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With its high worldwide mortality and morbidity, cancer has gained increasing attention and novel anticancer drugs have become
the focus for cancer research. Recently, studies have shown that most anesthetic agents can influence the activity of tumor cells.
Midazolam is a 𝛾-aminobutyric acid A (GABAA) receptor agonist, used widely for preoperative sedation and as an adjuvant during
neuraxial blockade. Some studies have indicated the potential for midazolam as a novel therapeutic cancer drug; however, the
mechanism by which midazolam affects cancer cells needs to be clarified. This systematic review aims to summarize the progress
in assessing the molecular mechanism of midazolam as an anticancer agent.

1. Introduction

Cancer has become the most common disease worldwide
and is the leading cause of death [1]. Currently, the primary
treatment for a solid tumor is still surgical resection. During
surgery, anesthesia and the drugs used may affect the tumor
and result in the release of tumor cells into the blood,
lymphatic system, bone marrow, and even organs, leading to
the formation of micrometastatic lesions, an increased risk
of tumor recurrence and metastasis, and ultimately affecting
postoperative survival rate [2, 3]. A number of in vitro
studies have confirmed thatmost anesthetic agents, including
midazolam, have substantial antitumor effects [4–6]. To date,
a few studies have used various cell lines to determine
the mechanism underlying the effect of midazolam on
cancer cells. However, this mechanism is multifaceted and
the means by which midazolam affects a variety of cancer
signaling pathways needs to be clarified. This article reviews
the biochemical properties of midazolam, its activity, its
antitumor properties, and the possible mechanisms involved.
We hope to provide a theoretical basis for the potential
clinical application of midazolam as a therapeutic agent for
tumors.

2. Chemistry and Clinical
Pharmacology of Midazolam

The chemical structure of midazolam (dormicum) is 8-chlo-
ro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a][1,4]ben-
zodiazepine (Figure 1).

As a benzodiazepine, anticonvulsant drug, midazolam
has a rapid onset and short-lasting effect. In addition, mida-
zolam has significant hypnotic, anxiolytic, amnesic, and
sedative properties and these occur via modulation of the
GABAA receptor in the central nervous system [7, 8]. In
the clinical situation, midazolam is the current drug of
choice for sedation, including preoperative sedation. For
patients undergoing caesarean section under spinal anes-
thesia, midazolam is effective for the prevention of nausea
and vomiting [9] and produces postoperative pain relief
[10].

However, midazolam was recently reported to be among
the 20 most often utilized medications in cancer patients
to be associated with toxic side effects [11]. In addition, it
has been shown to have neuronal cytotoxicity and apoptosis-
inducing activity in hematogenic, ectodermal, mesenchymal,
and neuronal cells [12–15].
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Figure 1: The chemical structure of midazolam (dormicum).

3. Systematic Review

3.1. Search Strategy. A systematic and comprehensive litera-
ture search was performed by two authors (J.J.H. and J.X.J.)
independently and using the PubMed, Embase, Web of
Science, Ovid evidence-based medicine, Chinese science and
technology periodicals (CNKI, VIP, andWan Fang), andChi-
nese Biomedical Literature (CBM) databases, for publications
up to March 5, 2017. Disagreement between reviewers was
resolved by discussion.The following termswere used in each
search: cancer, carcinoma, neoplasm, tumor, midazolam,
dormicum, and 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-
imidazo[1,5-a][1,4]benzodiazepine. The results were limited
to English or Chinese language.

3.2. Inclusion and Exclusion Criteria. Any study that clearly
stated a link betweenmidazolamand cancer, both in vitro and
in vivo, was included. Studies were excluded based on the fol-
lowing criteria: (1) conference abstracts, reviews, conference
papers, case reports, editorials, comments, news, congresses,
and letters; (2) non-English or Chinese.

3.3. Quality Assessment and Data Extraction. The quality of
all eligible studies was assessed by two independent review-
ers using the EBLIP Critical Appraisal Checklist [16]. The
extracted data from included studies are shown in Table 1.

4. Results and Discussion

A total of 822 studies were identified in PubMed, Embase,
Web of Science, Ovid evidence-based medicine, Chinese
science and technology periodicals (CNKI, VIP, and Wan
Fang), and Chinese Biomedical Literature (CBM) using our
search strategy. After detailed screening, 12 studies were
considered eligible for inclusion in this review (summarized
in Figure 2).

4.1. Possible Antitumor Mechanisms of Midazolam In Vitro.
There are thirty-three trillion cells in the human body and
numerous cellular functions that maintain the balance of

these cells. In disease situations, this balance may be dis-
rupted bymultiple external stimuli, stress, and the generation
of mutant cells [17]. Cell death plays an important role
in maintaining cellular balance by removing cells that are
“unnecessary” or potentially harmful [18] and may occur
via two means, necrosis and apoptosis. Apoptosis is a pro-
grammed cell death, whereas necrosis is an “accidental” death
resulting from a physical or chemical assault [19]. During the
process of necrosis, the cell membrane is distorted and the
cell nucleus disintegrates resulting in degradation products.
Apoptosis, on the other hand, is a far more regulated process
that results in the cell degenerating into contained apoptotic
bodies that can be phagocytosed and removed.

4.2. Induction of Apoptosis. Apoptosis plays a crucial role in
eliminating cells that are unnecessary or harmful and it also
has a role in numerous biological processes, including cell dif-
ferentiation and proliferation [20, 21]. With respect to cancer,
apoptosis has become a popular target for many treatment
strategies as there is a close relationship with apoptosis and
manyof the processes involved in cancer progression [22–27].

Previous studies using flow cytometry showed that mida-
zolam induced apoptosis in the human lymphoma and
neuroblastoma cell lines, MA-10 Leydig tumor cells, and the
mantle cell lymphoma cell line, JeKo-1, in a concentration-
dependent manner [12, 29, 37]. Potential biomarkers of
apoptosis include B cell lymphoma 2 (Bcl-2) family pro-
teins, caspase-3, and caspase-9. In the mantle cell lym-
phoma cell line, JeKo-1, a dose-dependent reduction of Bcl-
2, procaspase-9 and procaspase-3 protein expression and
an increase in cyto-C protein expression were found. The
expression of procaspase-8 protein did not change. It was
concluded thatmidazolampotentially initiates themitochon-
drial pathway, not the death receptor pathway, by reducing
the expression of Bcl-2, leading in turn to the release of cyto-C
in mitochondria.This leads to the activation of caspase 9 and
caspase 3 protein and triggers the caspase cascade, ultimately
leading to the induction of apoptosis in the JeKo-1 cells [37].

However, in the human lymphoma and neuroblastoma
cell lines, Bcl-2 overexpression and caspase 9 deficiency
protected against midazolam toxicity, whereas a deficiency in
caspase 8 or Fas-associating protein with a novel death
domain (FADD) had no effect. Although pancaspase inhi-
bition had a strong protective effect, flumazenil could not
inhibit midazolam-induced apoptosis. Midazolam induced
apoptosis via activation of the mitochondrial pathway in a
concentration-dependent manner. The induction of apopto-
sis bymidazolam is presumably unrelated toGABAA receptor
pathway signaling [12].

The endoplasmic reticulum stress (ER stress) pathway,
also known as the Unfolded Protein Response, is the
response of the cell to a dangerous buildup of unfolded or
misfolded proteins in the ER [39–41]. C/EBP-homologous
protein (CHOP), activating transcription factor 4 (ATF-
4), and phosphorylated 𝛼 subunit of eukaryotic initiation
factor 2 (p-eIF2𝛼) are typical ER stress markers [42]. eIF2𝛼/
ATF4/CHOP is an essential signal pathway regulating ER
stress [43]. In MA-10 Leydig tumor cells, where apoptosis
is induced with midazolam, the overexpression of p-eIF2𝛼,
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92 articles non-English or Chinese

822 articles identified through database

710 articles identified language removed

20 articles identified

12 records included in the review

65 reviews; 25 letters; 165 case reports;
410 clinical studies; 3 editorials;
9 comments; 13 lectures;

7 noncancerous condition and organic diseases;
1 record duplicated

Figure 2: Flow diagram of the studies identification and selection.

ATF4, ATF3, and CHOP was observed, suggesting that
midazolam may induce apoptosis via the ER stress pathway
[31]. Midazolam was also suggested to induce the activation
of caspase-8, caspase-9, and caspase-3 and poly(ADP-ribose)
polymerase proteins in the mouse Leydig tumor cells. There
were no changes in the levels of Bcl-2 associated X protein
(Bax) (a proapoptotic family member) [44], but Bid (also
proapoptotic and which is activated by various death stimuli)
was significantly decreased after midazolam intervention
[45, 46]. Midazolam decreases the expression of pAkt and
Akt and upregulates the phosphorylation of p38 and c-
Jun NH2-terminal kinase, rather than extracellular signal-
regulated kinases [29]. Thus, midazolam-induced apoptosis
may be induced via the activation of the caspase cascade, the
inhibition of the pAkt pathway, and the induction of p38 and
c-Jun NH2-terminal kinase pathways [29].

4.3. Necrosis. In decreasing order, midazolam showed the
greatest toxicity forHL-60 cells, epidermal keratinocytes, oral
squamous cell carcinoma (OSCC), and glioblastoma cells.
Midazolam did not induce the generation of apoptosis mark-
ers in OSCC cells (including DNA cleavage between nucle-
osomes and activation of caspase-3, caspase-8, and caspase-
9) but did induce many vacuoles, mitochondrial swelling,
and cell membrane rupture [32]. Midazolam cytotoxicity for
human lymphoma and neuroblastoma cell lines affected a
switch from caspase-dependent apoptosis to necrosis as the
concentration increased [12].

4.4. Autophagy. Autophagy is a newly recognized innate
defense mechanism that has been observed in cancer and is a
physiological program that enables the body to deal with the
destruction of cells [47]. Autophagy maintains a homeostatic
balance via protein degradation and the turnover of destroyed
cellular organelles [48]. Autophagy was not induced with
midazolam as midazolam cytotoxicity was not reduced by
pretreatment with autophagy inhibitors (3-methyladenine
and bafilomycin A1) in the OSCC cell lines [30]. Thus,
midazolam appears to induce necrosis, and not apoptosis or
autophagy, in OSCC cell lines.

However, in MA-10 cells, the staining and expression
of LC3-phosphatidylethanolamine conjugate (LC3-II), which

is recruited to autophagosomal membranes, was observed
following midazolam treatment, suggesting that midazolam
induced autophagy in MA-10 cells [31].

4.5. Effect on the Cell Cycle. The rate of cell proliferation is
always determined by cell cycle distribution. There are four
phases in the cell cycle including G1, G2, S, andM; G1 and G2
phases are gap phases; S phase is the synthesis phase during
which the genetic material is duplicated; and the M phase
is where mitosis partitions the genetic material and the cell
divides [49, 50]. As the genetic material is duplicated in the S
phase, the percentage of cells in this phase also reflects the rate
of proliferating cells. As the balance between proliferation
and apoptosis is destroyed in tumor cells, the percentage of
tumor cells in the S phase is much larger than that in normal
cells from the same tissues or organs [51].

Another study that looked at the effect of midazolam in
mouse Leydig tumor cells showed an accumulation of MA-
10 cells in the sub-G1 phase and a reduction of cells in the
G2/M phase in a time- and dose-dependent manner [29]. It
was suggested that midazolam may inhibit the expression of
cyclin-A, cyclin-B, and cyclin-dependent kinase 1 (CDK1) in
MA-10 cells and alter the phosphorylation of P21, P27, and
p53, thus controlling the cell cycle through the regulation of
the p53 pathway [31].

On the other hand, a study by Dou and coworkers
showed that midazolam triggered G0/G1 cell cycle arrest in
the humanhead andneck squamous carcinomaFaDu cell line
by regulating cell cycle regulators [34].

4.6. Inhibition of Proliferation. The human E1A binding
protein, p300, also known as EP300 or p300, is encoded by
the EP300 gene and regulates the activity of many genes in
tissues throughout the body [52]. It plays an essential role
in regulating cell growth and division, prompting cells to
mature, differentiate, and assume specialized functions, and
preventing the growth of cancerous tumors [53]. The p300
protein appears to be critical for normal development before
and after birth. The p300 protein carries out its function
by activating transcription, the process of translating the
genetic blueprint into protein production. Specifically, p300
connects transcription factors and proteins that initiate the
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transcription process with numerous proteins that carry out
the transcription process in the cell’s nucleus [54].

Midazolam was shown to inhibit the proliferation of
FaDu cells, a cell line from a squamous cell carcinoma of the
hypopharynx, and attenuated the mRNA and protein levels
of p300. The knockdown of p300 resulted in an upregulation
of p21 and p27 proteins and downregulation of p-Rb protein.
Thus, it appeared that midazolam inhibited the proliferation
of FaDu cells via downregulation of p300 expression [33].

Similarly, another study on FaDu cells showed that
midazolam was able to inhibit the growth and proliferation
of FaDu cells [34]. However, this study reported that the
inhibition of FaDu cell proliferation was mediated by the tar-
geting of transient receptor potential melastatin 7 (TRPM7).
TRPM7, which is expressed in human head and neck squa-
mous carcinoma cells, is one of the TRP channel family
members. The growth and proliferation of FaDu cell lines
can be inhibited by the inhibition of TRPM7 expression or
blocking of TRPM7 channels [55]. Similar results were found
in a malignant glioblastoma cell line, T98-MG cell [36].

A further study demonstrated that midazolam inhibited
the growth and proliferation of SW480 colonic adenocarci-
noma cells in a time- and dose-dependentmanner and down-
regulated ubiquitin-specific protease 22 (USP22) expression.
With the use of USP22 small interfering RNA (Si-RNA),
they were able to silence USP22 expression and found that
SW480 cell proliferation was inhibited, while P21 and P27
expression was upregulated, and pRB downregulated. Thus,
a feasible mechanism by which midazolam inhibits pro-
liferation may be via the mediation of cyclin-dependent
kinase inhibitor/retinoblastoma protein (CDKI/RB) path-
ways through the downregulation of USP22 [38].

Midazolam has been shown to inhibit the in vitro growth
and differentiation of twomurine myeloid leukemia cell lines
(WEHI 3B (JCS) and M1 cells) in a dose-dependent manner
[28]. Midazolam enhanced the expression of the differen-
tiation antigens Mac-1, F4/80, and Gr-1 in the cells and
expression of tumor necrosis factor (TNF-alpha), and the
neutrophil-specific J11d differentiation marker was signifi-
cantly upregulated in midazolam-treated JCS cells.

4.7. Antitumor Effects of Midazolam in Animal Models and
Possible Mechanisms. There has only been one animal model
study. This was carried out in BALB/c-nu mice bearing K562
and HT29 cell human tumor xenografts. The results showed
that midazolam inhibited growth of the cancer cells via
activation of themitochondrial intrinsic pathway of apoptosis
and inhibited HT29 tumor growth in the xenograft mice.
Themechanismof inhibition of carcinogenesis bymidazolam
may be a suppression of reactive oxygen species (ROS)
production leading to modulation of apoptosis and growth
regulatory proteins [35].

5. Concluding Remarks

It is interesting to consider the possibility that, besides its
use as an anesthetic agent, midazolam may have the ability
to prevent or inhibit tumor development. New insights are
rapidly being gained into the role of the midazolam in cancer

treatment. In this review, the protective role of midazolam
in cancer and the potential mechanisms underlying this have
been described. Studies suggest a critical role for midazolam
in influencing many signaling pathways on which cancer
cells death is induced including necrosis and apoptosis.
Midazolam can also inhibit the proliferation of cancer by
inhibiting cell cycle progression. However, the impact of
midazolam on other behavior of tumor cells, such as invasion
and metastasis, remains to be further studied.

In relating observations in vitro to molecular events in
vivo, a main focus is the different concentrations of midazo-
lam used. In vitro studies, the concentrations of midazolam
were usually from 0 to 100 𝜇M, even achieving 200𝜇M or
1000 𝜇M.The effect of different concentrations of midazolam
on tumor cells was shown in Table 1. However, only one
study has sought to evaluate, in vivo, the effect of midazolam
on cancer preventive activities and the concentration of
midazolam was 0.83mg/kg body weight for BALB/c-nu
mice bearing K562 and HT29 cells human tumor xenografts
[35]. Further in vivo studies are needed to evaluate the
effect of midazolam on cancer preventive activities and even
address the relationship between the effective concentrations
of midazolam in vivo versus in vitro.

The above discussions on the anticancer activities of mid-
azolam are based mostly on studies with lymphoma cells
and Leydig tumor cells. These theories will serve as a
basis for researchers to explore the effect of midazolam on
other tumors. For example, we are investigating the effect
of midazolam on lung cancer cells (A549), and we found that
midazolam could induce the apoptosis of A549 cells through
regulating signal transducer and activator of transcription 3
(Stat3) signaling pathway. Although the detailed mechanism
by which midazolam acts on cancer cells remains elusive, the
results described above suggest thatmidazolam could present
a potential therapeutic in various cancers. Further study into
the role of midazolam in the prevention of cancer is crucial
if translation from the laboratory to the clinical setting can
occur.
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