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Abstract

Antitumor drug therapy plays a very important role in cancer treatment. However, resistance to chemotherapy is 
a serious issue. Many studies have been conducted to understand and verify the cause of chemoresistance from 
multiple points of view such as oncogenes, tumor suppressor genes, DNA mutations and repairs, autophagy, cancer 
stemness, and mitochondrial metabolism and alteration. Nowadays, not only medical data from hospitals but also 
public big data exist on internet websites. Consequently, the importance of computational science has vastly 
increased in biological and medical sciences. Using statistical or mathematical analyses of these medical data with 
conventional experiments, many researchers have recently shown that there is a strong relationship between the 
biological metabolism and chemoresistance for cancer therapy. For example, folate metabolism that mediates one-
carbon metabolism and polyamine metabolism have garnered attention regarding their association with cancer. It 
has been suggested that these metabolisms may be involved in causing resistance to chemotherapy.
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INTRODUCTION
Incidence of cancer is increasing worldwide, and there are some challenges in cancer treatment, including 
resistance to antitumor drugs. The drug resistance in cancer treatment can be of two types: acquired 
and congenital. Cancer therapy is typically very effective at the start of the treatment, with tumor 
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degeneration being observed; however, recurrence and metastasis of cancer are often observed thereafter. 
With chemotherapy, cancer progression is a grave problem. Therefore, several studies have investigated 
the causes of chemotherapy resistance from multiple points of view such as oncogenes, tumor suppressor 
genes, DNA mutations and repairs, autophagy, cancer stemness, and mitochondrial metabolism and 
alteration[1-7]. Although each one of these individually is not a cause of drug resistance, but the complex 
relationship among them may result in chemoresistance. Because of this relationship, it has been recently 
determined that differences in the biological metabolism pathways regarding the presence or absence of the 
characteristic of chemoresistance are related to drug resistance in cancer therapy. In this review, we aim to 
summarize the research on antitumor drug resistance and cancer cell characteristics.

ONCOGENES AND TUMOR SUPPRESSOR GENES
Cancer tissue is considered to be a population of abnormal cells that arise from normal cells. Normal cells 
proliferate depending on the surrounding conditions, whereas cancer cells continue to uncontrollably 
proliferate. Cancer occurs as a result of errors in the genes of normal cells over many years[8-12]. There 
are two types of gene errors: mutations and epigenetic changes. These errors occur in cases where gene 
activation causes cell proliferation and acts as an accelerator (activation of oncogenes) and in cases where a 
braking action for arresting cell growth is not activated (inactivation of tumor suppressor genes). Therefore, 
many studies have reported on oncogenes and tumor suppressor genes.

Typical examples of oncogenes include c-MYC[13-15] and RAS[16-18]. MYC family of genes is known to cause 
cancer by an overexpression of the product protein, c-MYC, for some reason combined with a loss of the 
original function of cell cycle control. Translocation of the c-MYC gene close to a transcriptionally active 
immunoglobulin gene results in overexpression. This behavior has been observed in human Burkitt’s 
lymphoma, diffuse large B-cell lymphoma, and some carcinomas. However, in some cancers such as colon 
cancer, there is an exception where the survival rate may be better if the expression is high[19,20]. The RAS 
family of genes produces a RAS protein that has an important role in transmitting signals that promote 
cell proliferation. There are three types of RAS gene: KRAS, NRAS, and HRAS. It is well known that the 
epidermal growth factor receptor (EGFR) on the cell surface is involved in one of the mechanisms involved 
in the proliferation of cancer cells. Normally, the RAS gene controls cell growth. However, in case of a RAS 
gene with a significant mutation, cell proliferation signals continue to be emitted, even if EGF and EGFR 
are not bound. As a result, cancer cell proliferation is activated.

Many studies have reported on tumor suppressor genes. The P53 gene[21-24] and retinoblastoma1 (RB1) gene 
susceptibility[25,26] are the representative examples. They are known to play important roles in cell death 
induction, cell proliferation suppression, and DNA repair. P53 is a stress-induced transcription factor that 
can promote cell cycle arrest, apoptosis, and senescence. In addition, it is involved in the regulation of 
metabolic pathways and cytokines required for embryo transfer. Because P53 plays these important roles, 
it would be natural that any mutation in the P53 gene will promotes P53 protein dysfunction and cancer 
development. Furthermore, RB1 is a known tumor suppressor gene, which is characterized as a “gatekeeper.” 
Mutations in the RB1 gene occur in almost all familial and sporadic forms of RB1. The RB1 gene produces 
the RB1 protein, which plays a role in the repression of the E2F transcription factor family. For tumor 
initiation, this inactivation is a rate-limiting step. Thus, the relationship between various genes (oncogenes 
and tumor suppressor genes) and cancer has been reported, and it is a well-established fact that cancer 
results from genetic errors. Any change in the function of the above genes induces epigenetic changes and 
biological metabolisms in cancer cells.

METABOLISM IN NORMAL CELLS AND CANCER CELLS
There are significant differences in metabolism between normal cells and cancer cells[27]. The Warburg 
effect is representative of the metabolism in cancer cells; however, our understanding of the effect in terms 
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of cancer biology remains incomplete, as is true for other metabolic changes that characterize cancer 
tissue[28-31]. In normal cells, glucose is metabolized to carbon dioxide in the presence of oxygen, although it 
produces large amounts of lactic acid only in hypoxic conditions. However, in cancer cells, a large amount 
of lactic acid is produced regardless of the amount of oxygen. Glycolysis in cancer cells is closely related to 
the rate of adenosine 5′-triphosphate (ATP) consumption[32]. Cancer cells need to balance the catabolism 
that produces ATP with the need for metabolism that promotes biosynthesis and cell division throughout 
the cell. The aerobic glycolytic system can reportedly balance many of the metabolic requirements for the 
growth of cancer cells. We have mentioned above that a large amount of lactic acid is produced in cancer 
cells, and it has become clear that lactic acid is used as a nutrient in some cancer cells[33].

In many cancer cells, metabolic pathways are maintained by oxidative phosphate using multiple nutrients. 
Glucose is not the only substrate used for oxidative phosphorylation in cancer cells[34,35]. A pathway that 
metabolizes glutamine to α-ketoglutarate has been reported[36]. Glutamine is required for cell growth 
in many cancer cells, and it is more abundantly metabolized than other non-essential amino acids[37,38]. 
Glutamine metabolism is a known source for the synthesis of macromolecules such as nucleotides, 
proteins, and lipids. However, it also supports nicotinamide adenine dinucleotide phosphate production 
and anaplasia in the proliferation of cancer cells. Thus, some amino acids and ions are also important 
factors associated with survival and maintenance of cancer cells.

In addition, the relationship between oxidative damage and cancer malignancy has also been reported for 
a long time[39,40]. Reactive oxygen species (ROS), such as hydrogen peroxide, superoxide, hydroxyl radical, 
and singlet oxygen, is well known. It has an important role in immune function and defense against 
infection. It is also used as a physiologically active substance for signal transduction, cell differentiation, 
and apoptosis. However, high level of ROS is very toxic to cells. It is reported that the expression level of 
antioxidant enzymes in cancer is changed both in vivo and in vitro experiments[39]. Generally, oxidative stress 
and redox signaling are involved in the development of cancer and ROS could influence the phenotypic 
behavior of cancer cells and their responsiveness to therapeutic interventions[40]. On the other hand, it has 
also been reported that the enhancement of oxidative stress in normal cells limits tumor development and 
tumor progression. And then, if the oxidative stress is not controlled, the level of ROS turns higher to the 
point of causing senescence or apoptosis and turns into a tumor suppressor[41]. Then, the fact means that 
strategic targeting of antioxidant system could be effective for undermining new tumor cells[42].

Further, it was reported that Raf/MEK/ERK pathway had an important role to drug resistance[43]. This 
pathway is a signal transduction system responsible for cell growth, and the abnormal activation of this 
pathway is known that normal cells turn into cancer cells. In some type of cancer, this pathway regulates 
the expression level of drug pumps and anti-apoptotic molecules. McCubrey et al.[43] show that ectopic 
expression of Raf induces increased expression of Mdr-1 and Bcl-2 associated with drug resistance.

Recently, the significance of the mitochondrial metabolism is also garnering attention. In some 
cancers, mutations have been observed in mitochondrial enzyme genes; however, the mitochondrial 
function is not lost in many cancer cells[44]. Folate metabolism in mitochondria is known to mediate 
one-carbon metabolism[45-52] [Figure 1A]. It is closely related to cancer cell characteristics[53,54]. Serine 
hydroxymethyltransferase 2, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), and aldehyde 
dehydrogenase 1 family member L2 are known as the genes that control the metabolic cycle of 
tetrahydrofolate in mitochondria. In fact, among patients with colorectal cancer and lung adenocarcinoma, 
those with high expression of these genes have a shorter overall survival rate than those with low 
expression[53].

As mentioned above, the cancellation of normal cells greatly alters the biological metabolism of cancer 
cells compared with that of normal cells. It is caused by genomic or epigenetic errors that are important 
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for carcinogenesis. Generally, many cancer driver genes enhance nutrient intake. This means that the 
transformation of cancer cells is strongly related to increased glucose uptake[55,56]. In human cancers, 
activation of the phosphatidylinositol-3 kinase (PI3K) signaling pathway is frequently observed. Reportedly, 
PI3K is involved in glucose metabolism through the insulin signal leading to glucose uptake[57]. Conversely, 
just as some gene mutations lead to oncogenesis, metabolic errors in some cells may also be a direct cause 
of oncogenesis. These facts indicate the possibility of treating cancer by controlling certain metabolisms. 
Therefore, drug discovery research has also been performed regarding antitumor drugs targeting certain 
metabolisms[54]. Our group has performed in silico molecular docking to search for effective candidate 
compounds [Figure 1B]. Consequently, very promising compounds potentially targeting MTHFD2 could 
be found earlier. Our statistical analyses using clinical data led us to predict that compared with the 
conventional target dihydrofolate reductase, MTHFD2 is a more efficient drug target for cancer therapy 
with less side effects in normal cells[53].

So far, we have focused on the differences between normal cells and cancer cells. However, cancer tissue is 
not a group of cancer cells that have homogeneous properties but a collection of heterogeneous cancer cells 
that exhibit different biological characteristics. A cancer stem cell model has been proposed to explain this 
heterogeneity[8,9].

CANCER STEM CELL MODEL
Reportedly, tumor cells exhibit heterogeneity in their proliferative ability. The fact that only some cells 
have the ability to form tumors was mentioned for the first time in a paper on lymphoma in mice[58]. 
Transplantation of human hematopoietic stem cells into NOD/SCID mice has shown to repopulate human 
hematopoietic cell lines over time[59], and when similar transplantation is performed using hematopoietic 
stem cells of patients with leukemia, mice develop leukemia[60]. These behaviors indicate that leukemia 
develops when hematopoietic stem cells become tumor-initiating cells. The tumor-initiating cells are 
defined as cancer stem cells (CSCs) that have three stem-cell-like characteristics: differentiation, self-
renewal, and proliferation maintenance. CSCs have been defined in many solid tumors such as breast 

Figure 1. A: Schematic diagram of the metabolic cycle of THF and the one-carbon (1C) metabolic pathway in folate metabolism, which 
are regulated by SHMT2, AMT, MTHFD2, ALDH1L2, and MTHFD1L in mitochondria and that of MTHFD1 and SHMT1 in cytoplasm; B: 
Candidate compound search procedure with in silico molecular docking and a cell-based assay. THF: tetrahydrofolate; SHMT2: serine 
hydroxymethyltransferase 2; AMT: aminomethyltransferase; MTHFD2: methylenetetrahydrofolate dehydrogenase 2; ALDH1L2: aldehyde 
dehydrogenase 1 family member L2; MTHFD1L: methylenetetrahydrofolate dehydrogenase 1 like; MTHFD1: methylenetetrahydrofolate 
dehydrogenase 1
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cancer[61], glioblastoma[62], head and neck cancer[63], some digestive organ cancers[64,65], and other types 
of cancer. CSCs have the property of therapy resistance[3,7]. Thus, many biomarkers have been reported 
to define and distinguish these CSCs[66,67]. Recently, it has been reported that CSCs in breast cancer 
and gliomas may be identified using f luorescent protein with a degron motif, which is broken down 
by proteasomes. Because the proteasome activity in CSCs is lower than that in non-CSCs, CSCs yield 
fluorescence and non-CSCs do not[68]. Furthermore, it has been verified in other types of cancers that the 
cells identified using the abovementioned techniques retain cancer stem-cell-like properties and maintain 
chemoradiation resistance[69,70].
 
Epithelial-mesenchymal transition (EMT) is a change because of which epithelial cells lose their 
characteristics obtained at differentiation and acquire mesenchymal traits. It has been reported that EMT 
contributes to tumor progression by enhancing the infiltrative metastatic potential of cancer cells[71,72] and 
by increasing the resistance to antitumor drugs[73].
 
CSCs have very different biological characteristics from non-CSCs constructing majority of the tumor 
tissue. CSCs exhibit characteristics such as very slow cell cycle and drug resistance. Therefore, for complete 
cure of cancer, it is necessary to completely kill CSCs. Some recent studies have shown the possibility that 
epigenetic regulation can control cancer stemness[74,75]. Histone demethylating enzyme plays a role in the 
regulation of cell proliferation and maintenance of stemness. Therefore, a reduced activity of this enzyme 
leads to cancer cell death. A study has focused on targeting histone demethylase using small molecules[76]; 
however, there are many challenges to cancer therapy targeting CSCs.

A little aside from this, it is essential for cancer cell growth to have unlimited replication capacity. On 
the other hand, in normal cells, the number of cell divisions is limited. It is known that the unlimited 
proliferation ability of cancer cells is involved in telomeres protecting the ends of chromosomes[77-80]. In 
normal cells, their length decreases as cell division repeats, and eventually their ability to protect the 
ends of chromosomes is lost. Telomerase is a DNA polymerase that adds a telomeric repeat to the end of 
telomeric DNA. Telomerase is almost absent in normal cells but is expressed at significant levels in most 
cancer cells as is the case with normally stem cells. Telomere activity is associated with resistance to both 
replicative senescence and induction of crisis apoptosis. On the other hand, it is reported that suppression 
of telomere activity leads to activation of either replicative senescence or crisis apoptosis. 

COMPUTATIONAL ANALYSES 
Advances in observational techniques for experimental equipment have also increased the volume of the 
available data. Consequently, omics analyses such as those of methylome, transcriptome, proteome, and 
metabolome have enabled more comprehensive understanding of the biological molecules for exhaustive 
research. As the performance of computing devices has improved, rapid advances have made it possible 
to collectively calculate large volumes of data. With advances in the computer technology, innovative 
analytical methods have been developed to evaluate the correlations between multiple experimental data. 
These new analytical methods also make it possible to gain new knowledge that could not be achieved with 
conventional methods. To date, many studies using computational science have been conducted in the field 
of cancer research[81,82].
 
As mentioned above, the amount of biological data in the medical research field is large. Therefore, 
conventional statistical methods have been used as a very powerful tool. Recently, trans-omics methods 
were proposed, which is for mechanically reconstructing a large-scale network across multiple omics 
layers with integration multi-omics data from samples prepared under the same conditions[83,84]. However, 
it was said that some technical and analytical improvements will still be required to make this approach a 
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reliable approach[83]. On the other hand, one of the trans-omics method developed by by Kosekiet al.[85] and 
Konno et al.[86] has been groundbreaking in identifying some biological metabolisms that may be involved 
in anticancer drug resistance in cancer cells. Trans-omics analyses are a method of grasping the global 
network of biological molecules by hierarchically linking multiple omics data using statistics or mathematical 
techniques [Figure 2]. The experimental results obtained using a conventional single omics analysis are just a 
snapshot at one time. However, the trans-omics method, using some multi-omics data, has made it possible 
to predict (interpolation/extrapolation) changes over time through correlation analyses among the data. 
Koseki et al.[85] have created a novel trans-omics method to predict the changes in a specific reaction rate and 
performed prediction analyses using transcriptome and metabolome data to compare CSCs and non-
CSCs. Furthermore, they have suggested that the polyamine metabolic pathway plays an important role 
in antitumor drug resistance in CSCs. The polyamine metabolism involves the reaction from ornithine to 
spermine via putrescine and spermidine. In non-CSCs, the inflow to putrescine stands out after exposure 
to an antitumor agent, and its reaction rate slows over time. Conversely, it appears that the polyamine 
reaction in CSCs is controlled in a manner that increases ornithine to a certain level. Furthermore, high-
level polyamines inhibit lysine demethylase 1A (LSD1) enzyme activity because polyamine oxidase (a 
polyamine catabolic enzyme) is highly similar in overall structure to LSD1[87]. Thus, it has been proposed 
that it could result in the death of cancer cells. This means that CSCs regulate polyamine metabolism to 
protect their own survival from antitumor agents. Application of computational analyses in this manner 
has made it possible to identify biological reactions that contribute to antitumor drug resistance.

CONCLUSION
Earlier, most computational analyses were used in physical and chemical sciences rather than in life and 
medical sciences. However, they are now widely used in many scientific areas. The computational approach 
is not only complementary to the results of conventional experimental research but it can also significantly 
improve the speed and accuracy of analysis. Furthermore, using computational analyses makes it possible 
for one to achieve new results and interpretations that may not be understood using only conventional 

Figure 2. Schematic diagram of trans-omics analysis. There is a correlation between each omics data (layer), and some changes 
should affect the data of the separate upper and lower layers. New findings are derived by a comprehensive analysis of each layer and a 
correlation analysis between the layers
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experimental systems. Through computational analyses of differences in cancer cell characteristics 
observed in some experiments such as those on methylomes, transcriptomes, and metabolomes, it 
has become possible for researchers to extract the biological metabolism that inf luences cancer cell 
characteristics such as antitumor drug resistance. Therefore, computational analyses such as statistical and 
trans-omics analyses may become very powerful tools in answering some scientific interrogations in the 
life and medical sciences.
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