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Abstract: 
Latest studies have shown that Long Noncoding RNAs corresponds to a crucial factor in neurodegenerative diseases and next-generation 
therapeutic targets. A wide range of advanced computational methods for the analysis of Noncoding RNAs mainly includes the prediction 
of RNA and miRNA structures. The problems that concern representations of specific biological structures such as secondary structures are 
either characterized as NP-complete or with high complexity. Numerous algorithms and techniques related to the enumeration of 
sequential terms of biological structures and mainly with exponential complexity have been constructed until now. While BACE1-AS, NAT-
Rad18, 17A, and hnRNP Q lnRNAs have been found to be associated with Alzheimer’s disease, in this research study the significance of the 
most known β-turn-forming residues between these proteins is computationally identified and discussed, as a potentially crucial factor on 
the regulation of folding, aggregation and other intermolecular interactions. 
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Background: 
Noncoding RNAs (ncRNAs) play important roles in many 
biological mechanisms offering to the researcher’s opportunities for 
efficient biomarkers' detection and disease diagnosis, treatment, 
prognosis and prevention [1-3]. While only 1.5% of the whole 
genome is corresponding to protein-coding genes [1], various Long 
Noncoding RNAs (lncRNAs) such as BACE1-AS are closely related 
to the Alzheimer’s disease (AD) [4-6], modulating Αβ formation or 
impacting apoptosis [7-9]. Beta-site Amyloid Precursor Protein 
Cleaving Enzyme 1 - Antisense Transcript (BACE1-AS) 
enhances BACE1 mRNA stability by protecting it from degradation 
[9], concluding to a highly correlation with AD development or 
progression [5,10-12] as well as lncRNA-17A which play a 
significant role in Gamma-Aminobutyric Acid Type B Receptor 
Subunit 2 (GABABR2) signaling and Aβ production [7,9]. 

Additionally, heterogeneous nuclear Ribonucleoprotein Q 
(hnRNPs) family assist in controlling the maturation of newly 
formed heterogeneous nuclear RNAs (hnRNAs/pre-mRNAs) into 
messenger RNAs (mRNAs), stabilize mRNA during their cellular 
transport and control their translation [13], affecting the dendritic 
development [14-19]. Latest studies also reveal the role of 
Postreplication repair protein RAD18 (NAT-Rad18) in AD by 
affecting the DNA repair system, leading to apoptosis and 
neurodegenration [7]. In contrast to protein folding programs, 
where the tertiary structure is predicted, the majority of the 
currently available RNA M-folding algorithms concentrate on the 
secondary structure of the RNA structure. Current RNA prediction 
algorithms have a polynomial runtime of O(n3) where n is the 
sequence length. Still, the mere knowledge of the secondary 
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structure can be misleading, as two similar tertiary structures can 
have different secondary structures [20]. The problems that concern 
representations of certain biological structures such as secondary 
structures are either characterized as NP-complete or with high 
complexity. The incompleteness of the corresponding theories 
contributes to a kind of hybrid problem, where data mining, 
statistical analysis, biological interpretation, and computational 
techniques must interact in different phases, in order to produce a 
solution. Numerous algorithms and techniques related to the 
enumeration of sequential terms of biological structures and mainly 
with exponential complexity have been constructed through their 
bijection with alternative representations such as energy models, 
plane trees and Motzkin numbers, non-crossing set partitions, 
Motzkin paths and Dyck paths [21]. In contrast to protein folding 
programs, where the tertiary structure is predicted, the majority of 
the currently available RNA M-folding algorithms concentrate on 
the secondary structure of the RNA structure. The first reason for 
this difference is a pragmatic one. Current RNA prediction 
algorithms have a polynomial runtime of O(n3) where n is the 
sequence length. This is fast enough to allow genome-wide analysis 
on current off-the-shelf computers. The consideration of the tertiary 
structure, however, leads to a super polynomial-runtime impeding 
any large-scale application [22]. The second reason is related to the 
kinetic of RNA folding. Secondary structures form first, leading to a 
set of loops and helices, which once formed, interact to yield the 
tertiary structure. As a consequence, the determination of the 
tertiary structure depends strongly on the secondary structure [23]. 
Still, the mere knowledge of the secondary structure can be 
misleading, as two similar tertiary structures can have different 
secondary structures [20]. 
 
Materials and Methods: 
Latest studies have already revealed the correlation between 
specific lncRNAs to AD pathologies and lesions in brain regions 
like the middle temporal gyrus, the prefrontal cortex, the striatum 
the cerebellum and the hippocampus and other CNS related 
disorders [8, 24-27]. The secondary structures of four proteins 
related to AD have been examined in this study BACE1, Rad18, 
GABABR2 and hnRNPQ targeted from the corresponding lnRNAs 
BACE1-AS, NAT-Rad18, 17A and hnRNP Q [28]. A protein 
statistics-analysis was initially executed with the QIAGEN CLC 
Main Workbench (supplementary material available with 
authors). For the computational analysis the sequences 
6EJ3(BACE1_HUMAN), 4F12(GABABR2_HUMAN), 4UX8 
(hnRNPQ_HUMAN), 2Y43 (RAD18_HUMAN) were imported 
from the Protein Databank, avoiding the use of prediction methods 
for the identification of secondary elements in order to reduce 
additional errors.  

 

 
Figure 1: BACE1-AS secondary structure 
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Results: 
Initially, multiple alignment files have been created using the 
ClustalOmega software, which has been imported in the ESPript 3.0 
software for further displaying an analysis of the corresponding 
secondary structures  (Figure 1) [29]. In the ESpript output, both the 
secondary and primary structures are displayed in separate rows, 
where dots represent gaps, α stands for alpha helix, β for beta 
strand, TT for strict β-turns, TTT for strict α-turns, alpha helices are 
shown as squiggles and β-strands as arrows in the multiple 
alignment representation (Figure 2 in supplementary material 
available with authors), in order to identify similarities and 
patterns between the proteins.  
 
Table 1: Positions of interest with similar properties between BACE1 and GABABR2  

Positions 61 62 63 64 65 66 
BACE1_HUMAN V E M V D N 
Positions 65 66 67 68 
GABR2_HUMAN T K E V 

 
Few interesting properties are identified in certain positions of 
BACE1 and GABABR2 (Table 1). In position (65) there is a decrease 
in hydrophobicity and a simultaneous increase in the antigenicity 
of BACE1 (Figure 3). In the corresponding aligned positions of 
(66,67), there is a decrease in hydrophobicity and antigenicity. 
Furthermore, in positions (64, 65) b-strict turns to occur in both 
proteins, while the positions (61-64) of BACE1 have the same levels 
of hydrophobicity and antigenicity. It is noticed from the 
computational analysis that β-turns are appeared to be part of the 
spheroproteins surface and their residues are hydrophilic [30]. 
Therefore, it seems that in regions with β-turns hydrophobicity is 
reduced, affecting the folding of each protein and changing the 
direction of polypeptide's chain (Table 2). In this study, the regions 
with this interesting property can be found on the common BACE1 
and GABABR2 β-turns. In positions (64,65) of BACE1 and the 
corresponding GABABR2 aligned positions, there are identically 
aligned secondary structures of β-turns. In both turns, 
hydrophobicity shown to be reduced from a stable state, which 
confirms the statements concerning the hydrophobicity. In the same 
region BACE1 and GABABR2 switch from positive to negative 
hydrophobicity (0.06 to -0.22) and (0.14 to -0.28) respectively. 
Furthermore, in certain β-turns BACE1 consists of aspartic acid and 
GABABR2 consists of lysine and glutamic acid which are 
hydrophilic residues. Although, the β-turns consist of different 

residues in general, they still affect the protein folding precisely in 
the same way. Several research studies since the 70s, underlie the 
exceptional role of β-turns while they correspond approximately to 
the 30% of all the protein residues [31-33]. These type of secondary 
structures are strongly related to protein folding mechanisms 
depending mainly on their topology, functionality, and stability. 
According to their classification, β-turns can establish the initiation 
of folding and in some cases, the substantial destabilization of 
locally encoded protein features can lead to misfolding [30]. 
 

 
Figure 3: Hydrophobicity and antigenicity plots of BACE1 and 
GABABR2 
 
Discussion: 
A secondary structure S on a sequence s is a set of ordered base 
pairs (Si, Sj), where i<j and si and sj represent respectively the 
nucleotides at positions i and j, on sequence s, that have the 
following properties: 
 

i) If (si, sj) ∈ S then {si, sj} ∈{{U,A}, {G,C}, {G,U}}, where {U,A} 
and {G,C} are called Watson-Crick pairs and {G,U} is called 
wobble pair 

ii) If (si,sj) ∈ S  and  (si,sl)) ∈ S then  j = l 
iii) If ((si, sj) ∈ S and (sk, sl)) ∈ S and i< k then l < j  or j < k 
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Table 2: The numbers correspond to BACE1. In the case of a gap in BACE1, the number corresponds to GABABR2 with an additional (*). If there is a gap in both BACE1 and 
GABABR2, the number corresponds to hnRNPQ with an additional identifier (**) 
Regions of interest Proteins Structure High similarity 

64-65 BACE1_HUMAN GABR2_HUMAN Strict β-turn 
Strict β-turn 65 

67 
BACE1_HUMAN 
HNRPQ_HUMAN 

Start of β1 
Start of α1 67 

77-81 
HNRPQ_HUMAN 
RAD18_HUMAN 

α2 
η1, the start of α1(81) 79 

99 
BACE1_HUMAN 
HNRPQ_HUMAN 
RAD18_HUMAN 

Start of β4 
Start of α3 
End of α1 

 

106-109 
BACE1_HUMAN HNRPQ_HUMAN 
RAD18_HUMAN 

β-turn (107-108) 

end of α3 (106) 
strict α- (107-109) 

107 
 
109 

118-120 
BACE1_HUMAN GABR2_HUMAN 
RAD18_HUMAN 

β-turn (119-120) 
end of β2 (119) 
end of β1 (118) 

 

136* 
GABR2_HUMAN 
RAD18_HUMAN 

start of α3 
start of strict α-turn  

144* 
GABR2_HUMAN 
RAD18_HUMAN 

end of α3 
start of η2  

149 BACE1_HUMAN GABR2_HUMAN start of  strict α-turn 

end of β4  

155-156 

BACE1_HUMAN 
GABR2_HUMAN 
 
HNRPQ_HUMAN 
RAD18_HUMAN 

start of β7 
end of η2(55) 
start of α5(56) 
start of α4 
β3 

 

173 BACE1_HUMAN GABR2_HUMAN end of β-turn 
end of α5  

178 
BACE1_HUMAN GABR2_HUMAN 
HNRPQ_HUMAN 

start of β8 
start of β6 
start of α6 

 

211 BACE1_HUMAN GABR2_HUMAN start of β9 
end of β7  

216 BACE1_HUMAN GABR2_HUMAN end of β9 
start of α7  

237-240 
BACE1_HUMAN GABR2_HUMAN HNRPQ_HUMAN 
RAD18_HUMAN 

end of β10 (237) 
end of β8 (239) 
end of α6 (240) 
β-turn (238-239) 

237 
239 
240 

242 BACE1_HUMAN GABR2_HUMAN start of η3 
start of α8  

269 BACE1_HUMAN GABR2_HUMAN end of β12 
start of β-turn  

270 BACE1_HUMAN GABR2_HUMAN start of β-turn 
end of β-turn  

273-274 BACE1_HUMAN GABR2_HUMAN end of β13 (273) 
start of α10 (274)  

285-286 BACE1_HUMAN GABR2_HUMAN start of β14 (286) 
end of α10 (285)  

311-312 
BACE1_HUMAN GABR2_HUMAN 
HNRPQ_HUMAN 

end of α2 (312) 
end of α11 (311) 
start of β-turn (312) 

 
312 

326-327 
GABR2_HUMAN 
 
HNRPQ_HUMAN 

end of β11 (326) 
start of β-turn (327) 
end of α7 (327) 

326 
327 

330-331 
BACE1_HUMAN 
HNRPQ_HUMAN 

end of β16 (330) 
start of η1 (331) 331 

420*-421* GABR2_HUMAN end of β-turn (420*)  
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HNRPQ_HUMAN 

end of η1 (420*) 
start of β13 (421*) 

422*-423* BACE1_HUMAN GABR2_HUMAN start of β-turn (423*) 
end of β13 (422*) 422 

334-335 BACE1_HUMAN GABR2_HUMAN end of β-turn (334) 
start of β14 (335) 

334 
335 

353 BACE1_HUMAN GABR2_HUMAN start of β-turn 
end of β15  

360-361 ACE1_HUMAN GABR2_HUMAN HNRPQ_HUMAN end of β18 (361) end of β16 (361) end of β-turn (360) 360 
361 

    
In other words, constraint i) means that only Watson-Crick and 
wobble ordered base pairs may form. Constraint ii) states that a 
nucleotide may be involved in at most one ordered base pair. 
Constraint iii) implies that all ordered base pairs are nested, i.e. that 
no pseudoknots are allowed in the secondary structure. While these 
constraints greatly simplify the folding algorithms, none of the 
above constraints is biologically relevant. Further pseudoknots 
appear in many important RNAs structures, albeit at a low 
frequency. For example, in the small ribosomal unit in E.coli from 
the 447 reported Watson-Crick and wobble ordered base pairs only 
8 are pseudoknots [34]. Any secondary structure generated under 
these rules can be decomposed into a unique set of a loop [35]. A 
loop is a substructure which consists of a closing ordered base pair 
(Si, Sj)   and all nucleotides that are accessible from this ordered 
base pair. A nucleotide sp is accessible from (Si, Sj)  if  i<p<j and 
there exists no other ordered base pair (Sk, Sl) in S such that  
i<k<p<l<j. Loops can be assigned a degree, i.e., the number of 
ordered base pairs in the loop and size which corresponds to the 
number of an unpaired nucleotide in the loop. There exist different 
kinds of loop depending on the amount and arrangement of their 
interior ordered base pairs [21]. Hairpin loops have a degree of 1. 
Loops of degree 2 are called interior loops. Interior loops of size 
zero are called stacked pairs. An uninterrupted sequence of stacked 
pairs represents a stem. Interior loops of a size larger than 0, with 
adjacent interior and exterior, ordered base pairs, are called bulge 
loops. Multiloops are loops of degree greater than 2. Finally, 
exterior loops are the set of nucleotides which are inaccessible by 
any ordered base pair. In the literature [36] except for hairpin and 
interior loops, definitions for bans, multiloops, external loops, 
pseudoknot loops, interior pseudoknotted loops, and multi-pseudo 
knotted loops, can also be found. RNA secondary structures can be 
displayed in different kinds of representations. Depending on the 
use of the RNA molecules, specific representations are more or less 
useful. The bracket notation is a text-based representation; the 
structure is reflected in a string of dots and brackets. Dots denote 
non-bonding bases and a pair of brackets indicates a base-pair. A 
more convenient representation, which expands in all directions in  

a plane and thus is closer to spatial representation, is the squiggle 
plot. It is the most prominent plot to easily describe the 
approximate spatial structure of RNA. Ordered base pairs are given 
as two bases connected through either a straight line or a circle 
indicating the so-called wobbling base-pair G-U. Considering RNA 
secondary structure in a more theoretical way, the representations 
as trees or as arc-annotated sequences are well-accepted. Schmitt et 
al computed the total number of RNA secondary structures of a 
given length with a fixed number of ordered base pairs, under the 
assumption that all ordered base pairs can occur, by establishing a 
one-to-one correspondence between secondary structures and trees 
[37]. In recent years, tree representations of RNA secondary 
structures occurred in the literature, and algorithmic applications 
on trees are performed successfully. For example, the full tree 
representation [38] associates ordered base pairs to internal nodes 
and unpaired bases to leaf. In a more detailed representation, each 
interior node is surrounded by right-most and left-most children 
which correspond to the 5’ and 3’ nucleotides of the ordered base 
pair, respectively. In a Shapiro-Zhang tree, the different loops and 
stacked regions are represented explicitly with special labels [39]. 
Arc annotated sequences focus on representing sequences as 
straight lines. Arcs indicate base pairings. A similar representation 
to the arc-annotated sequence is the drawing of this sequence on a 
circle. Arcs are plotted as curved lines inside this circle. The 
mountain plot is useful for large RNAs. Plateaus represent 
unpaired regions; the heights of these mountains are determined by 
the number of ordered base pairs in which the partial sequences are 
embedded. Specifically, the mountain plot representation maps the 
secondary structure into a 2-dimensional graph where the x-axis 
represents the position along the RNA sequence and the y-axis 
corresponds to the number of ordered base pairs that enclose 
nucleotide k. The dot plot representation maps the structure to a 
matrix where a dot at position (i, j) represents the ordered base pair 
(Si, Sj). The secondary structure of an RNA molecule is the 
collection of ordered base pairs that occur in its 3D structure. When 
the 5’- end of one nucleotide fits the 3’-end of another, a p-bond is 
formed, while the sequence of p-bonds defines the backbone of the 
molecules. On the other hand certain ordered base pairs like {C, 
G},{ A, U}, and {G, U} form h-bonds, which cause folding of the 
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molecular backbone into a configuration of minimal energy [40]. In 
some cases unusual non-canonical ordered base pairs, like {G, U}, 
{G, A} and {C, A} replace the canonical Watson-Crick ordered base 
pairs, which maintained a stable helical structure. While these non-
canonical pairings allow possible hydrogen-bonding interactions 
and can be treated as neutral evidence for a helical structure, there 
seems to be evidence against pairing [41]. A secondary structure of 
size n is closed [40] if there is an h-bond connecting base 1 and n 
and for known integers n ≥ 2, l ≥ 0, there are S(l) (n-2) secondary 
structures of size n and rank l, establishing also a bijection between 
the set of all closed secondary structures Z(l)(n) and the set of all 
plane trees with exactly n leaves T(l)(n).   
 
A constraint satisfaction formulation was also used for RNA 
prediction problem including genetic mapping [42], physical 
mapping [43] and structure prediction [44]. The ultimate goal of 
structure prediction is to obtain the three-dimensional structure of 
biomolecules through computation. The key concept for solving the 
above-mentioned problem is the appropriate representation of the 
biological structures. Nowadays, an increasing number of 
researchers have released novel RNA structure analysis and 
prediction algorithms for comparative approaches to structure 
prediction, based on the fact that closed RNA structures can be 
viewed as mathematical objects obtained by abstracting 
topologically non-relevant properties of planar folding of single-
stranded nucleic acids. There are a lot of approaches on this topic, 
such as dynamic programming algorithms [45], stochastic 
algorithms such as Bioambiens calculus [46], comparative methods 
[47], simulated annealing [48], artificial neural net algorithms and 
most recently evolutionary algorithms which attempt to mimic the 
natural folding pathway by using populations based approach [49]. 
 
Conclusion: 
While specific lncRNAs have been already correlated to certain AD 
lesions, a new computational analysis of the proteins BACE1, 
Rad18, GABABR2 and hnRNPQ have been presented in this study. 
Using the QIAGEN CLC Main Workbench, the ClustalOmega 
software and the ESPript 3.0 software, a detailed analysis of the 
corresponding secondary structures for the sequences 6EJ3, 4F12, 
4UX8, 2Y43 has been executed. The results of our computational 
analysis identified common properties in aligned positions with 
high similarity score, identical secondary structure match, 
increased hydrophilicity, and negative antigenicity, revealing 
simultaneously strong evidence that the proteins under 
consideration, may have common functionality in those regions 
that regulate folding and aggregation and prevent binding of 
immune factors. These conclusions reveal the significance of the 
most known β-turn-forming residues, which participate in ligand 

binding, molecular recognition, protein-protein or protein-nucleic 
acid interactions and modulation of protein functions and 
intermolecular interactions, in proteins commonly linked to AD 
development or progression. 
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