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Pulmonary hypertension (PH) is a potentially lethal disorder
because of a dearth of effective therapeutic options
(Schermuly et al., 2011; Mehari et al., 2014). Pulmonary
arterial hypertension (PAH) is a major type of PH that is
defined by a mean pulmonary arterial pressure higher than
25 mm Hg at rest or 30 mm Hg during exercise (Kovacs
et al., 2009). The majority of known genetic variations
associated with PAH occur in bone morphogenetic protein
receptor, type II (BMPR2), a type of transforming growth
factor (TGF)-β family of receptors. BMPR2 mutations are
responsible for the etiology of approximately 80% familial
PAH and 30% idiopathic PAH (International P.P.H.C et al.,
2000; Machado et al., 2006; Soubrier et al., 2013). Recent
translational studies involving modulation of endothelial
BMPR2 signaling have provided novel insights into treat-
ment of PH, triggering a paradigm shift in our understanding
of PH therapeutics (Fig. 1) (Long et al., 2015; Nickel et al.,
2015; Prewitt et al., 2015).

At the 5th World Symposium on PH held in 2013, an
updated clinical classification of PH was agreed upon (Si-
monneau et al., 2013). The current classification categorizes
PH into five groups sharing similar pathophysiological
characteristics and treatment approaches: Group 1, PAH;
Group 1′, pulmonary veno-occlusive disease and/or pul-
monary capillary hemangiomatosis; Group 1′′, persistent PH
of the newborn; Group 2, PH due to left heart disease; Group
3, PH due to lung diseases and/or hypoxia; Group 4, chronic
thromboembolic PH; Group 5, PH with unclear multifactorial
mechanisms (Simonneau et al., 2013). Although PAH is a
relatively rare disease, many genetic risk factors can sub-
stantially enhance its incidence and prevalence with an
increased mortality (Peacock et al., 2007; Schermuly et al.,
2011; Mehari et al., 2014). This is exemplified by the iden-
tification of over 300 mutations of BMPR2, which account for
approximately 80% of patients with heritable PAH and 25%

of patients with idiopathic PAH (Soubrier et al., 2013; West
et al., 2014).

BMPR2 encodes a member of the TGF-β superfamily that
operates in the TGF-β/bone morphogenetic protein (BMP)
signal transduction pathways (International P.P.H.C et al.,
2000; Soubrier et al., 2013). Intriguingly, pulmonary BMPR2
expression is over expressed in vascular endothelium,
implying that BMPRS plays a key role in endothelial dys-
function underlying the development of PAH (Atkinson et al.,
2002). As expected, heterozygous or homozygous BMPR2
ablation in mouse pulmonary endothelium leads to PAH
(Hong et al., 2008). BMPR2 haploinsufficiency is involved in
the pathobiology of PAH (Machado et al., 2001). Conditional
endothelial-specific expression of BMPR2 mutations in mice
induces a variety of PAH-related features including altered
pulmonary microvascular endothelial cell (EC) apoptosis,
proliferation, inflammation and thrombosis (Majka et al.,
2011). Therefore, it is rational to consider activating and/or
restoring a physiological balance of BMPR2 signaling for
optimal treatment of PAH.

To assess the efficacy of BMP ligands in selectively tar-
geting endothelial BMPR2 signaling, Long and colleagues
generated a BMPR2-deficient mouse PAH model and
examined two rat PAH models in response to either
monocrotaline or vascular endothelial growth factor receptor
blockade and hypoxia (Sugen-hypoxia) (Long et al., 2015).
Initial results demonstrated that administration of BMP9 is
capable of reversing PAH in these rodents. Consistent with
this, enhancement of endothelial BMPR2 signaling by BMP9
is highly effective in preventing apoptosis and maintaining
barrier integrity of pulmonary arterial endothelial cells
(PAECs) from PAH patients bearing BMPR2 mutations. This
lends further support to the idea that manipulation of BMPR2
signaling is a promising clinical strategy for the treatment of
PAH (Long et al., 2015). Another BMP ligand, BMP2 has a
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comparable performance for stimulation of proliferation and
induction of angiogenesis in PAECs. BMP2-mediated
BMPR2 signaling requires both canonical and non-canonical
Wnt pathways (de Jesus Perez et al., 2009). BMP7 and
BMP9 also reduce apoptosis in human pulmonary
microvascular ECs through up-regulation of alpha-B-crys-
tallin, a process that is modulated by the BMPR2-ALK1
pathway (Ciumas et al., 2013). Moreover, using human
pulmonary microvascular ECs and two conventional rat PAH
models with either chronic hypoxia or monocrotaline

treatment, Reynolds and co-workers showed that targeted
adenoviral BMPR2 gene delivery displays success in
attenuation of PAH properties (Reynolds et al., 2007, 2012).

In addition to direct targeting of BMPR2 pathway, specific
manipulation of some BMPR2 signaling-related RNAs,
metabolites, chemokines and enzymes still holds great pro-
mise in treatment of PAH. Interleukin-6-induced microRNA
cluster 17/92 post-transcriptionally suppresses BMPR2
expression in human PAECs, indicating the potential use of
microRNA inhibitors as therapeutic drugs (Brock et al., 2009).
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Figure 1. Schematic illustration of potential endothelial BMPR2 signaling-related therapeutic approaches in pulmonary

hypertension. EC, endothelial cell; VSMC, vascular smooth muscle cell.
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As BMPR2-deficient mice with chronic infusion of serotonin
are susceptible to development of PH, inhibitors of serotonin
ameliorate the pathology of PAH (Long et al., 2006). Down-
regulated BMPR2 expression stimulates translation of the
chemokine granulocyte macrophage colony-stimulating fac-
tor (GM-CSF) and recruitment of macrophages in human
PAECs, leading to inflammation-associated exacerbation of
PAH. Nevertheless, GM-CSF-neutralizing antibody can sub-
vert this deleterious process in PAH pathogenesis (Sawada
et al., 2014). A lifetime risk of PAH development in a BMPR2
mutation-bearing individual is nomore than 20%with a gender
bias of female to male ratio of around 2.5:1. This incomplete
penetrance of PAHsuggestsmulti-faceted genetic, epigenetic
and/or environmental factors may affect disease expression
(Ma and Chung, 2014; Austin and Loyd, 2014). Particularly,
variations in estrogen metabolism have been proposed to be
responsible for the female predominance of PAH (Austin et al.,
2009). Transcription factor estrogen receptor α-mediated
BMPR2 suppression could be disrupted to elevate BMPR2
expression in female patients with PAH (Austin et al., 2012).
BMPR2 mutation-related risk of PAH is correlated with
increased estrogen metabolite 16α-hydroxyestrone and
reduced metabolite 2-methoxyestrogen (Fessel et al., 2011).
In pulmonary endothelium, intracellular BMPR2 cytoplasmic
domain co-localizes and interacts with Tctex-1, a light chain of
the motor complex dynein. Dysregulation of this interaction
could interfere with a cascade of phosphorylation events, and
thus act as a driver of PH (Machado et al., 2003). In addition,
disrupted interaction of BMPR2 tail domain with cytoskeletal
regulator LIMK1 may contribute to the etiology of PH via reg-
ulation of actin dynamics (Foletta et al., 2003). Cytoskeletal
defects have also been described in BMPR2 mutant-ex-
pressing mouse pulmonary microvascular ECs (Johnson
et al., 2012). Notably, Nickel and co-workers carried out an
independent analysis of Sugen-hypoxia-induced severe rat
PH model and PAECs from patients with PH. The results
showed that the endogenous elastase antagonist elafin
reverses the obliterative vascular remodeling in vivo and
promotes the angiogenesis and survival of PAECs in vitro by
amplifying BMPR2 signaling (Nickel et al., 2015). Moreover,
exogenous recombinant human angiotensin-converting
enzyme 2 (ACE2) can be used to correct BMPR2 signaling to
normalize the pulmonary pressure in these PAH mice (John-
son et al., 2012).

The effect and efficiency of small chemicals have also
been tested in reversal of PAH. Similarly to the effects of
elafin, the synthetic activator of ACE2, XNT (1-[(2-dimethy-
lamino) ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl)
sulfonyl oxy]-9H-xanthene-9-one) restricts pathogenic pro-
gression of monocrotaline-treated PAH rats (Ferreira et al.,
2009). Recently, Prewitt et al. showed the SRC kinase inhi-
bitor PP2 (3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1Hpyra-
zolo[3,4-d]pyrimidin-4-amine) can rescue the heterozygous
null BMPR2 mutations-induced caveolar trafficking disorders
with restoration of endothelial barrier function in pulmonary
ECs (Prewitt et al., 2015). In addition, a group of chemical

chaperones including thapsigargin, glycerol and sodium
4-phenylbutyrate, have been applied to facilitate the cell-
surface trafficking of BMPR, suggesting therapeutic potential
of these chemicals in endothelial BMPR2 rescue (Sobo-
lewski et al., 2008). In an effort to understand why fewer than
half of BMPR2 mutation carriers develop PH, Burton and
colleagues revealed the inhibitory role of BMPR2 in inflam-
mation which protects the PAEC barrier function in a
CXCR2-dependent way during the course of PAH patho-
genesis. Furthermore, the CXCR2 antagonist SB265610
and the CXCR1/2 antagonist SCH527123 are sufficient to
dampen this phenotype with reduced leukocyte transmigra-
tion through endothelium and recovery from PAH (Burton
et al., 2011a, b). BMPR2 mutations have been linked to
enhanced cell apoptosis, inhibited cell proliferation and
suppressed nitric oxide synthesis in human pulmonary
microvascular ECs (Wang et al., 2014). Further investigation
reveals that BMPR2 is required for the antiapoptotic drug
effects of fluoxetine in monocrotaline-induced apoptosis of
rat ECs (Wang et al., 2011). To systematically identify
chemicals that can rescue the BMPR2 signaling axis, a
transcriptional high-throughput luciferase reporter assay was
performed using a Food and Drug Administration-approved
pooled library of 3756 drugs and bioactive compounds. The
preferred low-dose FK506 (tacrolimus) robustly reverses
PAH in a conditioned endothelial BMPR2 knockout PAH
mouse model and two rat PAH models exposed to either
monocrotaline or Sugen-hypoxia. As anticipated, FK506
significantly improves the endothelial injury in PAEC derived
from patients with idiopathic PAH (Spiekerkoetter et al.,
2013).

Taken as a whole, the emerging roles of endothelial
BMPR2 in treatment of PAH highlight the potential BMPR2
signaling-based therapeutic approaches. Although studies
performed during the past 15 years have revealed a wealth
of details about the molecular and cellular mechanisms
underlying endothelial BMPR2 signaling, recent experimen-
tal advances are still unravelling an unexpected and
encouraging diversity of this signaling. For instance, Diebold
et al. demonstrated that BMPR2 is essential for maintenance
of normal mitochondrial metabolism and DNA integrity and
represses apoptosis of PAECs (Diebold et al., 2015). Using
RNA sequencing analysis, Rhodes and colleagues found a
novel pathway involving downregulation of endothelial COL4
and EFNA1 that underlies BMPR2-related endothelial dys-
function in PAECs (Rhodes et al., 2015). Metabolomic
analysis reveals that a wide range of metabolic abnormality
is associated with BMPR2 mutations in human pulmonary
ECs, such as oxidative injury and insulin resistance (Lane
et al., 2011; Fessel et al., 2012; West et al., 2013). BMPR2
mutations also render pulmonary ECs susceptible to
hypoxia- or inflammation-induced PH dysfunction (Song
et al., 2005, 2008; Frank et al., 2008). Moreover, endothelin-1
upregulated by BMPR2 mutations contributes to PH patho-
genesis (Star et al., 2013). Recent studies suggest that
endothelial-to-mesenchymal transition plays critical roles in
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PH (Arciniegas et al., 2007; Ranchoux et al., 2015; Xiong
2015). The accumulation of knowledge in this area will spur
new interest for both scientists and clinicians in the devel-
opment of endothelial BMPR2 signaling-associated treat-
ment. A comprehensive list of BMPR2 mutations has been
summarized (Machado et al., 2006); however, their exact
roles in diverse temporospatial contexts of complex PH
remain unclear, such as gender bias (Liu et al., 2012). To
address these issues scientists need the revelation of more
secrets of endothelial BMPR2 signaling. It will be interesting
to follow how the balancing act of endothelial BMPR2 sig-
naling in treatment of PH is fine-tuned.
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