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Background: Diabetic kidney disease (DKD) is the primary cause of end-stage renal

disease, raising a considerable burden worldwide. Recognizing novel biomarkers by

metabolomics can shed light on new biochemical insight to benefit DKD diagnostics

and therapeutics. We hypothesized that serum metabolites can serve as biomarkers in

the progression of DKD.

Methods: A cross-sectional study of 1,043 plasma metabolites by untargeted

LC/MS among 89 participants identified associations between proteinuria severity and

metabolites difference. Pathway analysis from differently expressed metabolites was

used to determine perturbed metabolism pathways. The results were replicated in

an independent, cross-sectional cohort of 83 individuals. Correlation and prediction

values were used to examine the association between plasma metabolites level and

proteinuria amount.

Results: Diabetes, and diabetic kidney disease with different ranges of proteinuria have

shown different metabolites patterns. Cysteine andmethionine metabolism pathway, and

Taurine and hypotaurine metabolism pathway were distinguishable in the existence of

DKD in DC (diabetes controls without kidney disease), and DKD with different ranges

of proteinuria. Two interesting tetrapeptides (Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro)

circulating levels were elevated with the DKD proteinuria progression.

Conclusions: These findings underscore that serum metabolomics provide us

biochemical perspectives to identify some clinically relevant physiopathologic biomarkers

of DKD progression.
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INTRODUCTION

Diabetic kidney disease (DKD), accounts for 30–50% of chronic
kidney disease at present, and the prevalence of which continues
to increase without any sign of mitigation (1). Aside from raising
the rates of end-stage renal disease (ESRD), DKD increases
the risk of cardiovascular events and death (2). The natural
progression of DKD is typically initiated by microalbuminuria,
moves through massive proteinuria, and ends in ESRD (3,
4). Despite there having been a large amount of progress in
understanding the pathogenesis of DKD, it remains challenging
to distinguish type 2 diabetes (T2DM) patients who are
susceptible to progressive DKD (5). Specific biomarkers are
particularly urgently needed to discover individuals at risk for
early identification to delay progression.

Given DKD was initiated by hyperglycemia-induced
metabolic variation (6), high-throughput profiles
(metabolomics) of individuals’ metabolic conditions may
provide biochemical perceptions related to DKD to aid in
serving as possible biomarkers (7, 8). Prior studies have
identified the perturbed pathways and metabolites, these studies
have manifested fasting increased five branched-chain and
aromatic amino acids which may help predict future type 2
diabetes development (9), lower histidine (10), and higher
phenyl sulfate (11) levels were related to microalbuminuria
and described remodeling of phospholipid and lipoprotein
metabolism (12) and sphingolipid metabolism (13) in DKD.
However, several limitations of these studies should not be
ignored: (i) limited to a small set of metabolites (< 200), mostly
through targeted metabolomics (9, 12); (ii) lack of validation
in another independent cohort (10); (iii) confined to animal
models (11).

To address these problems, here we use untargeted metabolic
profiling in conjunction with targeted metabolomics from
healthy control, diabetes control, and diabetic kidney disease
patients in a discovery set, further replicated in an independent
validation set. We identified perturbed cysteine and methionine
metabolism, and hypotaurine metabolism pathways in DKD
patients with moderate and heavy proteinuria. Two short peptide
elevations in circulation correlated with the proteinuria severity,
which may serve as novel predictors of progressive diabetes.

MATERIALS AND METHODS

Study Population for Screening
All procedures performed in this study involving human
participants followed the Declaration of Helsinki. The study
was approved by the Ethical Committee of the First Affiliated
Hospital of Zhejiang University School of Medicine. All subjects
(patients and healthy controls) provided written informed
consent for blood collection.

The patients’ study groups consisted exclusively of patients
with type 2 diabetes (T2D). T2D was defined by disease onset
after age 30, treated by diet and insulin or oral hypoglycaemic
medication. The DKD group (n = 29) consisted of the patients
with T2D and microalbuminuria (albumin 30–300 mg/day) or
biopsy-proven DKD. The DKD group was further divided into

two groups according to 24h-hour urine protein, or calculated as
urine protein/creatinine ratio: one group consisted of 17 patients
with heavy proteinuria (≥3.5 g/g), and the other group consisted
of 12 patients with moderate proteinuria (<3.5 g/g). Diabetes
controls without kidney disease (DC, n = 30) group including
patients with T2D, no microalbuminuria (albumin< 30 mg/day)
and normal renal function (14). The healthy control (HC, n
= 30) group consisted of people with no history of disease or
current medication. Estimated glomerular filtration rate (eGFR)
was evaluated using Chronic Kidney Disease Epidemiology
Collaboration (CDK-EPI) equation, eGFR = 141 × min (Scr /κ,
1)α×max (Scr /κ, 1)−1.209 × 0.993Age × 1.018 (if female), where:
sCr is serum creatinine in mg/dL, κ is 0.7 for women and 0.9 for
men, α is −0.329 for women and −0.411 for men. The clinical
baseline characteristics of subjects for screening included in this
study is shown in Table 1. The experimental outline as shown
in Figure 1.

Sample Collection
Peripheral venous blood samples were collected from all of the
participants after 12-h fasting. After storing at 4◦C for 1 h, the
blood samples were centrifuged at 1,000 × g for 10min at 4◦C.
The serum samples were stored in 1.5ml Eppendorf tubes and
stored at−80◦C until metabolomics analysis.

Metabolite Extraction of Serum of
Screening Cohort
The serum samples were mingled with the extraction liquid (350
µl, methanol/acetonitrile/ddH2O, 1/2/2, v/v/v) and an internal
standard (20 µl L-2-chlorophenylalanine, 1 mg/ml stock in
ddH2O) (15). After dryness and resuspension, the supernatant
was prepared for analysis by liquid chromatography (LC) mass
spectrometry (MS) in Q Exactive Orbitrap (Thermo Fisher
Scientific, USA).

Metabolite Measurement of Serum by
Untargeted LC/MS
Mass spectrometry (MS) was performed in both positive and
negative ion modes, and the instrument parameters were as
follows: the capillary voltage was 3 kV in positive mode and
2.6 kV in negative mode with the cone voltage was set at
40V. The source and desolvation temperature were 110 and
500◦C, respectively. MS analysis that simultaneously acquires
both precursor and fragment mass spectra was performed on the
mass spectrometer with a low collision energy of 10 eV and a
ramp of 20–55 eV for high collision energy. The MS acquisition
rate was set to 0.3 s with a 0.01 s interscan delay. MS data were
collected in full scan mode ranging from 50 to 1,000. Nitrogen
was used as both the desolvation gas (800 L/h) and the cone
gas (50 L/h). The time of flight analyzer was used in Resolution
mode. Leucine-enkephalin was used as the reference compound
(m/z 556.2771 in ESI+ mode and m/z 554.2615 in ESI-mode)
at a concentration of 200 ng/ml with a flow rate of 5 µl/min
(16).Metabolites were identified and gauged based on the built-in
database using Tracefinder v3.1 (Thermo Fisher Scientific, USA)
based on retention times and mass-to-charge ratio.
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TABLE 1 | Laboratory and clinical characteristics of individuals included in the SCREENING cohort.

Health control

(n = 30)

Diabetic control

(n = 30)

Diabetic kidney disease (DKD)

DKD with heavy proteinuria

(n = 17)

DKD with moderate proteinuria

(n = 12)

Age (years) 50.07 ± 2.35 49.80 ± 3.33 50.18 ± 2.62 52.58 ± 3.65

Sex (male/female) 12/18 18/12 9/8 11/1

History (years) 6.40 ± 1.03 7.77 ± 1.13 7.04 ± 1.62

BMI 22.68 ± 0.73 23.15 ± 0.83 24.23 ± 1.04

SBP (mmHg) 122.90 ± 2.33 144.70 ± 5.53* 137.30 ± 6.10

DBP (mmHg) 77.17 ± 1.59 86.00 ± 2.73 86.25 ± 3.35

FPG (mmol/L) 7.66 ± 0.54 7.49 ± 0.88 6.37 ± 0.53

TC (mmol/L) 3.90 ± 0.16 5.71 ± 0.55* 4.56 ± 0.42

TG (mmol/L) 1.47 ± 0.17 1.85 ± 0.21 1.77 ± 0.29

eGFR (ml/min/1.73 m²) 103.70 ± 3.72 63.66 ± 7.58* 79.50 ± 17.70*

UPCR (g/g) 1.88 ± 0.13 5.72 ± 0.65* 1.81 ± 0.33

BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; UPCR, urine

protein/creatinine ratio.

eGFR was evaluated using the CDK-EPI equation.

The data are shown as the mean ± SEM. *P < 0.05 vs. the health control or diabetic control.

FIGURE 1 | Experiment outline of this research.

TABLE 2 | Four metabolites in the same direction after successive comparison.

Name log2 DKD
DC P-value log2 DKD−H

DKD−M P-value

Asn-Met-Cys-Ser 1.1261 1.71E−02 2.5934 2.17E−02

Asn-Cys-Pro-Pro 1.7428 3.00E−02 1.9677 4.55E−02

Thr-Cys-Cys −1.5338 2.04E−04 −1.0485 2.54E−02

Isorhamnetin 3-(3′′,6′′-di-p-coumarylglucoside) 1.51 7.46E−04 1.303 1.74E−02

Study Population for Validation
The diabetic kidney disease (DKD) group (n = 60) included the
patients with a history of T2D and presence of microalbuminuria
(albumin 30–300 mg/day) or biopsy-proven DKD. The DKD
group was further divided into two groups according to the
Urine protein/creatinine ratio: one group consisted of 35 patients
with heavy proteinuria (>3.5 g/g, n = 35), and the other
group consisted of 25 patients with moderate proteinuria
(<3.5 g/g, n = 25). The healthy control (HC, n = 23)
group included the people with no history of disease or
current medication.

Metabolite Extraction of Serum of the
Validation Cohort
Serum samples were prepared for LC-MS/MS analysis
as described before (16). Briefly, 40 µl of each serum

sample was mixed with 80 µl mass spectrometry (MS)
grade methanol and incubated at 4◦C. After several
rounds of centrifugation at 4◦C, supernatants were
dried using a speed vacuum. Dried samples were re-
suspended in 100 µl 60% acetonitrile/40% water. After
centrifugation, 80 uL was collected and 50 uL was injected
for analysis.

Quantification of Small Peptides by
Targeted LC/MS
Small peptides [Asn-Met-Cys-Ser (NS), Asn-Cys-Pro-Pro (NP)]
were quantitated by LC-MS with a triple quadrupole mass
spectrometer (5500 QTRAP, ABSCIEX). Peptide standards
synthesized and purchased from GL Biochem were used
to develop and optimize multiple reaction monitoring
(MRM) transitions. Peptide standards were separated
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chromatographically on a C18-based column with polar
embedded groups (Hypersil GOLD 100 × 2.1mm, 3µm,
Thermo scientific) using an ABSCIEX enhanced high-
performance hybrid triple quadrupole mass spectrometer
with an autosampler. The flow rate was 0.4 ml/min using
the following flow program: Buffer A: 99.9% H2O/0.1%
formic acid, Buffer B: 99.9% acetonitrile/0.1% formic acid.
T = 0min, 0% B; T = 4min, 0% B; T = 8min, 100% B;
T = 11min, 100% B; T = 12min, 0% B; T = 15min, 0%
B. Declustering potential, collision energy, and retention
time used to detect a corresponding peptide as listed in
Supplementary Table S1. Standard curves were determined,
and these measured peptides exhibited good linearity between 0
and 100µM. For each peptide, we analyzed 2–4 ion transitions.
Retention time and linearity for each peptide was determined
using high purity synthetic peptide standards. For all the
transitions, R squares are close to 100% in curve fitting with
linear regression.

Statistical Analysis
Statistical analysis for the baseline characteristics of participants
was performed using GraphPad Prism 9.0.0 software (GraphPad
Inc., San Diego, CA, USA). All data are presented as the
mean± SEM. Chemometrics analysis such as PCA and OPLS-
DA analysis, univariate volcano plot analysis, cluster heatmap
analysis was carried out by MetabAnalyst 5.0 (http://www.
metaboanalyst.ca). Benjamini-Hochberg’s step-down approach
was used for false discovery rate correction during multiple
comparisons. Normalization was carried out by using median,
log transformation, and mean centering to standardize the data
and make the features more comparable.

Kolmogorov-Smirnov test was used to assess for normal
distribution of the data. Normally distributed data with
homogeneity of variances was analyzed by using a parametric test
(2 groups, unpaired student’s t test;> 2 groups, one-way ANOVA
with Holm-Šídák’s multiple comparisons test). Non-normally
distributed data or data with a heterogeneity of variances was

FIGURE 2 | Overall similarity and differences between samples by PCA and OPLS-DA analysis. (A) PCA score plots of healthy controls (HC), diabetic controls (DC),

diabetic kidney disease patients [DKD, i.e., Diabetic nephropathy (DN)]. (B,C) OPLS-DA score and model overview plots of HC, DC, and DKD. (D) 1,000-times

permutation test of the model showed its high strong reliability.
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analyzed by using a non-parametric test (2 groups, Mann-
Whitney test. Compare ranks; > 2 groups, Kruskal-Wallis test
with Dunn’s multiple comparisons test). Spearman’s tests were
applied to determine the correlation of multiple variables with
Metabolites peak area in DKD patients. A receiver operating
characteristic (ROC) curve was used to evaluate the prediction
value. All P values were two-tailed, and P < 0.05 was considered
statistically significant.

RESULTS

Baseline Demographic and Clinical
Characteristics of the Diabetic Patients
and Healthy Controls
The baseline demographics and clinical data of the patients
and controls are shown in Table 1. Urine protein/creatine ratio

(UPCR) was used to calculate the amount of 24 h-urine protein
and divide the diabetic kidney disease group into two groups (17),
patients with heavy proteinuria (≥3.5 g/g) with an average UPCR
of 5.72 g/g, and those with moderate proteinuria (<3.5 g/g) with
an average UPCR of 1.81 g/g. No significant differences in age,
gender ratio, BMI, DBP, FPG, or TG were observed among the
three or four groups. The patients in the diabetic kidney disease
(DKD) with heavy and moderate proteinuria groups presented
with a mean eGFR level of 63.66 ± 7.58 ml/min/1.73 m² and
79.50 ± 17.70 ml/min/1.73 m², respectively (P < 0.05 compared
with the diabetic controls).

Serum Metabolic Profiles Can Differentiate
Between DKD From DC
A clear separation between healthy controls (HC), diabetic
controls (DC), and diabetic kidney disease patients (DKD) was

FIGURE 3 | Visualization of serum metabolites difference between healthy controls and diabetic patients. (A) Volcano plot comparing serum metabolites in diabetic

controls (DC) (n = 30) and healthy controls (HC) (n = 30). The vertical dashed lines indicate the threshold for the 1.5-fold abundance difference. The horizontal dashed

line indicates the P = 0.05 threshold. X-axis, log2[average_FoldChange]. Y-axis, –log10[adjusted-P value]. P-value computed using a two-sided unpaired t-test

without adjustment for multiple comparisons. (B) Volcano plot comparing serum metabolites in diabetic kidney disease patients (DKD) (n = 29) and healthy controls

(HC) (n = 30). Refer to (A) for the description of the figure. (C) Volcano plot comparing serum metabolites in diabetic kidney disease patients (DKD) (n = 29) and

diabetic controls (DC) (n = 30). Refer to (A) for the description of the figure. (D) Volcano plot comparing serum metabolites in diabetic kidney disease with heavy

proteinuria (DKD-heavy) (n = 17) and diabetic kidney disease with moderate proteinuria (DKD-moderate) (n = 12). Refer to (A) for the description of the figure.
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displayed in the unsupervised Principal Component Analysis
(PCA), with PC1 at 24.1% and PC2 at 7.5% (Figure 2A). The
significant distinction inmetabolic profiles was further supported
by Orthogonal PLS-DA (OPLS-DA) model, with the R2Ycum =

81.6%, Qcum2 = 79.8% (Figures 2B,C). These results indicated
diabetic kidney disease development alters the serum metabolite
landscape of diabetes, so the serum metabolic signatures can be
appropriate to distinguish between DKD fromDC. Furthermore,
the permutation test showed the high stability of the model
(Figure 2D).

Differences of the Serum Metabolites
Within Each Group
On the whole, 1,043 metabolites were relatively quantified
using LC/MS after strict quality control, 368 metabolites had
>20% missing observations were excluded from the analysis. An
overview metabolite profiles heatmap between three groups, ie.
healthy controls (HC), diabetic controls (DC), diabetic kidney
disease patients (DKD) is shown in Supplementary Figure S1.
As described in Materials and Methods, through a moderated
t-test with P-value corrected applying the Benjamini-Hochberg
procedure, differentially expressed metabolites (DEMs) of these
groups were defined as metabolites with a significance level of <

0.05 (FDR) and absolute fold-change>1.5 or< 0.67, we obtained
the differentially expressed metabolites (DEMs) of these groups.

Of these, 113 metabolites were significantly upregulated and
166 metabolites were significantly downregulated between DC
and HC groups (Figure 3A). Similarly, there were 64, 152, and 16
metabolites that had been noticed to be upregulated significantly
and 92, 96, 21 metabolites downregulated significantly in DKD

vs. HC group, DKD vs. DC group, and DKD-heavy vs. DKD-
moderate group, respectively (Figures 3B–D). The detailed list of
differential metabolites within each group including name, fold
change, P-value, HMDB number, and KEGG ID are provided in
Supplementary Table S2.

Disturbed Cysteine and Methionine
Metabolism and Hypotaurine Metabolism
Pathway
Aiming to understand the perturbed metabolism pathway
completely, we firstly used loose criterion (>1.1 fold or < 0.91
fold) to screen the differential metabolites in the comparison
of diabetic kidney disease (DKD) vs. diabetic control (DC)
and diabetic kidney disease with heavy proteinuria (DKD-
H) vs. diabetic kidney disease with moderate proteinuria
(DKD-M). That is to say, to identify disturbed pathways that
perturbed in the onset of DKD, and altered continuously
in the progression of DKD. Among the identified enriched
pathways from the differential metabolites, the hypotaurine
metabolism pathway, cysteine, and methionine metabolism
pathway were found with the significance of p < 0.05
(Figure 4A). Serum L-homocysteine and 3-sulfinylpyruvate,
and 2,3-Diketo-5-methythiopentyl-1-phosphate seem to increase
when DKD exists in the set of diabetes and increase with
the proteinuria progression of DKD (Figure 4B). Although
dehydroalanine and L-cysteine, s-adenosyl-L-methionine, and s-
methyl-5-thio-D-ribose 1-phosphate were found to be raised in
DKD compared to DC, almost no difference was found in the
two different ranges of proteinuria groups. Mercaptopyruvate
was reduced in the set of diabetic kidney disease and further

FIGURE 4 | Disturbed cysteine and methionine metabolism and hypotaurine metabolism pathway with significance identified from Metabanalyst in the comparison of

DKD vs. DC, DKD-H vs. DKD-M. (A) Disturbed metabolic pathways were identified from the changed metabolites from the comparison of DKD vs. DC and DKD-H vs.

DKD-M using serum samples. All matched pathways according to the p values from the pathway enrichment analysis and pathway impact values from the pathway

topology analysis. The color of each node (varying from yellow to red) means the metabolites are in the data with different levels of significance, the size of each node

represents the pathway impact values. (B) Altered serum metabolites in the cysteine and methionine metabolism pathway. The left square refers to the comparison of

DKD vs. DC, the right square refers to the comparison of DKD-H vs. DKD-M. Red means upregulated more than 1.1 fold, Green means downregulated less than 0.91

fold, and gray means unchanged whose range between 0.91 and 1.1 in each comparison. (C) Altered serum metabolites in the hypotaurine metabolism pathway.

Refer to (B) for the description of the figure.
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decreased in the heavy proteinuria group. The Hypotaurine
metabolism pathway was the other perturbed pathway identified
with significance in our comparison (Figure 4C). Taurine, also
called amino sulfonic acid, whose antioxidant property and
protective role inmany kidney diseases were widely reviewed (18,
19), while hypotaurine is an intermediate of taurine synthesis,
it oxidated to taurine through hypotaurine dehydrogenase. No
differences were observed between DKD vs. DKD-H vs. DKD-M
(data not shown). However, due to the limitation of metabolites
detected by our mass spectrometry, we lack information on
serum hypotaurine alternation.

Two Short Peptides Highly Correlated With
the Progression of DKD
During the process of the above pairwise comparison, to
find metabolites associated with the progression of DKD,
we focused on the two comparisons, DKD vs. DC and

DKD-heavy vs. DKD-moderate, in purpose to detect who was
susceptible to kidney disease in diabetes condition and who
were vulnerable to progressive proteinuria under DKD. Eleven
collective metabolites were significantly upregulated in DKD
compared to DC and in DKD-H compared to DKD-M, and seven
common metabolites that downregulated in DKD compared to
DC and in DKD-H compared to DKD-M were found (fold
change > 1.5) (Figures 5A,B).

To simplify the metabolite biomarker panel for possible
clinical application, we concentrated on the metabolites that:
(1) have commercially available reference compounds and (2)
have a higher difference in the two comparisons (fold change>2
or fold change< 0.5). Among the 4 metabolites (Table 2), Asn-
Met-Cys-Ser, Asn-Cys-Pro-Pro, Thr-Cys-Cys, and Isorhamnetin
3-(3′′,6′′-di-p-coumarylglucoside), the first two peptides were
finally chosen as possible targets to predict DKD progression
(Figures 5C,D).

FIGURE 5 | Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro peak count changed with the progression of diabetic kidney disease. (A) Venn diagrams showing the number of

upregulated (fold change ≥ 1.5) metabolites in DKD vs. DC and DKD-heavy vs. DKD-moderate (p < 0.05). (B) Venn diagrams showing the number of downregulated

(fold change ≤ 0.67) metabolites in DKD vs. DC and DKD-heavy vs. DKD-moderate (p < 0.05). (C) Heatmap of 4 metabolites, Asn-Met-Cys-Ser, Asn-Cys-Pro-Pro,

Thr-Cys-Cys and Isorhamnetin 3-(3′′, 6′′-di-p-coumarylglucoside) changed significantly (fold change ≥ 2 or ≤ 2) in the same direction in the comparison of DKD vs.

DC and DKD-heavy vs. DKD-moderate. (D) Chemical structural formula, exact mass, and molecular weight of Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro. (E,F)

Confirmation of peak counts of Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro in the validation group. Healthy control (HC) (n = 23), diabetic kidney disease with moderate

proteinuria (DKD-M) (n = 25), and diabetic kidney disease with heavy proteinuria (DKD-H) (n = 35). The data are shown as the mean ± SEM. *P < 0.05 vs. the

corresponding control group.
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TABLE 3 | Characteristics of individuals included in the VERIFICATION group.

Diabetic kidney disease (DKD)

Health

control

(n = 23)

DKD with

heavy

proteinuria

(n = 35)

DKD with

moderate

proteinuria

(n = 25)

Age (years) 44.57 ± 2.59 51.37 ± 1.73 52.04 ± 2.22

Sex (male/female) 10/13 26/9 20/5

History (years) 7.59 ± 0.94 6.93 ± 1.08

BMI 24.13 ± 0.55 23.61 ± 0.45

SBP (mmHg) 150.00 ± 3.61 144.00 ± 2.93

DBP (mmHg) 87.63 ± 1.79 85.96 ± 1.97

FPG (mmol/L) 8.19 ± 0.62 6.96 ± 0.62

HbA1c (%) 7.43 ± 0.34 7.40 ± 0.33

TC (mmol/L) 5.27 ± 0.26* 4.27 ± 0.20

TG (mmol/L) 2.18 ± 0.23 1.89 ± 0.22

eGFR (ml/min/1.73 m²) 58.49 ± 5.70 60.60 ± 5.11

UPCR (g/g) 6.97 ± 0.43* 2.16 ± 0.16

BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic blood pressure;

FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; UPCR, urine

protein/creatinine ratio.

eGFR was evaluated using the CDK-EPI equation.

The data are shown as the mean ± SEM. *P < 0.05 vs. the control or DKD with moderate

proteinuria group.

Twenty-three healthy controls and sixty diabetic kidney
disease patients were recruited for further validation. The
baseline demographics and clinical data of the patients and
controls in verification group are shown in Table 3. Their blood
was collected for targeted metabolomics analysis. Differences
in Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro levels between
DKD-heavy patients and DKD-moderate patients remained
statistically significant (Figures 5E,F).

Association Between Serum
Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro
Intensities and the Presence of DKD
Correlation analysis showed Asn-Met-Cys-Ser was correlated
with urine protein (g/L) and UACR (g/mol·Cr) (Figure 6A, all
p < 0.01), while Asn-Cys-Pro-Pro was independent of urine
protein and UACR level in DKD patients (Figure 6B). Other
clinical parameters, such as age, sex, blood pressure, HbA1c,
serum lipids, eGFR, sCr, BUN, and Ucr were unconnected with
Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro levels between DKD
patients (Supplementary Figures S2, S3).

The result indicated that serum Asn-Met-Cys-Ser and
Asn-Cys-Pro-Pro levels were progressively increased in
the development of DKD (Figures 6C,E). To examine the
performance of two metabolites in the prediction of DKD, ROC
curves were developed. The results of ROC curves revealed that
the best cutoff value for circulating Asn-Met-Cys-Ser to predict
DKD with heavy proteinuria in DKD patients was 14.27 nM
(sensitivity: 80%, specificity: 65.7%) (Figure 6D). The results of
ROC curves revealed that the best cutoff value for circulating
Asn-Cys-Pro-Pro to predict DKD with moderate proteinuria
was 1.03M (sensitivity: 92%, specificity: 85.69%) (Figure 6F).

DISCUSSION

As the leading cause of chronic kidney disease (CKD), diabetic
kidney disease (DKD) brings a substantial burden worldwide (1).
It is urgent to identify which at-risk individuals are extremely
likely to develop progressive diabetic kidney disease. Over the
past decades, plenty of studies have used mass spectrometry
for biomarker discovery in diabetic kidney disease (8, 10–13),
but these studies have been largely limited to a narrow range
of metabolites, unable to depict the full view of metabolite
profiles. Proteinuria, a marker of diabetic kidney disease, as
well as an independent risk factor of renal disease progression,
can cause tubulointerstitial injury to reduce eGFR in DKD
(20). Furthermore, the relationship between proteinuria severity
and metabolite profiling in diabetes patients has not been
investigated yet. Hence, an advantage of this study is the use
of untargeted metabolomics involved 1,043 various metabolites
combined with targeted metabolomics in two independent
cohorts, one for screening and one for validation. Utilizing mass
spectrometry-based metabolomics, we identified two disturbed
pathways and picked out two oligopeptides whose fasting
blood concentrations highly correlated with the forthcoming
development of progressive DKD in diabetic individuals.

During the pathway analysis of differentially expressed
metabolites (DEMs), cysteine and methionine metabolism
pathway and hypotaurine metabolism pathway have drawn
our attention. Although circulating cysteine itself elevated
1.5-fold compared DKD to DC, and does not seemto show much
alteration between the two different proteinuria groups of DKD,
it must be taken into account that being “unchanged” may be an
illusion caused by alteration in the same direction in the synthesis
and breakdown. Homocysteine was widely researched in the
past decades, whether it is an independent risk factor in DKD is
controversial (21). Homocysteine is converted from methionine
transmethylation, as S-adenosyl-L-methionine (SAM) and
S-adenosylhomocysteine as the intermediate product. The
homocysteine metabolism has twomethods, being remethylated
with the methyl of 5-methyl TNF via the methionine cycle, or
turned into cysteine via the transsulfuration pathway (22). The
elevated circulating SAM, homocysteine, cysteine, and reduced
serine were in accordance with the previous investigation
about renal insufficiency (23), these perturbed metabolism may
be caused by the disruption of methionine transmethylation
and cysteine metabolism reprogramming or as the result of
kidney function decline. A series of stable isotope-labeled
metabolomics techniques certificated the methionine cycle
flux decreased 30% compared to healthy controls with the
methionine transmethylation and remethylation pathway were
reduced in ESRD patients (24, 25).

Disturbed taurine and hypotaurine metabolism pathway in
STZ-induced diabetic mice was discovered by Nuclear magnetic
resonance (NMR) spectroscopy (26). Taurine, as one of the
few amino acids which does not build protein, was found to
play a role in adjusting renal blood flow, clearing ROS in the
glomerulus, transporting Na+ in the kidney proximal tubule,
and regulating osmotic pressure in the renal medulla (18).
However, whether a taurine supplement will ameliorate T2DM
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FIGURE 6 | Correlation with clinical parameters and prediction value. (A) Correlation of urine protein (g/L) and UACR (g/mol·Cr) with Asn-Met-Cys-Ser. (B) Correlation

of urine protein (g/L) and UACR (g/mol·Cr) with Asn-Cys-Pro-Pro. (C) Individual value plots of Asn-Met-Cys-Ser in the validation group. (D) Area under the curve (AUC)

of prediction models based on Asn-Met-Cys-Ser. (E) Individual value plots of Asn-Cys-Pro-Pro in the validation group. (F) Area under the curve (AUC) of prediction

models based on Asn-Cys-Pro-Pro. The data are shown as the mean ± SEM. *P < 0.05 vs. the corresponding control group.
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FIGURE 7 | Schematic illustration of the present study.
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development was full of debate in animal models and diabetic
patients over the past decades (19, 27).

On the other hand, in order to find a novel latent marker,
we focused on the DEMs strikingly altered (FoldChange ≥2 and
p-value < 0.05) in both comparisons of DKD vs. DC and DKD-
H vs. DKD-M. Finally, two tetrapeptides, Asn-Met-Cys-Ser and
Asn-Cys-Pro-Pro were chosen in the next validation. In another
population made up of 23 healthy controls, 35 DKD with heavy
proteinuria patients and 25 DKD with moderate proteinuria
patients, serum Asn-Met-Cys-Ser levels were correlated with the
severity of proteinuria, while Asn-Cys-Pro-Pro seems similar in
the two sets of proteinuria group. Dietary protein does not need
to be hydrolyzed completely into amino acids before they are
absorbed in the gastrointestinal tract. Food digestion produces
a huge number of short peptides (oligopeptides), every possible
di-peptides and tri-peptides digested by peptidases can enter
into intestinal endothelium via the PepT1 transporter and have
access to the hepatic portal system (28). While oligopeptides
contain four or more amino acids entering into the intestine
through transcytosis, or paracellular pathway via intracellular
junction (29, 30). Asn-Cys-Pro-Pro with the proline-proline at
the C’ terminal, which leads to digestion resistance by proteases
and peptidases (31). These two oligopeptides escape hydrolysis,
and were easy to clear by renal excretion theoretically, their
circulating levels increased with proteinuria amount indicating
they may serve as a bioactive peptide and exert effects in
the DKD progression. Correlation analysis and ROC curve
analysis showedAsn-Met-Cys-Ser andAsn-Cys-Pro-Pro have the
potential to distinguish the severity of DKD patients. A graphic
abstract is shown in Figure 7.

The results of the present study manifest that circulating
metabolite can be an effective tool to provide us brand-new
perspective in understanding biochemical alteration in patients
with DKD. Disturbed cysteine and methionine metabolism and
hypotaurinemetabolismwere companied with the DKD, and two
oligopeptides, Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro validated
in another cohort, which may serve as a promising marker for
selecting DKD patients who are at high risk to progression. These
findings for disturbed metabolites and metabolism pathways can
help us to pinpoint novel targets for treating individuals with
early progressive DKD and delay the progression to ESRD.

To our knowledge, this was the first study to show the
relation of serum metabolites profiling and proteinuria severity
in DKD, which may provide a different insight to treat the
disease. Nonetheless, there are some imitations. Owing to the
high dynamic of metabolomics, the direction of impact was hard
to ascertain (32). We show the homocysteine was increased with
the severity of proteinuria, but the exact mechanism is unknown.
Secondly, we have validated only two metabolites targets, and

how the two oligopeptides correlated with proteinuria severity
remains unstudied.
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