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Abstract: Synthesis of conjugated polymer-coated latex particles is an effective method to improve
the poor processability of conjugated polyheterocycles. The key to success is to control the overlayer
thickness so it is less than the size of the solvated layer of polymeric stabilizer. This paper presents a
protocol to coat polymer latex particles with poly(2-aminothiazole) (PAT), which is a relatively new
heterocyclic conjugated polymer. The protocol is based on chemical oxidative polymerizations of
2-aminothiazole using copper chloride as the oxidant at a fixed oxidant/monomer molar ratio of 0.5
in aqueous media in the presence of poly(N-vinyl-2-pyrrolidone)-functionalized polystyrene (PS)
latex. The effects of monomer concentration, PS concentration, and polymerization temperature
on the morphology of the PAT-coated PS composite particles were investigated by SEM and TEM,
and the resulting composite particles characterized by FTIR and XPS. Optimization of the initial
monomer concentration allowed colloidally stable PAT-coated PS composite particles to be formed at
ambient temperature, and the PAT loading was easily adjusted by varying the initial PS concentration.
The Hg(II) adsorption properties of selected PAT-coated PS composite particles were assessed
preliminarily. The maximum adsorption capacity at 25 ◦C reached 440.25 mg/g, which is much higher
than many other adsorbents.
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1. Introduction

Conjugated polymers typically involve polyheterocycles, such as polypyrrole (PPy), polyaniline
(PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT), which can be synthesized by electrochemical
or chemical oxidative polymerization methods. Compared with the electrochemical method, the
chemical method has several advantages in terms of massive production, facile reaction conditions
and simple doping chemistry. However, such a method suffers from an obvious disadvantage:
the processability of the product, in the form of bulk powder, is normally poor due to the
strong interchain interactions and crosslinking. To address this problem, several routes for the
synthesis of conjugated polymers in the form of colloids have been developed [1]. These typically
include: (i) sterically-stabilized polypyrrole latexes [2]; (ii) conjugated polymer-silica colloidal
nanocomposites [3–5]; and (iii) conjugated polymer-coated latex particles [6–8]. Among them,
the principle of the formation of conjugated polymer-coated latex particles is as follows: when the
conjugated polymer is formed as an ultrathin layer at the surface of the sterically stabilized latex
particles, the colloidal stability of the conjugated polymer-coated latex particles can be maintained
if the overlayer thickness is less than the size of the solvated layer of polymeric stabilizer. A series
of conjugated polymer-coated latex particles based on PPy, PANI, and PEDOT has been prepared by
chemical oxidative polymerization in the presence of preformed latex particles, respectively [1].
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Poly(2-aminothiazole) (PAT) is a relatively new heterocyclic conjugated polymer that can be
polymerized from 2-aminothiazole (AT) by the chemical oxidative method with various oxidant/solvent
systems [9–17]. Recently, we reported the preparation of PAT by the chemical oxidative method using
copper chloride as an oxidant in aqueous solution without adding any acid [13]. The adsorption
capability of PAT for Hg(II) in the aqueous solution was also evaluated. In this context, we note that
Hg(II) is one of the most toxic heavy metal ions in existence, and adsorption is considered to be one of
the most attractive processes used for Hg(II) removal since adsorption is easy and cost-effective when
compared to other techniques, such as ion exchange, solvent extraction, and precipitation [18–22].
On the other hand, heterocyclic conjugated polymers are used as heavy metal ion adsorbents because
these polymers typically carry sulfur- or nitrogen-containing functional groups, which have a high
affinity for heavy metal ions such as Hg(II) [23]. Notably, AT has a much higher sulfur and nitrogen
atom molar ratio (30%) than that in 3,4-ethylenedioxythiophene (7%), aniline (7%), and pyrrole (10%).
However, analogous to polyaniline and polypyrrole, PAT prepared by the chemical oxidative method
is typically aggregated, which means there is a relatively low surface area available for adsorption.
One elegant solution to this problem is to synthesize conjugated polymer-coated latex particles, which
should have a reasonably higher amount of conjugated polymer on the surface. Therefore, compared
with powdered PAT, PAT-coated latex particles should have a higher specific surface area and thus can
benefit the adsorption process.

In the present work, we report on the deposition of PAT onto near-monodisperse, micrometer-sized
PS latexes based on chemical oxidative polymerizations of AT in aqueous media in the presence
of poly(N-vinyl-2-pyrrolidone) (PVP)-functionalized polystyrene (PS) latex (see Figure 1). PS is
a frequently used “model” polymer in such studies since it is readily synthesized with high
monodispersity at different sizes, and its morphology is particularly suitable for electron microscopy
observation due to its relatively high Tg. It is perhaps noteworthy that AT has a relatively
high water solubility (100 g/L), much higher than that of pyrrole (60 g/L), aniline (36 g/L), and
3,4-ethylenedioxythiophene (immiscible with water), suggesting AT may be well-suited for such
preparation. The effects of monomer concentration, PS concentration, and polymerization temperature
on the morphology of the composite particles were investigated. Furthermore, the adsorption properties
of the PAT-coated PS (PAT-PS) latexes for Hg(II) in aqueous solution were assessed preliminarily. As far
as we are aware, this is the first work on the synthesis of PAT in the form of conjugated polymer-coated
latexes, and the adsorption properties of the PAT-coated PS composite particles, which exhibit relatively
high adsorption capacity, are reported for the first time.
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Figure 1. Chemical structures of aniline, pyrrole, 3,4-ethylenedioxythiophene, and
2-aminothiazole, and a scheme for the formation of poly(2-aminothiazole) (PAT)-coated
poly(N-vinyl-2-pyrrolidone)-functionalized polystyrene (PS) latex particles.
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2. Materials and Methods

2.1. Materials

Styrene, AT (97%), PVP (Mw = 360,000), and azoisobutyronitrile were purchased from
Sigma-Aldrich (St. Louis, MO, USA). 2-Propanol (>99.5%) was purchased from TCI (Shanghai, China)
Development Co., Ltd. CuCl2·2H2O (99%) was obtained from Sinopharm Chemical Reagent
(Shanghai, China). The styrene monomer was purified by passing it through a basic aluminum
oxide column. All other chemicals were used as received.

2.2. Preparation of PVP-Functionalized PS Latexes

The monodisperse PS latex particles were prepared by dispersion polymerization as follows: 10 g
of styrene, 1.4 g of PVP, and 80 g of 2-propanol were charged into a 250-mL three-neck flask equipped
with a mechanical stirrer, an N2 inlet, a Graham condenser, and a heating mantle. The solution was
stirred and purged N2 for 30 min and then heated to 70 ◦C. A solution of AIBA (100 mg) dissolved in
10 g of H2O was added to initiate the polymerization, which was allowed to proceed for 24 h at 70 ◦C
under N2. The product was then purified by repeated centrifugation-redispersion cycles, with each
supernatant being replaced with deionized water. Finally, the particles were redispersed in deionized
water, giving a solid content of 4.6 wt%.

2.3. Preparation of PAT-PS Particles

A typical synthesis of PAT-coated PS particles was conducted as follows: 8.7 g of the PS latex
(equivalent to 0.4 g of dry PS particles), 0.2 g (2 mmol) of 2-aminothiazole, and 26.7 of H2O were
charged into a 100 mL flask containing a magnetic stir bar. A solution of CuCl2·2H2O (0.172 g, 1 mmol)
in deionized water (5.0 g) was then added dropwise to the stirring solution. In each synthesis, the
oxidant/monomer ratio was fixed to be 0.5, and the total water content was fixed to be 50 g. The color
of the dispersion changed immediately after the CuCl2 solution was added. The reaction was allowed
to proceed for 24 h at room temperature (~25 ◦C) unless otherwise stated. The resulting dispersion
was purified by repeated centrifugation-redispersion cycles, with each supernatant being replaced
with deionized water.

2.4. Characterization

The sizes and size distributions of the latex particles were determined by Dynamic light scattering
(DLS) using a Malvern Mastersizer 2000 instrument. Both scanning electron microscopy (SEM, Quanta
FEG 450, FEI, Hillsboro, OR, USA), and transmission electron microscopy (TEM, Tecnai G2 F30, FEI,
Amsterdam, Netherlands) were used to observe the morphology of the particles. The SEM sample
was prepared by placing several drops of purified latex onto an adhesive carbon disk mounted on an
aluminum stub. After drying under ambient conditions overnight, the stub was then sputter-coated
with a thin layer of gold prior to examination at 30 kV. The TEM sample was prepared by drying a
drop of purified latex on a carbon-coated copper grid prior to examination at 300 kV. A PerkinElmer
Spectrum100 FT-IR spectrometer was used to collect the FTIR spectra. Surface compositions of the
particles were characterized with an X-ray photoelectron spectroscope (XPS, Versa Probe PHI-5000,
ULVAC-PHI Inc., Kanagawa, Japan).

2.5. Adsorption Experiments

Ten milligrams of dried PAT-PS particles (prepared in run 5) were charged into a conical flask
with 25 mL of Hg(II) solution at different initial concentrations (100–600 mg/L), with the pH having
been adjusted to 4.5 prior to mixing. The samples were stirred at 280 rpm at 25 ◦C for 24 h followed by
filtration. The equilibrium concentration of Hg(II) in the filtrate was then determined by inductively
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coupled plasma atomic emission spectrometry (ICP-AES). The adsorption capacity (Q, mg/g) was
calculated according to the following equation [13]:

Q =
(C0 −Ce)

W
V (1)

where C0 is the initial concentration of Hg(II) solution (mg/L), Ce is the equilibrium concentration of
Hg(II) solution (mg/L), V is the solution volume (mL), and W is the mass of PAT-PS particles (mg).
The adsorption kinetics experiment for Hg(II) was carried out with 20.0 mg of dried PAT-PS particles
and 50 mL of Hg(II) solution at an initial concentration of 500 mg/L.

3. Results and Discussion

Near monodisperse PS template particles (see Figures 2 and 3) with an average diameter of
~1.17 µm as determined by DLS were first prepared by dispersion polymerization using PVP as
the stabilizer. This frequently-used steric stabilizer can be grafted onto the latex particles during
the dispersion polymerization process [24]. As confirmed by XPS (the S signal as a marker for
PVP, not shown), the PS particles were functionalized by PVP and incorporated hydrophilic PVP on
their surfaces.
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The PS particles were then subjected to the coating process under the conditions that PAT could
be formed. More specifically, the syntheses were conducted using copper chloride as the oxidant
and 2-aminothiazole as the monomer in aqueous media in the presence of purified PS latex at a fixed
oxidant/monomer molar ratio of 0.5. This ratio was selected to ensure approximately spherical PAT
particles were formed, since our previous experiments indicated that PATs prepared at a ratio higher or
lower than 0.5 were less spherical [5], which was unfavorable for the formation of homogenous coating.

A series of PAT-coated PS particles was prepared under different conditions, as summarized in
Table 1. The colloidal stability of the PAT-coated PS particles is the primary concern of this study.
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According to the principle of the formation of conjugated polymer-coated latex particles, colloidally
stable PAT-coated particles will be formed only if the thickness of the PAT overlayer is within the
size range of PVP, which is approximately 20–30 nm [25]. In this study, the colloidal stability of
the composite particles was monitored by visual inspection; the surface roughness of the composite
particles was examined by SEM and TEM observations; and the thickness of the PAT overlayer was
determined from high-magnification TEM images utilizing the subtle contrast between the PS particles
and the PAT coatings.

Table 1. Summary of the PAT-coated PS particles prepared under different conditions. The total water
content was fixed to be 50 g.

Run Initial PS Mass (g) Initial AT Mass (g) Temperature (◦C) Remarks

1 0.4 0.4 25 precipitation
2 0.4 0.3 25 flocculation
3 0.4 0.2 25 stable, smooth
4 0.4 0.1 25 stable, smooth
5 0.2 0.2 25 stable, smooth
6 0.1 0.2 25 stable, rough
7 0.05 0.2 25 metastable, rough
8 0.4 0.2 50 precipitation
9 0.4 0.2 70 precipitation

3.1. Effect of the AT Concentration

In the first set of experiments, the effect of the AT concentration on the morphology of the
composite particles was studied. Figures 4 and 5 show the SEM and TEM images of the products
prepared at a fixed amount of PS (0.4 g), and varied AT amounts, respectively. Obviously, the colloidal
stability of the final products depended on the amount of AT present. The polymerization of 0.4 g
of AT led to macroscopic precipitation of the system. This was probably because the polymerization
rate was too high at this monomer concentration, as the rate of the polymerization reaction increased
with increasing monomer concentration [14]. As a result, in addition to PS particles with a thick PAT
coating, separate PAT subphases with a morphology similar to that of the PAT bulk powder were
clearly observed (see Figures 4a and 5a). These PAT subphases should also be responsible for the
loss of colloid stability by acting as a bridging flocculant between the latex particles. When 0.3 g of
AT was used for the polymerization, substantial flocculation was observed while redispersion was
possible by mechanical shaking. The product showed relatively rough surfaces (see Figures 4b and 5b),
in contrast to the smooth surfaces of the original PS particles. With 0.2 and 0.1 g of initial AT, the
products were colloidally stable. However, the presence of the PAT overlayer was not visible even with
high-magnification SEM (Figure 4c,d) and TEM (see Figure 5c,d) studies, which showed the coated
particles were essentially identical to the original PS particles. This was consistent with the earlier
studies on PPy-coated PS particles, in which the PPy overlayer was very thin, smooth, and uniform [6].
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3.2. Effect of the PS Concentration

To prepare a series of composite latexes with various PAT loadings, the polymerizations were also
conducted with a fixed monomer concentration (the oxidant/monomer ratio was fixed to be 0.5) and
varied PS concentrations. Considering that a higher monomer concentration possibly caused bigger
PAT granules as mentioned previously, and a lower monomer concentration led to extremely low
yields of PAT, the amount of monomer was fixed to be 0.2 g. The corresponding SEM and TEM images
are shown in Figure 6, and Figure 7 (in combination with Figure 4c, and Figure 5c), respectively. It is
obvious that the PAT coating became rougher with decreasing PS concentration. For example, particles
with extremely thin PAT coatings were obtained when using higher amounts of PS latex particles (0.4
and 0.2 g, see Figures 3c and 6a, respectively). When 0.1 and 0.05 g of PS latex particles were used, the
existence of PAT coatings was clearly visible from SEM images (see Figure 6b,c, respectively). This
could be attributed to the decreasing numbers of PS particles available for PAT deposition, which
meant each PS particle would be coated by more PAT granules in principle [6]. The overlayer thickness
of the coated particles prepared with 0.2, 0.1, and 0.05 g of PS was ~7, ~17, and ~28 nm, respectively, as
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measured from their magnified TEM images (Figure 8). It should be noted the overlayer thickness of
the coated particles prepared with 0.4 g of PS was too thin to be accurately measured (see Figure 5c),
but should be less than 7 nm. Moreover, the system prepared with 0.05 g of PS latex particles was
not very stable on standing. This could be best explained by the fact that the overlayer thickness was
~28 nm, which was closer to the upper limit of the size of the stabilizer [25]. Thus the thickness of
these PAT coatings could be simply controlled by tuning the amount of PS latex particles used for
PAT deposition.
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thickness of the coated particles was measured to be ~7, ~17, and ~28 nm, respectively.

3.3. Effect of the Polymerization Temperature

PAT deposition was also attempted at higher temperatures (50 and 70 ◦C, runs 8 and 9, respectively)
under other identical conditions of the typical synthesis (run 3). However, this protocol was unsuccessful
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and macroscopic precipitation was observed during the polymerization process. Figure 9 displays the
SEM images of the sample prepared at 50 ◦C. This was similar to the case of using a higher amount
of AT (run 1) [14]; that is, the polymerization rate was very high, leading to the formation of a large
amount of separate PAT subphases. Thus, a higher polymerization temperature was unfavorable for
the formation of a uniform overlayer.
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3.4. Characterization of the PAT-PS Particles

The FTIR spectra of PAT, PS, and typical PAT-coated PS particles (run 4) are shown in Figure 10.
For the spectrum of the uncoated PS particles, the main peaks at 1493, 1452, 757, and 698 cm−1 are
typical for that of PS, and an additional peak at 1663 cm−1 is attributable to the pyrrolidone carbonyl of
the PVP stabilizer [6]. The FTIR spectrum of the PAT-coated PS composite particles exhibits similar
bands assignable to PS components, while the intensity of the peaks appears to be relatively weak
compared to those of original PS particles, indicating the possible effect of PAT coating on the PS
particles. Meanwhile, the band assignable to PAT (3356 cm−1, stretching of the secondary –NH
groups [17]) is not obvious, given the extremely low PAT loading.
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Figure 10. FTIR spectra of PAT (prepared at an oxidant/monomer ratio of 0.5), PS, and typical PAT-PS
particles (run 4). Note the relatively weak bands due to the PAT component in the spectrum of PAT-PS
particles relative to the spectrum of PS particles.

To further confirm the successful coating of PAT onto PS particles, the PAT-PS particles were
characterized with XPS, which is a technique well-suited to analyzing the surface compositions of
colloidal particles with a typical sampling depth of 2–10 nm [24]. The sample prepared under the
conditions of PS amount of 0.4 g and AT amount of 0.2 g, whereby the presence of the PAT overlayer
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was not visible by SEM, was selected to demonstrate the effectiveness of XPS. The S signal can be used
as a unique marker for PAT. As shown in Figure 11, the presence of PAT on the particle surface was
evidenced from the peak at 164.8 eV (S 2p), albeit at relatively low concentration. Furthermore, the
PAT coverage percentage on the PAT−PS particle surface could be estimated from the XPS result using
the following equation [24]:

% surface PAT = (% surface S) × 100/(% S of the PAT) (2)

where the % surface, S, obtained from the XPS data was 0.28 % and the % S of the PAT (C3H4N2S) was
32%. Thus, the % surface PAT of the PAT−PS particles was calculated to be 0.875%. Similarly, the PVP
coverage percentage on the PAT−PS particle surface could be estimated as follows:

% surface PVP = (% surface N contributed by PVP) × 100/(% N of the PVP) (3)

where the % surface, N, contributed by PVP could be obtained from the XPS data (1.125%), and the %
N of the PVP (C6NO) was 15.7%. Thus, the % surface PVP of the PAT−PS particles was determined to
be 7.2%. These values were in reasonable agreement with the ultrathin overlayer in this case.
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3.5. Adsorption Properties of the PAT-PS Particles

The feasibility of the PAT-PS particles as an Hg(II) remover in aqueous solution was explored.
The PAT-PS particles prepared with 0.2 g of PS and 0.2 g of PAT (run 5) were selected for adsorption
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study as they had a reasonable thickness of PAT coating (~7 nm) and higher product mass for adsorption.
To optimize the adsorption process, the effect of the contact time on the adsorption capacity of PAT-PS
particles for Hg(II) was studied first. As shown in Figure 12, the adsorption capacities increased
substantially within the initial 2 h, and then increased steadily with increasing contact time up to 24 h.
Subsequently, the adsorbed amount remained almost constant. This behavior was very similar to that
of the neat PAT [13]. Thus, we can assume the adsorption reached equilibrium within 24 h.
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Figure 12. The adsorption kinetics behavior of PAT-PS particles for Hg(II) in aqueous solution (PAT-PS
20 mg, C0 = 500 mg/L, pH 4.5).

Subsequently, the adsorption isotherm was obtained with a contact time of 24 h (see Figure 13).
Significant deviations from Langmuir-type of adsorption isotherm were observed, suggesting a complex
adsorption mechanism. In previous work, we suggested that the adsorption of Hg(II) to PAT was
likely attributed to complexation between the ions and the exocyclic N and S atoms of PAT, while
the endocyclic nitrogen was not involved in the adsorption [13]. The Hg(II) adsorption capacity of
various adsorbents has been summarized in two recent reviews [26,27], and the maximum adsorption
capacities for Hg(II) ions with several various adsorbents are compared in Table 2. It is shown that the
adsorption capacity (440.25 mg/g at 25 ◦C) obtained with PAT-PS particles in this work was much higher
than that of many other adsorbents reported in literature. For example, the maximum adsorption
capacity of a PAT/CA fiber membrane was only 177 mg/g at 25 ◦C [15]. The excellent adsorption
properties of the PAT-PS particles for Hg(II) should be primarily ascribed to their having a high surface
area available for adsorption.
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Table 2. Comparison of maximum adsorption capacity of Hg(II) ions with various adsorbents.

Adsorbent Maximum Adsorption Capacity (mg/g) Ref.

PAT 325.7 mg/g at 308 K [13]
PAT/cellulose acetate fiber membrane 177 mg/g at 298 K with 6.5 wt % PAT [15]
AT-functionalized polyacrylonitrile 454.9 mg/g at 308 K [28]

thiol-functionalized mesoporous silica 47.50 mg/g at 293 K [29]
starch/SnO2 nanocomposite 192 mg/g at 298 K [30]

PAT-coated PS particles 440.25 mg/g at 298 K this work

4. Conclusions

We describe a facile and effective protocol for coating micrometer-sized, sterically stabilized PS
latex particles with PAT overlayers. Colloidally stable PAT-PS particles can be obtained at a proper AT
concentration, and the PAT loading can be easily adjusted by varying the initial PS particle concentration.
At low PS concentrations, the overlayer appeared to be reasonably smooth and uniform; but at high
concentrations, increasing overlayer roughness was apparent. The PAT-PS particles exhibited excellent
adsorption properties for Hg(II) in aqueous solution due to their having a high surface area available
for adsorption.

Author Contributions: H.Z. designed, performed, analyzed the experiments and wrote the manuscript. Y.W.
investigated. All authors have read and agreed to the published version of the manuscript.
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