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Purpose: Machine learning has been applied to the diagnostic imaging of gliomas to
augment classification, prognostication, segmentation, and treatment planning. A
systematic literature review was performed to identify how machine learning has been
applied to identify gliomas in datasets which include non-glioma images thereby
simulating normal clinical practice.

Materials and Methods: Four databases were searched by a medical librarian and
confirmed by a second librarian for all articles published prior to February 1, 2021: Ovid
Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science-Core
Collection. The search strategy included both keywords and controlled vocabulary
combining the terms for: artificial intelligence, machine learning, deep learning,
radiomics, magnetic resonance imaging, glioma, as well as related terms. The review
was conducted in stepwise fashion with abstract screening, full text screening, and data
extraction. Quality of reporting was assessed using TRIPOD criteria.

Results: A total of 11,727 candidate articles were identified, of which 12 articles were
included in the final analysis. Studies investigated the differentiation of normal from
abnormal images in datasets which include gliomas (7 articles) and the differentiation of
glioma images from non-glioma or normal images (5 articles). Single institution datasets
were most common (5 articles) followed by BRATS (3 articles). The median sample size
was 280 patients. Algorithm testing strategies consisted of five-fold cross validation (5
articles), and the use of exclusive sets of images within the same dataset for training and
for testing (7 articles). Neural networks were the most common type of algorithm (10
articles). The accuracy of algorithms ranged from 0.75 to 1.00 (median 0.96, 10 articles).
Quality of reporting assessment utilizing TRIPOD criteria yielded a mean individual TRIPOD
ratio of 0.50 (standard deviation 0.14, range 0.37 to 0.85).
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Conclusion: Systematic review investigating the identification of gliomas in datasets
which include non-glioma images demonstrated multiple limitations hindering the
application of these algorithms to clinical practice. These included limited datasets, a
lack of generalizable algorithm training and testing strategies, and poor quality of
reporting. The development of more robust and heterogeneous datasets is needed for
algorithm development. Future studies would benefit from using external datasets for
algorithm testing as well as placing increased attention on quality of reporting standards.

Systematic Review Registration: www.crd.york.ac.uk/prospero/display_record.php?
ID=CRD42020209938, International Prospective Register of Systematic Reviews
(PROSPERO 2020 CRD42020209938).
Keywords: artificial intelligence, bias, brain tumor, diagnostic imaging, glioma, machine learning, Magnetic
Resonance Imaging, segmentation
INTRODUCTION

As the healthcare needs of the population increase and the volume
of imaging grows, there is a critical need for computer assisted
models to provide support to radiologists in routine clinical
practice. Brain tumors, and specifically gliomas, are of particular
interest to neuro-oncologists and radiologists. Machine learning
research in neuro-oncology has become increasingly popular as
sufficient computing power and large datasets have come to be
more available to researchers. Machine learning refers to a subset
of artificial intelligence consisting of algorithms that analyze data
without explicit programming (1, 2). Deep learning is a subtype of
machine learning that utilizes neural networks, which refer to
algorithm models composed of neurons represented by nodes and
interconnections between nodes (3). Machine learning has been
applied to the diagnostic imaging of gliomas to augment
classification, prognostication, segmentation, and treatment
planning (4). Algorithms which can differentiate gliomas from
other entities such as normal examinations, stroke, or
demyelinating disease remain in the early stages of development.
Until now, most studies have focused on brain tumor
segmentation accuracy, and provide segmentation algorithms
which are developed on datasets containing only glioma images.
The identification of gliomas in a heterogeneous group of images
is a critical function but less well studied. In clinical practice, most
studies contain normal images or other non-oncologic pathology.
Algorithms developed on datasets containing only glioma images
are unlikely to be generalizable to clinical practice. Therefore, in
this study we investigate how machine learning has been applied
to the identification of gliomas in datasets which contain non-
glioma images. A systematic review was performed to assess the
existing body of literature and identify the most optimal targets for
future research.
MATERIALS AND METHODS

A systematic literature review was performed to identify how
machine learning has been applied to identify gliomas in datasets
2

which include non-glioma images, thereby simulating normal
clinical practice. The study was registered with the International
Prospective Register of Systematic Reviews (PROSPERO,
CRD42020209938) and conducted in concordance with
preferred reporting items for systematic review and meta-
analysis protocols (PRISMA-P) guidelines (5). The primary
literature search is summarized in the PRISMA flow diagram
in Figure 1, and involved a query of four databases to identify all
published articles investigating machine learning and gliomas.
The queried databases were Ovid Embase, Ovid MEDLINE,
Cochrane trials (CENTRAL), and Web of Science-Core
Collection. The initial search included articles published prior
to September 1, 2020, and a second search was performed to
identify articles published between September 1, 2020 and
February 1, 2021. The search strategy included both keywords
and controlled vocabulary combining the terms for: artificial
intelligence, machine learning, deep learning, radiomics,
magnetic resonance imaging, glioma, as well as related terms.
The search strategy and syntax are demonstrated in Supplementary
Figure S1. The search was executed by a medical librarian and
reviewed by a second institutional librarian.

Screening of the articles was performed by two independent
reviewers (H.S. and M.A.), which includes one board certified
neuroradiologist (M.A.), utilizing Covidence (Covidence
systematic review software, Veritas Health Innovation,
Melbourne, Australia. Available at www.covidence.org).
Articles were initially screened by title and abstract, after
which the remaining articles were screened by full text. To
meet inclusion criteria, the articles were required to be original
research, investigate machine learning, investigate gliomas in
human subjects, be published in the English language, and utilize
imaging with either MRI, MRS, or PET. Further screening was
then performed to identify articles which investigated the
identification of gliomas in datasets including non-glioma
images. Each reviewer screened each article independently and
disagreement was resolved by discussion.

Data extraction was performed by two independent reviewers
(H.S. and R.D.). Each reviewer extracted the whole data
independently and disagreement was resolved by discussion.
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Major data points included the study objective, dataset, number
of patients and images, machine learning algorithm training and
testing strategy, and magnetic resonance imaging (MRI)
sequences. Quantitative data was also collected where available,
Frontiers in Oncology | www.frontiersin.org 3
including accuracy, sensitivity, specificity, area under the receiver
operating characteristic curve (AUC) and Dice coefficient. When
multiple algorithms were evaluated in a study, the best
performing algorithm was reported.
FIGURE 1 | PRISMA flow diagram depicting the systematic review search strategy. (MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy;
PET, positron emission tomography.).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Subramanian et al. Machine Learning for Glioma Identification
Risk of bias assessment was performed using Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines (6). The TRIOPD
checklist contains 22 primary features as well as multiple subitems,
resulting in a total of 37 features. A TRIPOD score was created
using 1 possible point for each subitem. Adherence to a subitem
was given 1 point, while non-adherence was scored as 0 points.
Features not assessed in an article due to the nature of the study
were deemed as not applicable and excluded from analysis. The
primary features are title (1 point), abstract (1 point), introduction
- background and objectives (2 points), methods - source of data
(2 points), methods - participants (3 points), methods - outcome
(2 points), methods - predictors (2 points), methods - sample data
(1 point), methods - missing data (1 point), methods - statistical
analysis (5 points), methods - risk groups (1 point), methods -
development and validation (1 point), results - participants (3
points), results - model development (2 points), results - model
specification (2 points), results - model performance (1 point),
results - model updating (1 point), discussion - limitations (1
point), discussion - interpretation (2 points), discussion -
implications (1 point), supplementary information (1 point) and
funding (1 point). The individual TRIPOD ratio was calculated for
each article as the ratio of the TRIPOD score to the maximum
possible points calculated from the included features. The
TRIPOD adherence ratio for each feature was calculated as the
ratio of the total points for a specific feature to the total possible
points from all of the articles assessing that feature.

Descriptive statistics were calculated and visualized using
GraphPad Prism version 9.1.2 for Windows, GraphPad
Software, San Diego, California USA, www.graphpad.com.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

The primary literature search returned 11,727 candidate articles,
of which 90 duplicates were removed. The remaining 11,637
articles were screened using title and abstract, of which 10,502
articles that did not involve neuro-oncology were excluded. The
full text of the remaining 1,135 articles was reviewed, of which
438 articles were excluded. The 438 excluded articles consisted
of 172 conference abstracts, 140 articles not utilizing machine
learning, 62 not representing original research, 22 not published
in the English language, 15 not investigating gliomas, 11 not
utilizing MRI, magnetic resonance spectroscopy (MRS), or
positron emission tomography (PET) imaging, 9 not utilizing
human subjects, and 7 duplicate articles. The remaining 697
articles underwent further review, of which 685 articles were
excluded and 12 articles (7–18) investigating the use of machine
learning to identify gliomas in datasets which include non-
glioma images were identified for inclusion in the final analysis.

The main data points extracted from the 12 articles are
summarized in Table 1. The distribution of the objective of the
articles is depicted in Figure 2, the distribution of datasets
utilized is depicted in Figure 3, and algorithm testing strategies
are depicted in Figure 4. Seven articles investigated the
differentiation of normal from abnormal images in datasets
which include gliomas, and five articles investigated the
differentiation of glioma images from non-glioma or normal
images. The most frequent dataset used was a single institution
dataset (5 articles, of which 4 used the Harvard Medical School
dataset), followed by the Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS; 3 articles), multicenter
December 2021 | Volume 11 | Article 788819
TABLE 1 | Summary of articles (n=12).

Author Year of
Publication

Purpose Dataset Ground
Truth

Number of
Patients

Training Strategy Validation
Strategy

Testing Strategy MRI
Sequences

Al-Saffar et al.
(7)

2020 Glioma vs.
Normal

TCIA 2013 Pathology 130 5-Fold Cross
Validation

5-Fold Cross
Validation

Separate images
within same dataset

FLAIR

Kaur et al. (10) 2020 Normal vs.
Abnormal

Multicenter Unknown 717 Separate images
within same dataset

None Separate images
within same dataset

T1, T1c, T2,
FLAIR

Kharrat et al.
(11)

2020 Glioma vs.
Normal

BRATS 2013
and 2015

Pathology 304 5-Fold Cross
Validation

None 5-Fold Cross
Validation

T1, T1c, T2,
FLAIR

Reddy et al. (12) 2020 Normal vs.
Abnormal

Harvard
Medical School

Unknown Not specified
(298 images)

5-Fold Cross
Validation

None 5-Fold Cross
Validation

T2

Samikannu et al.
(14)

2020 Glioma vs.
Normal

BRATS 2015 Pathology 176 Separate images
within same dataset

None Separate images
within same dataset

Not specified

Ural et al. (16) 2020 Normal vs.
Abnormal

Multicenter Unknown 300 Separate images
within same dataset

None Separate images
within same dataset

T1, T1c, T2,
FLAIR, DWI

Kale et al. (9) 2019 Normal vs.
Abnormal

Harvard
Medical School

Unknown Not specified
(400 images)

5-Fold Cross
Validation

None 5-Fold Cross
Validation

T2

Rudie et al. (13) 2019 Glioma vs.
Non-glioma

BRATS 2018 Pathology 351 10-Fold Cross
Validation

10-Fold
Cross
Validation

Separate images
within same dataset

T1, T1c, T2,
FLAIR

Talo et al. (15) 2019 Normal vs
abnormal

Harvard
Medical School

Unknown 42 5-Fold Cross
Validation

None 5-Fold Cross
Validation

T2

Wong et al. (17) 2018 Glioma vs.
Normal

TCIA 2017 Pathology 280 Separate images
within same dataset

None Separate images
within same dataset

T1c

Zhang et al. (18) 2013 Normal vs.
Abnormal

Harvard
Medical School

Unknown Not specified
(90 images)

5-Fold Cross
Validation

None 5-Fold Cross
Validation

T2

Dube et al. (8) 2006 Normal vs.
Abnormal

UCLA Brain
Tumor
Database

Pathology 60 Separate images
within same dataset

None Separate images
within same dataset

T2
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FIGURE 2 | Distribution of article objectives.
FIGURE 3 | Distribution of datasets.
FIGURE 4 | Distribution of machine learning algorithm testing strategies.
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datasets (2 articles), and The Cancer Imaging Archive (TCIA; 2
articles). BRATS (19–21) and TCIA (22) are publicly available
databases of annotated MR images of gliomas. The ground truth
in the BRATS and TCIA datasets is defined by pathology.
Additionally, there was pathologic ground truth in the single
institution dataset used by Dube et al. In the Harvard Medical
School (23) dataset used by four studies, the method of ground
truth establishment is unknown. Additionally, in the two studies
using other multicenter datasets, the method to establish ground
truth is unknown for at least part of the data.

Algorithm training and testing strategies consisted offive-fold
cross validation (5 articles), and use of exclusive sets of images
within the same dataset for training and for testing (7 articles).
The range of sample sizes is shown in Figure 5. The median
sample size was 280 patients (reported in 9 articles, range 42 to
717). The three articles not reporting the number of patients did
report the number of images, with a median of 298 images (range
90 to 400). The sequences of magnetic resonance images used in
each study was variable, consisting of some combination of T1-
weighted, T2-weighted, contrast enhanced T1-weigthed, T2 fluid
attenuated inversion recovery (FLAIR), and diffusion weighted
(DWI) images.

A description of the machine learning algorithms is presented
in Table 2. The most common algorithm was a neural network
used in 10 articles, while two articles used support vector machine
algorithms. A wide variety of neural networks were used, including
five articles which developed novel algorithms. The quantitative
results are demonstrated in Table 3, which summarizes the testing
performance of each algorithm, and includes accuracy, sensitivity,
specificity, AUC, and Dice coefficient. When multiple algorithms
were evaluated in a study, the best performing algorithm was
Frontiers in Oncology | www.frontiersin.org 6
reported. The most commonly reported metric was accuracy,
which ranged from 0.75 to 1.00 (median 0.96, 10 articles).
When segmentation was investigated, the Dice coefficient was
reported, which ranged from 0.92 to 0.98 (2 articles). A random
effects meta-analysis was attempted, however could not be
performed due to the lack of available data (24). The AUC was
reported in only one of 12 articles and therefore not suitable for
meta-analysis. Furthermore, for algorithm accuracy the standard
deviation or confidence interval was only reported in three articles
and therefore also not sufficient to perform an unbiased and
generalizable meta-analysis (25).

Assessment of the quality of reporting using TRIPOD criteria
yielded a mean individual TRIPOD ratio of 0.50 (standard
deviation 0.14, range 0.37 to 0.85). Individual TRIPOD scores
are depicted in Figure 6 and feature TRIPOD adherence scores
are depicted in Figure 7. Due to the inherent nature of the
articles, no study created risk groups or discussed model
updating. Both subitems of model specification were also not
fully discussed in any article. In addition, both subitems of model
development were fully included in only two articles. The
maximum possible points for an individual article ranged from
26 to 29 when accounting for non-applicable features (the
theoretical maximum points with all features included would
be 37). Of the eligible features, the poorest adherence was seen
with the title (0 adherent articles), abstract (1 adherent article),
missing data (1 adherent article), results - participants (0
adherent articles) and model performance (2 adherent articles).

Additional linear regression analysis was performed to
identify any predictor of algorithm accuracy. A comparison of
algorithm accuracy and the sample size is demonstrated in
Supplementary Figure S2 , and shows no significant
relationship, with an R2 of 0.1204 (P = 0.45). A comparison of
algorithm accuracy and the individual TRIPOD ratio is
demonstrated in Supplementary Figure S3, and shows no
significant relationship, with an R2 of 0.01578 (P = 0.73).
DISCUSSION

A systematic review of the literature identified 12 studies which
investigate the use of machine learning to identify gliomas in
datasets which include non-glioma images. This scenario most
closely simulates routine clinical practice, where gliomas are
intermixed with normal examinations and non-oncologic
pathologies. Moreover, these algorithms may have the potential
to support a screening program for gliomas in the future. The
studies were all published between 2006 and 2020, with nine
published from 2019 to 2020, reflecting the increasing popularity
of machine learning research in recent years. The five studies
using BRATS or TCIA datasets included only normal images or
glioma images. These datasets are more generalizable to clinical
practice than those containing only glioma images, however still
lack other routinely encountered pathologies. The remaining
seven studies utilizing other single institution or multicenter
datasets included a mix of normal, glioma, and other pathologic
images. The other pathologies included stroke, Alzheimer’s
disease, multiple sclerosis, and meningioma, among others.
FIGURE 5 | Scatterplot demonstrating the number of patients used in each
article (n = 9, 3 articles did not report the number of patients).
December 2021 | Volume 11 | Article 788819
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This data is more representative of routine clinical practice,
however still comes with limitations. There are a wide variety
of healthcare settings, such as a tertiary or academic medical
center, small hospital, or outpatient practice, each with different
patient populations and pathologies. Additionally, datasets from
different locations around the world will demonstrate different
heterogeneity based on regional variations.

There are major limitations with the algorithm training and
testing strategies. The description of algorithm training,
validation, and testing strategies is heterogenous across studies.
Often in machine learning research, validation and testing are
used interchangeably, however this leads to confusion in the
evaluation of algorithm performance. Validation should be
reserved for the description of algorithm finetuning using data
separate from the training data. Testing should be used to
describe the unbiased evaluation of an algorithm using data
separate from the training and validation sets. Each study
reported training and testing data, however many studies used
the term validation for what should actually be described as
testing. Only two studies performed a true validation in addition
Frontiers in Oncology | www.frontiersin.org 7
to training and testing, Al-Saffar et al. used 5-fold cross
validation for training and validation followed by a separate set
of images within the same dataset for testing, and Rudie et al.
used 10-fold cross validation for training and validation followed
by a separate set of images within the same dataset for testing.
None of the 12 studies tested their algorithms on external data.
This poses a major limitation to the generalizability of these
algorithms. In the United States, this also hinders the ability for
approval by the Food and Drug Administration, which
recommends algorithms be tested on external datasets.

Overall, there appears to be limited availability of high-quality
data to train these machine learning algorithms. The number of
patients in the datasets was low, with no study reaching 1,000
patients, and one study dropping as low as 42 patients. As a result
of low sample sizes, the k-fold cross validation technique was
commonly used for algorithm training, and five studies even used
k-fold cross validation to test their algorithms. This technique is
optimal for providing more data with a small sample size, but
comes with the drawback of increased overtraining and decreased
generalizability when applying the algorithm to an outside dataset.
TABLE 2 | Summary of machine learning algorithms (n=12).

Author Year of
Publication

Purpose Machine Learning
Algorithm

Neural Network Type

Al-Saffar et al. (7) 2020 Glioma vs. Normal Neural network Novel (residual neural network)
Kaur et al. (10) 2020 Normal vs. Abnormal Neural network AlexNet, GoogleNet, ResNet50, ResNet101, VGG, VGG-19,

InceptionV3, and InceptionResNetV2
Kharrat et al. (11) 2020 Glioma vs. Normal Neural network Novel (3D neural network)
Reddy et al. (12) 2020 Normal vs. Abnormal Neural network Novel (extreme learning machine)
Samikannu et al. (14) 2020 Glioma vs. Normal Neural network Novel (convolutional neural network)
Ural et al. (16) 2020 Normal vs. Abnormal Neural network Modified AlexNet and VGG
Kale et al. (9) 2019 Normal vs. Abnormal Neural network Novel (back propagation neural network)
Rudie et al. (13) 2019 Glioma vs. Non-glioma Neural network 3D U-Net
Talo et al. (15) 2019 Normal vs abnormal Neural network ResNet34
Wong et al. (17) 2018 Glioma vs. Normal Neural network Modified VGG
Zhang et al. (18) 2013 Normal vs. Abnormal Support vector machine N/A
Dube et al. (8) 2006 Normal vs. Abnormal Support vector machine N/A
N/A, Not applicable.
TABLE 3 | Summary of algorithm testing performance (n=12).

Author Year of
Publication

Purpose Machine Learning Algorithm Accuracy (Standard
Deviation)

Sensitivity Specificity AUC Dice
coefficient

Al-Saffar et al. (7) 2020 Glioma vs. Normal Novel (residual neural network) 0.9491 (NR) 0.9689 0.9637 NR NR
Kaur et al. (10) 2020 Normal vs. Abnormal AlexNet 1 (0) 1 1 1 NR
Kharrat et al. (11) 2020 Glioma vs. Normal Novel (3D neural network) NR NR NR NR 0.98
Reddy et al. (12) 2020 Normal vs. Abnormal Novel (extreme learning machine) 0.94 (0.23) 0.95 0.95 NR NR
Samikannu et al.
(14)

2020 Glioma vs. Normal Novel (convolutional neural
network)

0.991 (NR) 0.971 0.987 NR NR

Ural et al. (16) 2020 Normal vs. Abnormal Modified AlexNet and VGG 0.927 (NR) 0.968 0.98 NR NR
Kale et al. (9) 2019 Normal vs. Abnormal Novel (back propagation neural

network)
1.0 (0.0002) NR NR NR NR

Rudie et al. (13) 2019 Glioma vs. Non-
glioma

3D U-Net NR NR NR NR 0.92

Talo et al. (15) 2019 Normal vs abnormal ResNet34 0.9787 (NR) NR NR NR NR
Wong et al. (17) 2018 Glioma vs. Normal Modified VGG 0.82 (NR) NR NR NR NR
Zhang et al. (18) 2013 Normal vs. Abnormal Support vector machine 0.9778 (NR) 0.9812 0.92 NR NR
Dube et al. (8) 2006 Normal vs. Abnormal Support vector machine 0.75 (NR) NR NR NR NR
D
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Additionally, nine studies used the same three datasets: BRATS,
TCIA, and Harvard Medical School. Only two studies used
datasets compiled from multiple institutions. This highlights a
need to develop larger and more clinically applicable datasets to
Frontiers in Oncology | www.frontiersin.org 8
perform more robust machine learning research. Moreover, it will
be critical to develop datasets that closely represent the mix of
pathology encountered in each individual hospital, because this
will vary between different institutions and practice settings. This
FIGURE 6 | Individual TRIPOD Ratio, calculated for each article as the ratio of the TRIOPD score to the maximum possible score.
FIGURE 7 | TRIPOD Adherence Ratio, calculated for each feature as the ratio of the total points scored to the total possible points for that feature. Notably, two
features (risk groups and model updating) were not assessed in any article and therefore not included in the analysis.
December 2021 | Volume 11 | Article 788819
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will potentially fabricate the need for hospital specific dataset
creation for the translation of algorithms.

Risk of bias analysis using TRIPOD criteria revealed that the
quality of reporting was insufficient to draw any conclusion
about algorithm generalizability. On average, there was
adherence to only half of the reporting standards, with a large
variation between studies. The poorest adherence was noted with
the title and abstract, the method for handling missing data, the
description of study participants within the results section, and
the reporting of model performance. Specifically for model
performance, the confidence interval of the discrimination
measure was reported in only two studies. It is important to
note that the TRIOPD criteria were primary developed for
studies that used conventional multivariate regression
prediction models rather than machine learning models, and
TRIPOD-AI criteria are currently in development to specifically
address the reporting of artificial intelligence and machine
learning models (26). Poor quality of reporting also limited the
ability to perform a meta-analysis, as AUC was reported in only
one study, and the standard deviation for accuracy was reported
in only three studies. Overall, the current analysis demonstrates
that a substantial portion of information needed for translating
algorithms to clinical practice is not available.
CONCLUSION

Systematic review of the literature identified machine learning
algorithms which can identify gliomas in datasets containing non-
glioma images, which are the most suitable algorithms for
integration into general clinical workflow. Such algorithms may
also serve as the basis for a potential brain tumor screening
program. Severe limitations hindering the application of these
algorithms to clinical practice were identified, including limited
datasets, the lack of generalizable algorithm training and testing
strategies, and poor quality of reporting. There is a need to develop
more robust and heterogeneous datasets, which can be applied to
individual clinical practice settings. Future studies would benefit
from using external datasets for algorithm testing as well as placing
increased attention on quality of reporting standards.
Frontiers in Oncology | www.frontiersin.org 9
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