrium.
One side channel was seeded with primary human uterine
endothelial cells (ECs) that mimic a maternal spiral artery.
The other side channel was seeded with human extravillous
trophoblasts (EVTs) to mimic the tip of the invading tropho-
blasts. The invasionof EVTsand the remodeling of ECs canbe
clearly visualized in this platform, thus greatly facilitated
investigation on biological questions such as how ECs,
decidualized stromal cells and uterine natural killer (uNK)
cells regulated EVT invasion, and how invading EVTs regu-
lated spiral artery remodeling. Particularly, many aspects of
these questions are human specific that are difficult to be
studied in animal models.

Zheng et al. built amicrofluidic device tomodel the post-
implantation human embryo [36]. The device also contained
threeparallel channels, includinga cell-loading channel and
a chemical-induction channel that were separated by a
center channel loaded with basement membrane matrix.
This platform thus allowed for precise control of signaling
factors that functioned on the cells, from the aspects of
ligand-receptor direction, type of interaction, concentration,
and others. On the other hand, the cells can also be

controlled and genetically manipulated. Besides highly
controllable, the experimental systemwasalso reproducible,
scalable and more cost effective. The authors showed that
BMP4 from the induction channel was able to highly repro-
ducibly generate flattened, amniotic ectoderm-like cells at
the pole exposed to BMP4, and a stratified, epiblast-like
epithelium at the other pole. This structure resembled the
human post-implantation asymmetry embryonic sac.

Combining organoid systems with tissue
engineering technologies

The current organoid system is still not satisfactory
regarding the size, lifespan and complexity. Improving of
these aspects should increase the application scenarios of
the organoid system to address more biological questions
and fit the clinical therapy requirement. Combing with
tissue engineering strategies should help improvement on
these aspects of organoid system.

Tissue engineering strategies have been used to
increase the size and improve the efficiency of organoid
culture. Due to lack of vasculature, most current organoid
models are limited to a size of less than one millimeter
(mm) in diameter. The spinning bioreactor can enhance
diffusion of oxygen and nutrients, and has been applied to
support the long-term growth of suspended brain organo-
ids up to 4 mm in diameter [8]. To overcome the short-
coming of low throughput, bulky size and high cost of
commercially available spinning bioreactors, an in-house
made miniaturized multiwell spinning bioreactor from 3D
printing has been reported [69]. Further enhancing oxygen
delivery with precise control of O2 and CO2 levels and at-
mospheric gas pressure in roller culture has been shown to
allow ex utero development of mouse embryos to the hin-
dlimb formation stage (E11) [70].

Micropatterning to confine the cell number is a simple
and efficient tissue engineering strategy to improve the
reproducibility of organoids [17, 37, 71]. Also, in order to
guide 3D differentiation of the embryoid body to the brain
organoid in a suspending culture system, a poly(lactide-co-
glycolide) copolymer (PLGA)fibermicrofilaments havebeen
used as a floating scaffold, which improves neuroectoderm
formation and cortical development of the microfilament-
engineered cerebral organoids [72].

Assembly of different cell types or organoid types
has been used to make a combined organoid with
increased complexities. The gradient of sonic hedgehog
(SHH) signaling activity is critical for forebrain region-
alization. To add this signal to the brain organoid, an
hPSC line with an inducible SHH allele were firstly
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aggregated before adding wild-type hPSCs for aggrega-
tion into the embryoid body. After differentiation of the
embryoid body to neuroectoderm, the SHHwas activated to
induce forebrain organoid with an ordered self-organized
dorso-ventral and anterior-posterior positional axes [73]. In
another study, two types of human neural spheroids
resembling the dorsal or the ventral forebrain were assem-
bled tomodel themigration ofGABAergic interneurons from
the ventral to dorsal forebrain with their functional inte-
gration into the dorsal forebrain microcircuits [74]. Also,
human PSC-derived neural crest cells and human devel-
oping intestine organoids were combined to generate
intestine organoids with incorporated enteric nervous sys-
tem [75]. A kidneymetanephron organoidwith contiguously
forming nephron structures were reconstructed by assem-
bling PSC-derived nephron progenitors, PSC-derived
ureteric buds and stromal progenitor population sorted
from embryonic mouse kidneys [76].

3D bioprinting is a powerful tissue engineering tool to
precisely control cell deposition and biocompatible mate-
rials [77]. Researchers have investigated the application of 3D
bioprinting for building complex organoids [78, 79]. In one
study, human PSCs were 3D-printed to a heart structure with
two chambers and a vessel inlet, and a beating mini-heart
can be generated after differentiation of the PSCs [80]. In
another study, intestineASCswere used as building blocks to
be directly 3D-printed into extracellular matrices to generate
gastrointestine-like structure with self-organized features
such as lumens and tubular intestinal epithelia [81]. These
studies show that centimeter-scale organoids can be pro-
duced by using 3D bioprinting. Organ structures of even
larger size are possible to be constructed using improved
bioink technologies or decellularized organ scaffolds [82, 83].

Applications of organoid systems

The organoid should firstly help more thorough under-
standing of basic developmental biology, particularly for
humandevelopment. For example, the human implantation
defects are a major cause of early pregnancy loss. However,
due to lack of available research models, molecular mech-
anisms of this process remain largely elusive [84]. Systems
such as blastoids provide invaluable tools for elucidate this
process. Also, human brain is one of the most marvelous
products of evolution. Due to its uniqueness, many features
of human brain are not suitable or not able to be studied by
animal models such as mouse. Human brain organoids
provide excellent novel tools to address many biological
questions about human brain development.

The organoid system also serves as an excellent tool
for human disease modeling [8, 85, 86]. Many human dis-
eases do not have suitable animal models, which not only
hamper understanding of their molecular mechanisms, but
also hamper drug development. Chromosome aneuploidy is
a big problem for human reproductive health [87]. It occurs
in human preimplantation embryos at a frequency much
higher than in themouse.Amodel for studyingchromosome
aneuploidy in human preimplantation embryos is lacking
for many years. A human chromosome aneuploidy model
was developedusingmicropatternedhumanorganoids [88].
The results suggested that aneuploid cells were greatly
reduced from embryonic germ layers, but not from the
extraembryonic tissue, thus supporting the emergingnotion
that aneuploid mosaic embryos were able to give healthy
baby due to selective depletion of aneuploidy cells in EPI.

Many neuropsychiatric diseases such as autism spec-
trum disorder (ASD) are elusive in pathogenesis, despite
that a number of disease-associated genes have been
identified by GWAS studies. These diseases lack appro-
priate animal models and human cerebral organoids are
emerging as a promising tool for understanding them. In
particularly, patient-derived iPSC-cerebral organoids have
been established to help reveal common and various
pathological mechanisms of these diseases [89, 90].

For drug development, the United States Food and
Drug Administration (FDA) has recently approved the first
drug for chronic acquired demyelinating polyneuropathy
(CIDP) and multifocal motor neuropathy (MMN) to enter
clinical trials based on its efficiency data on organoid
models without preclinical data from big animal models.
As for precision medicine, the system can also be used to
understand underlying mechanisms behind drug response
variations among different individuals [91].

The organoid system can also be used for modeling
human cancers. The patient cancer tissue-derived organoid
is emerging as a promising tool to test the chemotherapy or
target therapy drugs for precision therapy of cancer [92]. We
recently showed that organoids from human colorectal
cancer tissues faithfullymimic gene expression signatures of
cancer epithelial cells. Organoids from adjacent normal tis-
sues showed loss of normal colon epithelial cell’s gene
expression signatures, but acquired some cancer epithelial
cell’s gene expression features. This indicates that the colo-
rectal cancer organoid can be a reliable system for screening
for anti-cancerdrugs for colorectal cancerpatients.However,
the organoid from the adjacent normal tissue may not be
suitable for pairwise screening of drugs specifically killing
colorectal cancer cells but not normal colorectal epithelial
cells of the same patient [93]. Organoids can not only model
the biological characters of the cancer cells, but also
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interactions between the cancer cells and their microenvi-
ronment cells including fibroblasts and immune cells such
as T cells, NKcells, andmicrophages [94]. In addition, cancer
initiation can also be modeled using PSC-derived
organoids [95].

The organoid should also be applied to regeneration
medicine. For example, current protocols for generating
mature functional cells such as human pancreatic beta
cells are mainly based on 2D culture. It is tempting to
speculate that 3D organoid culture system will help
establish more efficient protocol and more mature cells
that are functionally closer to corresponding cells in vivo.

Perspectives

In the future, the organoid field should be improved in
several aspects (Figure 3).

First, improving the reproducibility. A great advantage
of the animal model is that the in vivo biological processes,
particularly development, are highly robust and repro-
ducible. The robustness and reproducibility of current
organoid systems are much lower and far from satisfying.
The variations between different batches of organoid dif-
ferentiation experiments are usually quite high even in the
same lab from the same operator. And even the variations
(morphologies, sizes, organizations, differentiation stages,
etc.) among different organoids in the same dish are rela-
tively high. So now mainly the master regulators for a
specific developmental process are tested in organoid
systems, leaving subtler phenotypes but probably more

pathologically relevant regulators untested. The develop-
ment is a well-controlled multiple-step process that any
error at any step may be amplified, leading to variations
between different individuals. The precise control of every
step of organoid experiments is important, including the
initial cell input, the number of the cells used, the timing
and the concentration of signaling factors used, etc.

Second, improving the controllability. The in vivo tissue
is composed of multiple cell types. These cell types interact
with each other by reciprocal signaling pathways and
extracellularmatrix that have strict spatial distributions and
fine-tuned functional organizations. It is a challenge to
precisely control these inter-cellular interactions and spatial
signaling in the organoid system, considering that we know
very little about the self-assembling principles of embryonic
development. Tissue engineering techniques such as
microfluidics have been used for better controllability.
Commercializationmay help popularize these technologies.

Third, improving the throughput. One advantage of
the organoid system is availability of large number of
organoids that facilitate large scale functional screening.
Further development of technologies for parallel analysis
of the perturbation of hundreds or even thousands of
genes should further enhance the power of organoid
system for studying gene function under physiological
conditions.

Fourth, reducing the cost. The cost of organoid culture
is still high mainly due to using the expensive purified
growth factors and cytokines as well as milliliter volume of
the culture medium. Using small chemical molecules to
replace the growth factor proteins may drastically reduce
the cost. Also current ECM materials are generally made
from Ewbing sarcomas with ECM proteins and growth fac-
tors. Is it possible to replace them with cheaper matrix.
Microchips canhelp reduce the cost by reducing the reaction
volume of the system frommilliliters in a dish to microliters
or even nanoliters in microfluidics chips.

Fifth, increasing the tissue complexity. PSC-derived
organoids can contain cell types of all three germ layers;
however, they are generally less complex and much less
ordered than the corresponding tissues in vivo. The vascula-
ture is not incorporated, which still serves as a big challenge
in the field. Interactions with immune cells are missing, and
stem cell niches are uncompleted. The left-right axis has not
been mimicked as the anterior-posterior and dorsal-ventral
axes. By assembling different cell types, tissues or organs
and by applying tissue engineering tools including micro-
patterns, bioreactors and 3D bioprinting, we should be able
to resemble more complex developmental processes and
physiological functions in the organoid system, and build
more complex and functional tissue and organ structures.

Figure 3: Characteristics of the current organoid technology. A pie
chart shows the current states of sevenmajor technical characters of
current organoid systems in general: Reproducibility,
controllability, throughput, cost, complexity, lifespan and size. The
character is positionedmore peripherally if it is in amore developed
state.
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Sixth, increasing the lifespan. Comparing with animal
models such as mouse, human organs have much longer
period of lifespan including maturation and maintenance.
For fully resembling physiological processes such as
neuronal circuit construction and pathological processes
such as senility, the organoid should have long enough
lifespan. On the other hand, the molecular mechanisms
underlying the different developmental duration of
different species are elusive, and the organoid serves as a
good model for investigation.

Seventh, increasing the size. Lacking vessel supports is
a main limit factor of the sizes of the individual organoids.
By using spinning to provide nutrient and oxygen, brain
organoids can grow up to 4 mm of diameter. However, this
is usually still much smaller than the in vivo organs.
Improvement of culture system to allow more efficient
nutrient and oxygen supply or even vessel development
may enable development of larger organoids for more
complex organ-level study and regeneration medicine.
Ideally the size of an organoid should be improved from
the current sub-millimeter to centimeter, which will mimic
the development of an organ in a much better way. The
achievement in tissue engineering field will help a lot for
improving the complexity and sizes of organoids,whichwill
probably permit reconstructing a functional human organ
such as heart, lung, liver and kidney in the future [82].

Now organoid systems are helping us to mimic human
embryonic development at millimeter scale, which permit
us to analyze molecular mechanisms of numerous local
interactions and self-organizations among different types of
cells and at different developmental time points. In long-
term, the organoid systems will probably be improved to
mimic human embryonic and fetal development at centi-
meter or evenwhole-organ scale. Then it will bemergedwith
tissue engineering technologies and will potentially permit
us to reconstruct awhole organwith physiological functions.
When we can de novo reconstruct an intact organ such as a
liver, kidney, heart, or lung with physiological functions, or
even a whole fetus, then we will know all of the main prin-
ciples of our developmental biology. Just as Richard Feyn-
man said: ‘What I cannot create, I do not understand’. When
we can create an intact organ with physiological functions,
or an intact fetus in vitro, we will really understand the core
principles of how it is generated and how it works. Probably
within next two or three decades, we will achieve it.
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