
Hemophagocytic macrophages constitute a
major compartment of heme oxygenase
expression in sepsis

Sepsis, one of the most prominent causes of death
in intensive care units, is the result of an over-
whelming inflammatory host response to bacterial
infection. In recent years, many facets of the
complex pathophysiology of sepsis have begun to
be unraveled. Among them, macrophage activation
is thought to play a central role in the initiation and
propagation of the systemic inflammatory response
(1).

Macrophage activation with uncontrolled pha-
gocytosis of blood cells and their precursors is also
a feature of hemophagocytic syndromes (HPS) – a
rare group of inherited and acquired diseases in
which an inappropriate cellular immune response
develops in patients with defective cytotoxic activ-
ity of T- and NK-cells (2). Available evidence
suggests that hemophagocytosis by activated macro-
phages contributes to the unexplained thrombo-

cytopenia in some patients with sepsis. Therefore, it
is possible that hemophagocytosis constitutes a
more common process in severe systemic inflam-
matory diseases (3, 4). Erythrocytes and their
nucleated precursors are the most frequently
observed targets of macrophage hemophagocytic
activity. In vitro models have revealed that ery-
throphagocytosis is a potent stimulus for up-
regulation of heme-oxygenase 1 (HO-1) expression,
a protein intimately linked to protective pathways
activated during sepsis (5).

The HO-1 is the rate-limiting enzyme in the heme
breakdown pathway. Increased HO-1 activity is
associated with anti-inflammatory, anti-apoptotic,
and anti-oxidative effects. These effects are medi-
ated by the enzymatic HO-1 products bilirubin,
carbon monoxide (CO), and ferritin, which is
induced upon the intracellular release of heme iron
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Abstract: Objectives: Uncontrolled macrophage activation with
hemophagocytosis is a distinctive feature of hemophagocytic syndromes
(HPS). We examined whether lympho-histiocytic infiltration of the bone
marrow and liver, as well as hemo-/erythrophagocytosis also occurs
during sepsis and whether this process could account for the increased
production of anti-inflammatory heme-oxygenase (HO-1) products
observed during sepsis. Methods: Hemophagocytosis and expression
of CD163, HO-1, ferritin as well as CD8 and granzyme-B were examined
in post-mortem bone marrow samples from 28 patients with sepsis and
from eight control patients. Results: Comparison of samples from non-
septic patients with samples from patients with fatal sepsis revealed that
the latter group displayed dense lympho-histiocytic bone marrow
infiltration with CD163+/HO-1+/ferritin+ macrophages as well as with
CD8+ and granzyme-B+ T-cells. Hemophagocytosis with prominent
phagocytosis of erythroid cells was readily apparent in septic patients,
implying that this process is a likely stimulus for the up-regulation of
macrophage HO-1 expression. Conclusions: Lympho-
histiocytic activation with hemophagocytosis is a shared
pathophysiologic mechanism in HPS and sepsis. Furthermore, the
association of hemophagocytosis with an increase in HO-1 expression
may indicate a novel role for this apparently futile process as a negative
regulator of inflammation.
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(6). Both induction of endogenous HO-1 as well as
exogenous application of its products, biliverdin
and CO, have been shown to mitigate the detri-
mental systemic inflammatory responses during
sepsis. Therefore, rising concentrations of CO,
ferritin, and bilirubin commonly associated with
sepsis suggest that an up-regulation of HO-1
expression may be acting to negatively regulate
inflammation under these conditions. However, the
cellular compartment and potential mechanisms of
induction of HO-1 expression in sepsis have yet to
be clarified.
In the current study, we set out to determine

whether hemophagocytosis constitutes a more gen-
eral process in the pathophysiology of sepsis. Here,
we provide evidence that an extensive population of
erythrophagocytic macrophages within the reticu-
lo-endothelial system is a probable source of
protective HO-1 catalytic products during sepsis.

Materials and methods

Patients

We examined archival autopsy samples from 28
consecutive patients dying from severe sepsis or
septic shock according to the criteria set forth by
the 2003 International Sepsis Definitions Confer-
ence (7) (12 males and 18 females; age 35–84 yr).
The clinical course of the sepsis patients from ICU
admission to death varied from 48 h to 27 d. About
half of the septic patients received low dose
glucocorticoid therapy during septic shock after
documentation of relative adrenal insufficiency by
ACTH stimulation test. Patients dying from rup-
tured abdominal aortic aneurysms or gun-shot
suicides (age 31–88 yr) served as controls. All of
the control patients died within 24 h after admis-
sion.

Immunohistochemistry and immunofluorescence

Microtome sections (4 lm) were cut from formalin-
fixed, paraffin-embedded and acid decalcified bone
marrow and liver samples. Immunohistochemistry
was performed on a NEXES module (Ventana
Medical Systems, Tucson, AZ, USA) with the
Ventana iView protocol using diaminobenzidine or
with Alexa 488-labeled goat anti-rabbit or Alexa
594-labeled goat anti-mouse secondary antibodies
(1 : 1000, Molecular Probes, Eugene, Or, USA) for
immunofluorescence. Primary antibodies used
were: CD163 [mouse monoclonal antibody (mAb)
163C01 diluted 1 : 100, Neomarker Labvision
Corp., Fremont, CA, USA), HO-1 (rabbit diluted
1 : 500, Stressgen, Ann Arbor, MI, USA), CD8
(mAb C8/114B diluted 1 : 100; Dako, Zug, Switzer-

land), granzyme B (mAb GrB-7 diluted 1 : 25
Dako), ferritin (rabbit diluted 1 : 1000, Dako),
glycophorin (mAb JC159 diluted 1 : 50, Dako).
Pretreatment for antigen retrieval was carried out
for 4 min according to Ventana CC1mild (CD163,
HO-1, CD8, granzyme B) or CC2 (glycophorin)
protocols. For double-labeling experiments, in-
cubations were performed in sequence, omitting
the antigen retrieval step prior to incubation with
the second primary antibody. Cross-species experi-
ments (e.g., Alexa 488 goat anti-rabbit with mouse
anti-human CD163 and vice versa) were performed
to rule out the possibility of non-specific binding of
the secondary antibodies. Nuclei were counter-
stained with hematoxylin for bright-field micro-
scopy or 10 lg/mL diamidino-phenylindole (DAPI,
Sigma, St Louis, MO, USA) for immuno-
fluorescence.

The CD163 and HO-1 expression were quantified
on the immunoperoxidase stained slides by digital
image analysis using SigmaScan Pro (Systat Soft-
ware, Point Richmond, CA, USA). To this end, a
defined threshold for positive staining was applied
to each photomicrograph, and 10 images per
patient were analyzed to obtain a mean positive
staining area. These values were normalized to total
cellularity by applying the same algorithm to the
hematoxylin stained nuclei. For the quantification
of CD8+ and granzyme B+ lymphocytes, 10 high
power fields (0.5 mm) per patient were manually
counted by a blinded observer and normalized to
cell number as described above.

Results and discussion

We have analyzed macrophage infiltration and
hemophagocytosis in bone marrow and liver sam-
ples from 28 patients with fatal sepsis and from
eight non-septic (control) patients. As shown in
Fig. 1A, patients with sepsis displayed dense bone
marrow infiltration with CD163+ macrophages as
compared with controls, a feature reminiscent of
our previous findings in patients with HPS where
dense infiltrates of CD163+ macrophages within
the reticulo-endothelial system were associated with
highly increased plasma levels of ferritin and
soluble CD163/CD25 (8). The median cell area
covered by CD163+ macrophages was 26.4% in the
sepsis group compared with 0.26% in the control
group (Fig. 1B; P < 0.001). A large proportion of
these macrophages were actively engaged in hemo-
phagocytosis, with erythrocytes and their nucleated
progenitors being the most frequently observed
targets of hemophagocytic activity. Liver sections
obtained from septic patients also displayed
CD163+ macrophages with ingested blood cells,
in addition to the constitutively present CD163+
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Kupffer cells (not shown). Because of the retro-
spective nature of this study, we were not able to
correlate these findings with biologic serum mark-
ers of macrophages such as ferritin or sCD25,
which are commonly used in the diagnosis of HPS.

In HPS, macrophage over-activation is mediated
by CD8+ T-cell-/NK-cell derived cytokines, mainly
IFNc and TNFa (2, 9–11). To determine whether
similar mechanisms of macrophage activation
could also be operative during sepsis, we examined
bone marrow infiltration by cytotoxic T-cells.
Compared with non-septic controls, sepsis patients
displayed an increased density of CD8+ T-cells
(median ¼ 47.1 vs. 28.7 cells per high power field;
P ¼ 0.019). Moreover, the majority of infilatrating
CD8+ cells documented in sepsis patients is likely
positive for granzyme B (median granzyme B
positive cells ¼ 44.6 vs. 6.3 cells per high-power
field; P ¼ 0.0001). Viral infections are among the
most common triggers of HPS in children and
adults. We have therefore examined whether reac-
tivation of latent EBV virus infection could account
for the lympho-histiocytic activation during sepsis.
However, only two patients displayed evidence of
EBV reactivation by in situ hybridization on bone
marrow samples. The mechanisms involved and the
quantitative role of T-cell activation in the macro-
phage activation and hemophagocytosis observed
during sepsis needs thus to be determined in future
studies.

Next, we examined whether the increased erythro-
phagocytic activity of macrophages during sepsis
translates into an overall increase in HO-1 expres-
sion and whether it could, therefore, account for
the increased levels of protective heme breakdown
products found in the peripheral blood of patients
with sepsis (12–15). In contrast to controls in which
HO-1 labeling was barely detectable, a high level
HO-1 immunohistochemical labeling was present
within the bone marrow of sepsis patients (median
HO-1+ cell area ¼ 12.26% vs. 0.55%; P ¼
0.0002). Double labeling for CD163 and HO-1
revealed that macrophages constitute the principle
HO-1 expressing cell type within the bone marrow
(Fig. 2A). Particularly high levels of HO-1 labeling
were associated with macrophages with ingested
erythroid cells as evidenced by double-labeling of
HO-1 with the erythrocyte cell membrane protein
glycophorin (Fig. 2D and E). This result would be
consistent with the hypothesis that uncontrolled
eythrophagocytosis and subsequent intracellular
heme release may trigger macrophage HO-1 induc-
tion during sepsis. Of course, from these date we
can not determine the contribution of other puta-
tive inducers of HO-1 expression such as oxidative
stress and hypoxia (16, 17). Further support for the
enhanced HO-1 activity in hemophagocytic macro-

Fig. 1. Lympho-histiocytic bone marrow infiltration with
massive expansion of CD163+HO-1+ macrophages in pa-
tients with fatal sepsis. (A) Representative photomicro-
graphs (200·) of CD163 and HO-1 labeling performed on
bone marrow sections obtained from patients with fatal
sepsis and non-septic, control patients. In the majority of
patients dying from sepsis, an extensive expansion of
CD163+ and HO-1+ macrophages was observed, along
with morphologic signs of active phagocytosis. Photomi-
crographs were acquired with a Zeiss Axioskop 2 micro-
scope equipped with an AxioCam HRc digital camera using
Axiovision software version 4.3 (Zeiss, Feldbach, Switzer-
land). (B) Quantitative analysis confirmed the massive bone
marrow infiltration with CD163+ and HO-1+ macrophag-
es, as well as with CD8+ and granzyme-B+ T-cells observed
in sepsis patients. CD163 and HO-1 positively labeled area
was quantified using digital image analysis and was nor-
malized to total cellularity. The differences between the
median antigen positive area (% of total cellular area) in
sepsis patients and control patients were significant for both
parameters tested (CD163+: 26.4% vs. 0.26%, P < 0.0001;
HO-1+: 12.26% vs. 0.55%, P ¼ 0.0002). The number of
CD8+ and granzyme B+ lymphocytes was manually
counted in 10 high-power fields per sample and normalized
to marrow cellularity (CD8+: 47.1 vs. 28.7 cells per high-
power field; P ¼ 0.019; granzyme B+: 44.6 vs. 6.3 cells per
high power field; P < 0.0001). Statistical analyses were
performed using non-parametric tests for the comparison of
medians (Mann–Whitney test, GraphPad Prism 4.0,
GraphPad Software Inc., San Diego, CA, USA).
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phages is provided by the finding that the
CD163+/HO-1+ cells displayed intense labeling
for ferritin, one of the final products of heme
catabolism (Fig. 2B). The absence of detectable
HO-1 and ferritin expression by the non-phagocy-
tosing CD163+ macrophages within the interfolli-
cular T-cell area of lymphatic tissues obviates the

possibility that HO-1 and ferritin expression are
constitutively linked to the CD163+ macrophage
phenotype (Fig. 2C).

Our results are consistent with previous studies
demonstrating increased levels of HO-1 products
during sepsis and support the hypothesis that the
apparently futile process of erythrophagocytosis
and subsequent heme catabolism by activated
macrophages constitutes a negative regulatory
pathway in systemic inflammation. Induction of
endogenous HO-1 by hemoglobin or administra-
tion of the HO-1 products CO or biliverdin
improves survival during endotoxin-induced sepsis
in rats and mice, in part, by suppression of the
endotoxin-induced activation of the mitogen-acti-
vated protein (MAP) kinase pathways (16–18).
Likewise, heme treatment strongly reduces mortal-
ity in a mouse model of pancreatitis – an effect
which was shown to result from enzymatic HO-1
activity in macrophages (19). The significance of
HO-1�s anti-inflammatory role is underscored by
the chronic inflammatory diseases seen in HO-1
deficient mice as well as the sensitivity of these mice
toward endotoxin-induced sepsis (20).

The intense HO-1 staining observed within
CD163+ macrophages, taken with the excessive
hemophagocytic activity of these cells in septic
patients suggests that hemophagocytic macroph-
ages within the reticulo-endothelial system are a
likely source of the endogenously released HO-1
catalytic products during sepsis. The relative
contribution of other tissues and cell types such
as endothelial cells, which up-regulate HO-1
expression during sepsis or upon in vitro inflam-
matory stimulation remains to be determined.
Erythrophagocytosis or direct hemoglobin uptake
through the macrophage hemoglobin scavenger
receptor CD163, which as shown here is highly
expressed during sepsis, ensure a continued sup-
ply of substrate to HO-1 (21–23). Thus, the
unique capability of macrophages to fuel the
endogenous heme breakdown machinery with an
infinite exogenous substrate source favor this cell
type as a unique high output compartment of
anti-inflammatory HO-1 products during sepsis.
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