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Abstract

Loss or gain of copy number of the gene encoding the transcription factor methyl-CpG-bind-
ing protein 2 (MeCP2) leads to neurodevelopmental disorders (Rett and MeCP2 duplication
syndrome), indicating that precisely regulated MeCP2 expression during development is
critical for mental health. Consistent with this idea, MeCP2 null mutants exhibit synaptic
regression in the dorsal lateral geniculate nucleus (dALGN), the visual relay center in the thal-
amus, a phenotype resembling that of animals reared in the dark during the visual sensitive
period. It remains unclear how MeCP2 expression is regulated during circuit formation and
maturation, especially in excitatory and inhibitory populations of neurons. We found that,
concomitant with the initiation of the dark-rearing sensitive period, MeCP2 protein levels
were elevated in glutamatergic but not GABAergic neurons of the dLGN. Moreover, MeCP2
expression in glutamatergic populations was selectively reduced by dark-rearing. Therefore,
we propose that visual experience—dependent MeCP2 induction in glutamatergic popula-
tions is essential for synaptic maturation within the dLGN.

Introduction

Rett syndrome is a devastating neurodevelopmental disorder caused by mutations in methyl-
CpG-binding protein 2 (MeCP2), an X-linked gene [1, 2]. MeCP2 mutations are lethal in
males [3], whereas in females the symptoms of Rett syndrome vary depending on the mosaic
state of X-chromosome inactivation in the human brain [1, 4]. To determine which brain cir-
cuit makes the greatest contribution to the Rett phenotype, MeCP2 has been ablated from spe-
cific cell populations in mouse models [5-13]. Interestingly, not only the loss but also gain of
MeCP2 gene dosage affects mental health in both humans [14, 15] and mice [16-21], leading
to the hypothesis that precise dosage regulation of MeCP2 is required for normal brain func-
tion [13, 19, 22].

During the postnatal developmental period, sensory activity—driven cues play important
roles in shaping fully functional brain circuits [23-25]. Indeed, when the relevant sensory cues
are not provided during the postnatal critical period, a brain circuit fails to fully refine and
acquire computational ability [26-31]. In the case of the visual system, visual cues are initially
processed by the retina; pass through the dorsal lateral geniculate nucleus (ALGN), the visual
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relay center in the thalamus; and ultimately arrive at the primary visual cortex (V1). In V1 neo-
cortex, release of the neurotransmitter GABA from the inhibitory interneurons plays pivotal
roles in regulating circuit plasticity and the critical period [28, 29, 32]. Neuronal MeCP2
expression in V1 becomes evident during the critical period, and removal of MeCP2 hastens
the onset of the critical period [33]. Specifically, lack of MeCP2 expression in Pvalb (Parvalbu-
min)-positive GABAergic interneurons disrupts V1 ocular dominance plasticity [34]. Consis-
tent with the idea that MeCP2 expression in GABAergic interneurons is involved in circuit
maturation, MeCP2 loss-of-function in GABAergic cells is sufficient to induce a Rett-like phe-
notype in mice [5, 13]. However, the developmental timing of MeCP2 expression within the
visual relay center of the thalamus, and its correlation to the visual critical period, have not
been investigated.

Although the visual sensitive period also exists in the dLGN [35-37], little is known about
the maturation mechanisms of this subcortical visual relay center, and in particular the roles of
excitatory and inhibitory circuits. During early postnatal development, axonal fibers from reti-
nal ganglion cells segregate into eye-specific projection domains and form abundant contacts
onto relay neurons in the dLGN. Subsequently, these retinogeniculate synapses undergo
refinement and strengthening before reaching maturity. Notably, when a mouse is dark-reared
during the visual sensitive period (around P20-P34), the retinogeniculate synapses are remod-
eled to an immature-like state [35-37], indicating that visual experience is required for mainte-
nance of mature synapses. Interestingly, similar immature synaptic phenotypes are found in
the dLGN of normally reared MeCP2-null mutants [38], suggesting that MeCP2 plays essential
roles in the development of retinogeniculate synapses. However, it remains unknown how
MeCP2 expression is regulated by visual experience in both pre- and post-synaptic neurons, as
well as in excitatory versus inhibitory neurons within the dLGN.

In this study, we first asked whether MeCP2 expression levels change during the course of
development, specifically within the dLGN. Next, we tested if MeCP2 expression is differen-
tially regulated between excitatory and inhibitory neurons. Finally, we addressed whether
visual sensory cues differentially regulate MeCP2 expression between the excitatory and inhib-
itory cell populations.

Materials and methods
Animals

All experiments were approved by the Animal Care and Use Committee of Tokyo Women’s
Medical University and performed according to institutional guidelines. Both sexes of C57BL/
6 mice (P10-P50; Japan SLC Inc., Hamamatsu, Japan) and male MeCP2 knockout (KO) mice
[B6.129P2(C)-MeCP2tm1.1Bird/], Stock number; 003890, The Jackson Laboratory, Bar Har-
bor, ME] were used for experiments. The mice were housed under controlled temperature and
humidity conditions, and had free access to food and water. Mice were reared under a 12:12 h
light: dark cycle, except in dark-rearing experiments, during which mouse cages were placed
in a light-tight box.

Western blotting

Mice were decapitated under deep isoflurane anesthesia, and the brains were cooled in ice-
cold phosphate buffered saline (PBS). Under a stereomicroscope (SZX12; Olympus, Tokyo,
Japan), the cortex was peeled off to expose the thalamus. The dLGN was removed bilaterally by
microdissection using micro-scissors, and dLGN samples pooled from three animals were
immediately frozen in liquid nitrogen. Samples were lysed in sodium dodecyl sulfate (SDS)
lysis buffer [2% SDS, 50 mM Tris-HCI (pH 6.8)] containing cocktails of protease inhibitors
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(CompleteMini; Roche, Basel, Switzerland) and phosphatase inhibitors (PhosSTOP, Roche).
Protein concentration was quantified using a BCA Protein Assay Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA); the same amount of total protein was assayed in each western blot.
Primary antibodies were used at the following dilutions: rabbit anti-MeCP2 (1:1000, 07-013,
Merck Millipore, Darmstadt, Germany), mouse anti-B-actin (1:50000, A5441, Sigma-Aldrich,
St. Louis, MO, USA). Band images were captured on an ImageQuant LAS4000 (GE Health-
care, Chicago, IL, USA). Immunoreactive bands around 75 kDa (MeCP2) and 42 kDa (B-
actin) were analyzed using the Image] software. The level of MeCP2 protein in the dLGN was
normalized against that of B-actin. Appropriate dLGN sampling was verified by performing
Nissl staining on coronal sections of dissected thalamus (S1 Fig). Whole-brain lysate of
MeCP2 KO mice (kindly provided by Dr. N. Kishi, Keio Univ., Tokyo, Japan) was prepared by
the same procedure.

Immunohistochemistry

Mice were deeply anesthetized with pentobarbital (50 mg/kg intraperitoneally) and perfused
with freshly prepared 4% paraformaldehyde and 0.2% picric acid in 0.1 M phosphate buffer
(pH 7.4). After perfusion, the brain and eyes were removed and post-fixed in the same fixative
solution overnight, and then permeated with 10-30% sucrose in PBS. The samples were then
frozen in O.C.T. compound (Sakura FineTechnical, Tokyo, Japan) and stored at -80°C until
use. Fixed brain samples of MeCP2KO mice were prepared by the same procedure. Frozen
samples were sectioned on a cryostat (Leica CM1850; Leica Microsystems, Nussloch, Ger-
many) to a thickness of 20 pm. Sections were incubated with 10% normal donkey or goat
serum to prevent nonspecific reactions, and then incubated with a mixture of primary anti-
bodies: rabbit anti-MeCP2 antibody and goat anti-glutamic acid decarboxylase 1/2 antibody
(GAD1/2, 1:200; GAD-Go-Af240, Frontier Institute, Hokkaido, Japan) or mouse anti-GAD2/1
antibody (1:10000, GC3108, Affinity Research Products, Exeter, UK). An appropriate Alexa
Fluor-conjugated antibody (A-21082, A-10042, A-11037, and A-11029, Thermo Fisher Scien-
tific) was used as the secondary antibody. Neurons were distinguished by a fluorescent Nissl
stain using Neuro Trace 435/455(N-21479, Thermo Fisher Scientific) as previously described
[39]. Fluorescence images were visualized by laser-scanning confocal microscopy (LSM710;
Carl Zeiss, Jena, Germany) using a 10x (NA = 0.45) objective or an oil-immersion 63x objec-
tive (NA = 1.4) and acquired using the ZEN software (Carl Zeiss) with 1.58 us pixel time and a
4-frame average at 512 x 512 pixels.

To quantitatively evaluate MeCP2 expression, fluorescence intensities in the dLGN or ven-
tral posteromedial nucleus (VPM) were normalized against those in the external medullary
lamina. Fluorescence intensities in ganglion cell layer or inner nuclear layer of the retina were
normalized against those in the inner plexiform layer. To measure MeCP2 expression in
GABAergic (GAD+, Nissl+) or glutamatergic (GAD-, Nissl+) neurons, MeCP2 fluorescence
intensity in each cell was normalized against the background. To count the numbers of
MeCP2 positive cells in GABAergic or glutamatergic neurons, triple stained images (MeCP2,
GAD and Nissl) were analyzed using a cell counter plugin. All measurements were performed
using Image] software. The average intensity in each animal was used for statistical analysis.

Statistical analysis

Data are presented as means + standard error of the mean. Most of the data did not have a nor-
mal distribution; therefore, we used nonparametric statistical analysis. The Steel-Dwass test
was used for multiple comparisons, and the Wilcoxon test was used for two-group
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comparisons. Statistical tests were performed with the JMP Pro 13 software (SAS Institute Inc.,
Cary, NC, USA); P < 0.05 was taken to indicate a significant difference.

Results

MeCP2 expression in the visual thalamus increases during the visual
sensitive period

Previously, MeCP2 protein expression was observed in the developing dLGN by western blot
analysis [38]. Thus, we first investigated whether MeCP2 expression is developmentally regu-
lated in the dLGN of the visual thalamus. We specifically dissected out the dLGN between P10
and P50 and carried out western blot analyses with antibodies raised against MeCP2 (Fig 1B).
MeCP2 expression levels increased between P20 and P30 (Fig 1B and 1C), which coincided
well with the visual sensitive period (Fig 1A) of the dLGN [35, 36]. We then analyzed develop-
mental MeCP2 expression at the cellular levels and compared expression in the dLGN with
that in the VPM of the somatosensory thalamus. Consistent with the western blot analyses,
MeCP2 levels were selectively increased between P20 and P30 in the dLGN (Fig 1D and 1E)
but not in the VPM (S1 Table). For both western blot and immunohistochemistry, we vali-
dated the specificity of MeCP2 antibodies using MeCP2-null animals (Fig 1B and 1D). Based
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Fig 1. MeCP2 expression in the dLGN is elevated during the sensitive period of the visual system. (A) Developmental events involving the visual
system. Reverse triangle: eye opening at P12-P14; SP, sensitive period. (B) Western blots for MeCP2 using dLGN lysate of wild-type (WT) mice
obtained at P10, P20, P30, and P50 (left) or whole-brain lysate of MeCP2 KO mice (right) obtained at P50. (C) Quantification of MeCP2 expression
level. The MeCP2 level at P10 was defined by 100%. **, P < 0.01. Statistical analysis for each developmental period was performed using the Steel-
Dwass test. NS, not significant. n = 6 sample for 18 animals. (D) MeCP2 immunohistochemical staining in dLGN of WT mice at P10, P20, P30, and
P50, and MeCP2 KO mice at P50. Blue dotted lines, dLGN. VPM: ventral posteromedial nucleus. vVLGN: ventral lateral geniculate nucleus. Scale bar,
250 pum. (E) Quantification of MeCP2 fluorescence intensity in dLGN. MeCP2 intensity at P10 was defined as 100%. P20: 110.7% + 1.7% vs. P30:
137.3% + 4.3%, **P < 0.01. Statistical analysis for each developmental period was performed using the Steel-Dwass test. NS, not significant. P10:

n = 24 sections for 7mice, P20: n = 26 sections for 8 mice, P30: n = 22 sections for 7 mice, P50: n = 36 sections for 10 mice.

https://doi.org/10.1371/journal.pone.0198268.9001
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on these findings, we conclude that the MeCP2 expression levels in the dLGN are specifically
elevated during the visual sensitive period of the thalamic dLGN.

MeCP2 up-regulation takes place selectively in excitatory populations of
the dLGN

We next investigated whether MeCP2 up-regulation during the visual sensitive period differs
between the excitatory relay neurons and inhibitory interneurons of the dLGN. To this end,
we combined GABAergic (GAD) and neuronal (Nissl) markers to discriminate the glutama-
tergic (GAD-, Nissl+) and GABAergic (GAD+, Nissl+) neuronal populations (Fig 2A). Consis-
tent with what we found in the dLGN as a whole (Fig 1), MeCP2 levels significantly increased
during the visual sensitive period from P20 to P30 in the glutamatergic populations (Fig 2C, S2
Fig and S3 Fig). However, in the dLGN GABAergic cells, we observed no obvious increase in
MeCP2 levels during this time window (Fig 2B, S2 Fig and S3 Fig). In addition to expression
levels, we also analyzed the numbers of cells expressing MeCP2 in the dLGN. We found that
MeCP2-positive cell numbers selectively increase in the glutamatergic but not in the GABAer-
gic populations (Fig 2E and S2 Table). Consistent with previous reports, approximately 8%
neurons in the dLGN were GAD positive (Fig 2D and S3 Table) [39, 40]. These data suggest
that the MeCP2 expression is selectively induced in glutamatergic relay neurons of the dLGN
during the visual sensitive period.

Sensory experience during the visual sensitive period drives MeCP2
expression in the dLGN

Given that the timing of MeCP2 up-regulation coincides with the emergence of the visual sen-
sitive period, we hypothesized that sensory experience induces MeCP2 expression in the
dLGN. To directly test this possibility, we reared mice in the dark before (P11-P20), during
(P21-P30), or after (P41-P50) the visual sensitive period, and then analyzed MeCP2 expres-
sion in the dLGN (experimental scheme: Fig 3A). Western blots on entire dLGN revealed that
MeCP2 levels were significantly reduced when dark-rearing was performed during (SP), but
not before (Pre-SP), the visual sensitive period (Fig 3B and 3C and 5S4 Fig). We also observed a
slight decrease in MeCP2 expression levels even when dark-rearing was carried out after the
visual sensitive period (Post-SP, Fig 3B and 3C and S4 Fig). However, when we analyzed
MeCP2 expression at cellular resolution, we observed a specific decrease in the MeCP2 levels
only if the dark-rearing was carried out during the visual sensitive period (Fig 3D). In stark
contrast, dark-rearing did not affect MeCP2 expression in the visual pathway of the retina (Fig
3F and 3G). Therefore, visual experience is a critical driving force of MeCP2 expression within
the dLGN.

Sensory experience instructs excitatory dLGN populations to increase
MeCP2 levels

The dark-rearing experiment during the visual sensitive period decreased MeCP2 levels within
cells of the dLGN (Fig 3D and 3E), suggesting that, during the visual sensitive period, sensory
experience causes excitatory cells to increase MeCP2 expression. Alternatively, visual experi-
ence may help inhibitory cells to stably maintain MeCP2 levels specifically during the sensitive
period. To distinguish between these possibilities, we again turned to molecular marker analy-
ses to separately label glutamatergic (GAD-, Nissl+) and GABAergic (GAD+, Nissl+) cell types
(Fig 4A and S5 Fig). Although we observed no obvious changes in MeCP2 expression levels or
cell numbers within the GABAergic populations (Fig 4B and 4C, S3 Fig and S5 Fig), this was
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Fig 2. MeCP2 expression in excitatory versus inhibitory cells of the developing dLGN. (A) Identification of MeCP2-immunopositive cells
(green) in the dLGN during development. Glutamatergic means GAD- / Nissl+ cells and GABAergic means GAD+ / Nissl+ cells. Red
arrowheads, GABAergic neurons; blue arrowheads, glutamatergic neurons. Scale bar, 20 um. (B) Changes in MeCP2-immunofluorescence
intensity in GABAergic neurons during development. SP, sensitive period. P20: 123.4% + 10.0% vs. P30: 137.6% * 10.4%, P > 0.05. Statistical
analysis for each developmental period was performed using the Steel-Dwass test. P10: 98 cells for 5 animals, P20: 56 cells for 6 animals. P30: 61
cells for 6 animals. P50: 44 cells for 5 animals. (C) Changes in MeCP2-immunofluorescence intensity in glutamatergic neurons during
development. SP, sensitive period. P20: 118% + 9.6% vs. P30: 168.3% * 3.8%, **P < 0.01; Statistical analysis for each developmental period was
performed using the Steel-Dwass test. NS, not significant. P10, 645 cells for 5 animals, P20: 738 cells for 6 animals. P30: 774 cells for 6 animals.
P50: 463 cells for 5 animals. (D) The number of GABAergic and glutamatergic neuron in 10000 um?* decreased between P10 and P20. GABAergic
neuron, P10: 1.01 +0.12 vs P20: 0.72 + 0.17, *P < 0.05. Glutamatergic neuron, P10: 13.23 + 0.66 vs. P20: 8.82+2.1, **P < 0.01. Statistical analysis
for each developmental period was performed using the Steel-Dwass test. N = 9 slides for 3 animals. (E) Proportion of MeCP2+ cells increased
among glutamataargic neurons (blue), but not among GABAergic neurons (red), before entering the SP. Glutamatergic neurons, P10: 22.8% +
6.2% vs. P20: 83.1% *+ 2.2%, **P < 0.01; Statistical analysis for each developmental period was performed using the Steel-Dwass test. NS, not
significant. N = 9 slides for 3 animals.

https://doi.org/10.1371/journal.pone.0198268.9002

not the case in glutamatergic neurons (Fig 4D and 4E, S3 Fig and S5 Fig). Consistent with the
outcome of whole-dLGN analyses (Fig 3B-3E), in the excitatory population, MeCP2 levels
decreased when dark-rearing was carried out during or after the visual sensitive period (Fig
4D), and MeCP2-positive cell numbers were reduced when dark-rearing was carried out dur-
ing the visual sensitive period (Fig 4E). These data strongly suggest that visual experience is
required for glutamatergic dLGN cells to express MeCP2 at higher levels during the visual sen-
sitive period. Based on these findings, we conclude that the sensory experience during the
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Fig 3. Dark-rearing during the visual sensitive period decreases MeCP2 expression within the dLGN. (A) Experimental
design of dark-rearing and analysis. Dark-rearing (DR) was performed in each of the three developmental stages studied, and
brains were collected at the end of each stage: Pre-SP, P11-P20; SP, P21-P30; and Post-SP, P41-P50. (B) Western blots for
MeCP2 from dLGN of normally reared (control) and DR mice. (C) Quantification of MeCP2 expression levels. The MeCP2
level of each control sample was defined as 100%. Pre-SP: 92.0% + 15.6% vs. normally reared control group, P > 0.05. SP: 54.2%
+8.6% vs. control group, *P < 0.05. Post-SP: 74.5% + 20.0% vs. control group, “P < 0.05; Wilcoxon test. NS, not significant.

n = 6 samples for 18 animals. (D) Images of MeCP2 immunostaining in dLGN. Blue dotted lines, dLGN. Scale bar, 500 um. (E)
Quantification of MeCP2 immunofluorescence intensity in the dLGN. The MeCP2 level of each control sample was defined as
100%. SP: 85.3% =+ 2.9% against control group, *P < 0.05; Statistical analysis for Ctrl vs DR was performed using the Wilcoxon
test. NS, not significant. (F) Images of MeCP2 immunostaining in the retina from normally reared and DR mice. Scale bar,

50 um. (G) Quantification of MeCP2 intensity in the GCL or INL in the retina. The MeCP2 level of each control sample was
defined as 100%. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer;
GCL, ganglion cell layer. Statistical analysis for Ctrl vs DR was performed using the Wilcoxon test. NS, not significant Pre-SP,
SP, Post-SP: n = 16 sections from 4 mice.

https://doi.org/10.1371/journal.pone.0198268.9003
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Fig 4. MeCP2 expression in glutamatergic dLGN neurons decreases upon dark-rearing. (A) Distribution of MeCP2-immunopositive cells (green) in
the dLGN of normally reared control and dark-reared (DR) mice. Red arrowhead, GABAergic neurons (GAD+, Nissl+); blue arrowhead, glutamatergic
neurons (GAD-, Nissl+). Scale bar, 20 um. (B) Immunofluorescence intensity of MeCP2 signals in GABAergic neurons of the dLGN in DR mice at
different developmental stages. (C) Proportion of MeCP2-positive cells among GABAergic neurons. NS, not significant. (D) Immunofluorescence
intensity of MeCP2 in glutamatergic neurons in the dLGN of DR mice. SP: 84.9% * 5.9% vs. control group, **P < 0.01; Post-SP: 87.5% * 3.9% vs.
control group, **P < 0.01. Statistical analysis for Ctrl vs DR was performed using the Wilcoxon test. (E) Proportion of MeCP2-positive cells among
glutamatergic neurons. SP: 88.7% + 1.1% vs. normally reared control group, P < 0.05. Statistical analysis for Ctrl vs DR was performed using the
Wilcoxon test.

https://doi.org/10.1371/journal.pone.0198268.9004

visual sensitive period instructs glutamatergic, but not GABAergic, neurons to increase
MeCP2 expression levels in the dLGN.

Discussion

The transcriptional regulator MeCP2 is the causal gene of Rett and MeCP2 duplication syn-
drome, and plays critical roles in neural circuit development, maturation, and function in mul-
tiple contexts. [1, 2, 41, 42]. In the visual sensory pathways, MeCP2 levels increase in the visual
neocortex specifically during the critical period [33]. However, the regulation of MeCP2
expression in the visual relay center thalamus, and especially its cell-type specificity, has not
been previously investigated.

Here, we found that MeCP2 expression in the dLGN is up-regulated specifically during the
sensitive period of visual sensory pathways, and that this takes place selectively in excitatory
cell populations (summarized in Fig 5). The timing of MeCP2 up-regulation was not coinci-
dental, as it was disrupted by visual sensory deprivation (dark-rearing) in excitatory cells of the
dLGN. Our study strongly suggests that that sensory experience-driven induction of MeCP2
expression in excitatory cells is crucial to proper assembly of the thalamic vision relay center
and establishment of a fully mature visual sensory brain circuit.
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Fig 5. Postnatal MeCP2 expression in excitatory and inhibitory dLGN neurons. MeCP2 level is dramatically increased in glutamatergic neurons
of the dLGN during the visual sensitive period. Visual deprivation (dark-rearing) during the sensitive period (SP) or post-SP prevents MeCP2 up-
regulation in glutamatergic neurons. MeCP2 expression in GABAergic neurons is stably maintained, and is not affected by visual deprivation.

https://doi.org/10.1371/journal.pone.0198268.9005

Differential MeCP2 regulation between excitatory and inhibitory neuronal
populations

We showed that MeCP2 expression is induced in the dLGN during the visual sensitive period
in an experience-dependent manner. Interestingly, this event only occurred in the excitatory,
but not in the inhibitory cell types. Contrary, MeCP2 expression was not sensitive to visual
experience in either excitatory (GCL) or inhibitory (INL, including amacrine cells) cell types
in the retina (Fig 3F and 3G). Furthermore, it is likely that MeCP2 plays little or no role in reti-
nal development as no morphological change of retina is observed in MeCP2-null mutants
[43] or Rett patients [44]. On the other hand, MeCP2 is an essential regulator of the neocortical
plasticity [45, 46] and critical period [33, 34] of V1. In comparison with our measurements in
thalamic dLGN, MeCP2 expression in the V1 cortex is low at P12, but is up-regulated upon
eye opening at P15; at P30, after the critical period, expression reaches plateau levels and is
maintained into adulthood [33]. Although the mechanisms responsible for its induction have
not been well investigated, MeCP2 expression in GABAergic neurons in V1 is important for
ocular dominance plasticity [33, 34]. Similar to what we observed in the visual thalamus,
MeCP2 expression levels in the visual cortex may be regulated by visual experience—dependent
neuronal activities, possibly in a cell type-specific manner.

Roles of MeCP2 beyond circuit maturation

In MeCP2-null animals, eye-specific segregation and initial synapse formation of retinogen-
iculate projections are generally unaltered, but the subsequent visual experience-dependent
maintenance phase is dramatically impaired, resembling the immature state [38]. This obser-
vation suggests that MeCP2 plays key roles in the maintenance of mature retinogeniculate syn-
apses. Is MeCP2 only transiently required during the maturation period, or is sustained
expression necessary for the maintenance of a mature circuit? As shown in Figs 3 and 4, we
found that, even during the late maturation phase (P41-P50), MeCP2 expression is sensitive to
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lack of vision, although to a lesser extent than during the sensitive period (P21-P30). We
recently showed that the metabotropic glutamate receptor (mGluR1) is necessary for mainte-
nance of dLGN synapses [47]. Furthermore, to our surprise, activation of mGluR1 in the
dLGN was sufficient to rescue the synaptic regression resulting from sensory deprivation dur-
ing the visual sensitive period. It is reasonable to speculate that MeCP2 expression in the
dLGN is regulated through the sensory experience-mGluR1 activation cascade in both the
sensitive and mature periods. Consistent with this idea, mGluR1 is preferentially expressed in
the excitatory relay neurons of the dLGN [48-50]. In preliminary experiments, we found that
MeCP2 levels were elevated in the dLGN of mGluR1-null animals (S6 Fig). The MeCP2 level is
significantly reduced in postmortem thalamus of Rett syndrome patients [51], implying that
properly regulated MeCP2 expression within the thalamus is essential for mental health. Fur-
ther studies are required to determine the potential roles of MeCP2 in mature thalamic cir-
cuits, as well as in excitatory and inhibitory neuronal populations.

Conclusion

During the visual sensitive period, sensory experience selectively drives MeCP2 expression
within the excitatory neurons of the thalamic visual relay center, the dLGN.

Supporting information

S1 Fig. Sampling of the dLGN. (A) To visualize the dLGN, Alexa488 conjugated CTB was
injected into both sides of the retina. After 4 days, the cortex was peeled off under a fluorescent
stereomicroscope (SZX12, Olympus) to confirm the location of the dLGN in the exposed thal-
amus. dLGN: dorsal lateral geniculate nucleus. SC: superior colliculus. Scale bar: Imm. (B) For
western blotting, dissection was performed without Alexa488 conjugated CTB injection.
Appropriate dLGN sampling was verified by performing Nissl staining on coronal sections of
the dissected thalamus. Red line: cutting area. Scale bar: Imm.

(PDF)

$2 Fig. MeCP2 and GAD immunohistochemical staining of the dLGN in WT mice during
development. White dotted lines, dLGN. Scale bar 250 pm.
(PDF)

S$3 Fig. Distribution of MeCP2 intensity of each individual neuron. (A) Distribution of
MeCP2 intensity of each individual Glutamatergic neuron is shown as a histogram. P10, 645
cells for 5 animals, Pre-SP, Ctrl: 738 cells for 6 animals. DR: 517 cells for 5 animals. SP, Ctrl:
774 cells for 6 animals. DR: 620 cells for 5 animals. Post-SP, Ctrl: 463 cells for 5 animals. DR:
401 cells for 5 animals. Statistical analysis for each developmental period was performed using
the Steel-Dwass test. ""P<0.01. Statistical analysis for Ctrl vs DR was performed using the Wil-
coxon test. **P<0.01.

(B) Distribution of MeCP2 intensity in each individual GABAergic neuron is shown as a histo-
gram. P10 Ctrl: 98 cells for 5 animals, Pre-SP, Ctrl: 56 cells for 6 animals. DR: 52 cells for 5 ani-
mals. SP, Ctrl: 61 cells for 6 animals, DR: 66 cells for 5 animals. Post-SP: 44 cells for 5 animals.
DR: 41 cells for 5 animals. Statistical analysis for Ctrl vs DR was performed using the Wilcoxon
test.

(PDF)

S4 Fig. Scanned original data for each signal in Fig 3B.
(PDF)
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S5 Fig. Images of MeCP2 and Gad immunostaining of the dLGN of normally reared (ctrl)
and dark reared (DR) mice. White dotted lines, dLGN. Scale bar, 500 um.
(PDF)

S6 Fig. Representative western blot of developmental changes in the MeCP2 protein level
in the dLGN of the mGluR1 KO mouse.
(PDF)

S1 Table. Quantification of MeCP2 fluorescence intensity in the VPM. (A) Quantification
of MeCP2 fluorescence intensity in the VPM during development. P10: n = 24 sections for 7
mice, P20: n = 26 sections for 8 mice, P30: n = 22 sections for 7 mice, P50: n = 36 sections for
10 mice. Statistical analysis for each developmental period was performed using the Steel-
Dwass test. NS, not significant. (B) Quantification of MeCP2 immunofluorescence intensity in
the VPM after dark rearing. Pre-SP, Ctrl: n = 26 sections for 8 mice, DR: n = 16 sections for 4
animals, SP, Ctrl: n = 22 sections for 7 mice, DR: n = 21 sections for 5 mice, Post-SP, Ctrl:

n = 36 sections for 10 mice. DR: 19 sections for 5 mice. Statistical analysis for Ctrl vs DR was
performed using the Wilcoxon test. NS, not significant.

(PDF)

S$2 Table. MeCP2+ cell number in GABAergic neurons (GAD+, Nissl+) and MeCP2+ cell
number in glutamatergic(GAD-, Nissl+) neurons per 10000 pym2 area during development.

(PDF)

S3 Table. Proportion of GABAergic neurons (GAD+, Nissl+) in the dLGN neurons during
development.
(PDF)
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