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Token-Mol 1.0: tokenized drug design with
large language models

Jike Wang1,4, Rui Qin 1,4, MingyangWang 1,4, Meijing Fang1, Yangyang Zhang1,
YuchenZhu1,QunSu1,QiaolinGou1, ChaoShen 1,Odin Zhang2, ZhenxingWu 1,
Dejun Jiang 1, Xujun Zhang1, Huifeng Zhao1, Jingxuan Ge 1, Zhourui Wu3,
Yu Kang 1 , Chang-Yu Hsieh 1 & Tingjun Hou 1

The integration of large language models (LLMs) into drug design is gaining
momentum; however, existing approaches often struggle to effectively
incorporate three-dimensional molecular structures. Here, we present Token-
Mol, a token-only 3D drug design model that encodes both 2D and 3D struc-
tural information, along with molecular properties, into discrete tokens. Built
on a transformer decoder and trained with causal masking, Token-Mol intro-
duces a Gaussian cross-entropy loss function tailored for regression tasks,
enabling superior performance across multiple downstream applications. The
model surpasses existing methods, improving molecular conformation gen-
eration by over 10% and 20% across two datasets, while outperforming token-
only models by 30% in property prediction. In pocket-based molecular gen-
eration, it enhances drug-likeness and synthetic accessibility by approximately
11% and 14%, respectively. Notably, Token-Mol operates 35 times faster than
expert diffusion models. In real-world validation, it improves success rates
and, when combined with reinforcement learning, further optimizes affinity
and drug-likeness, advancing AI-driven drug discovery.

Drug discovery traverses a remarkably intricate journey. Recent years
have witnessed profound advancements in artificial intelligence (AI)
technologies, particularly deep learning (DL), which has been pro-
gressively impacting multiple facets of drug development. These
technologies are accelerating in innovative drug research. However,
the high cost associated with acquiring annotated data sets in drug
discovery remains a significant impediment to the advancement in this
field. Recently, the rapid evolution of unsupervised learning frame-
works, epitomized by BERT1 and GPT2, has introduced unsupervised
chemical and biological pre-training models across disciplines such as
chemistry3–12, and biology13–16. These models undergo large-scale
unsupervised training to learn representations of small molecules or
proteins, subsequently fine-tuned for specific applications. By lever-
aging unsupervised learning on large-scale datasets, these pre-training

models effectively addresses the challenges associated with sparse
labeling and suboptimal out-of-distribution generalization, leading to
improved performance17.

Large-scale molecular pre-training models can be broadly cate-
gorized into twomain groups:models basedon chemical language and
models utilizing molecular graphs. First, chemical language models
encode molecular structures using representations such as simplified
molecular input line entry system (SMILES)18 or self-referencing
embedded strings (SELFIES)19. They employ training methodologies
akin to BERT or GPT, well-established in natural language processing
(NLP). Notable examples include SMILES-BERT20, MolGPT21,
Chemformer22, and Multitask Text and Chemistry T523, which exhibit
architectural similarities to universal or general NLP models such as
LLaMA24.
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Second, graph-basedmolecular pre-trainedmodels exhibit higher
versatility. They represent molecules in a graphical format, with nodes
for atoms and edges for chemical bonds. Pre-training methodologies
include various techniques, such as random masking of atom types,
contrastive learning, and context prediction25–27. Unlike language-
based models, graph-based molecular pre-trained models inherently
incorporate geometric information, as demonstrated by methods like
GEM28 and Uni-Mol29.

Despite their advancements, both classes of models exhibit dis-
tinct limitations. Large-scale molecular pre-training models based on
the chemical language face a significant constraint in their inability to
inherently process 3D structural information, which is pivotal for
determining the physical, chemical, and biological properties of
molecules28,29. Consequently, these models are inadequate for down-
stream tasks that involve 3D structures, such as molecular conforma-
tion generation and 3D structure-based drug design. In contrast,
graph-basedmolecular pre-trainedmodels can effectively incorporate
3D information. However, existing approaches primarily focus on
learningmolecular representations forproperty prediction rather than
molecular generation. Moreover, integrating these models with uni-
versal NLP models presents considerable challenges. As a result, a
comprehensive model capable of addressing all drug design tasks
remains elusive. Addressing the limitations of these two model types
to develop a pre-trained model suitable for all drug design scenarios,
and easily integrable with existing general large language models, is a
pressing need.

The emergence of universal artificial intelligence offers opportu-
nities in this domain. By leveraging vast amounts of data, thesemodels
acquire expert knowledge across various fields, providing valuable
assistance to practitioners2,24,30,31. Recent studies suggest that GPT-4
demonstrates a profound understanding of key concepts in drug dis-
covery, including therapeutic proteins and the fundamental principles
governing the design of small molecule-based and other types of
drugs. However, its efficacy in specific drug design tasks, such as de
novomolecule generation, molecular structure alteration, drug-target
interaction prediction, molecular property estimation, and retro-
synthetic pathway prediction, requires further refinement32. Never-
theless, the application of a token-based approach by the above
models to handle continuous spatial data is particularly noteworthy.

Building on this concept, Born et al. introduced the Regression
Transformer33, which integrates regression tasks by encoding numer-
ical values as tokens. Nonetheless, this method overlooks the intricate
3D structural complexities of molecules. Additionally, Flam-Shepherd
andAspuru-Guzik proposeddirectly tokenizing 3D atomic coordinates
(XYZ) to represent molecular 3D structures34. Concurrently, the
BindGPT framework employs a similar approach togeneratemolecular
structures and their corresponding 3D coordinates35. While the per-
formance of these models still necessitates enhancement, both
approaches have exhibited promising outcomes in relevant drug
design tasks. These results highlight the potential of large models to
grasp the semantics of numerical values and affirm the feasibility of
employing token-only models to handle continuous data. However,
directly training language models on Cartesian coordinates of atoms
presents unique challenges. Specifically, for larger molecules, the
extensive XYZ coordinates can result in excessively long sequences,
complicating the model’s learning process. Furthermore, achieving
invariance through random translation and rotation does not confer
equivariance.

In this work, to overcome the limitations of current models, we
present Token-Mol, a large-scale language model for molecular pre-
training. To enhance compatibility with existing general models, we
employ a token-only training paradigm, recasting all regression tasks
as probabilistic prediction tasks. Token-Mol is constructed with a
Transformer decoder architecture, integrating essential 2D and 3D
structural information via SMILES and torsion angle tokens.

Furthermore, we utilize a random causal masking strategy during pre-
training, leveraging a combination of Poisson and uniform distribu-
tions to stochastically mask training data. This strategy enhances the
model’s fill-in-the-blank generation capability, increasing its adapt-
ability to a wide range of downstream tasks. To address the token-only
model’s limited sensitivity to numerical values, we introduce a Gaus-
sian cross-entropy (GCE) loss function, replacing the traditional cross-
entropy loss. This innovative loss function assigns weights to each
token during training, enabling the model to learn the relationships
between numerical tokens. Additionally, Token-Mol demonstrates
exceptional compatibility with other advanced modeling techniques,
including fine-tuning and reinforcement learning (RL). This integrative
capability facilitates the further optimization of its performance in
downstreamtasks, thereby enhancing its utility in various applications.
To validate the capabilities of Token-Mol, we conduct comprehensive
assessments across molecular conformation generation, property
prediction, and pocket-based molecular generation tasks. In the
molecular conformation generation task, Token-Mol outperforms
existing state-of-the-art methods, achieving over 10% and 20% across
various metrics on two datasets, respectively. In the molecular prop-
erty prediction task, Token-Mol achieves an average improvement of
30% in regression tasks compared to token-onlymodels. In the pocket-
based molecular generation task, Token-Mol not only achieves mole-
cules with Vina scores comparable to those produced by state-of-the-
art models, but also improves drug-likeness (QED) and synthetic
accessibility (SA) by approximately 11% and 14%, respectively. To fur-
ther validate the generalization capability of Token-Mol, we conduct
tests in real-world drug design scenarios. Notably, the drug-like
molecules generated by Token-Mol demonstrate a 1-fold increase in
average success rate across the evaluations on 8 different targets.
Furthermore, the integration of RL into Token-Mol effectively enhan-
ces theperformanceof specific downstream taskswithinmore realistic
scenarios, providing an advantage over large models based on geo-
metric graph neural networks for 3D tasks. Finally, we demonstrate
Token-Mol’s seamless integration with general large language models
through a simple dialogue example. The aforementioned findings
highlight the inherent potential of Token-Mol, presenting an outlook
on standardizing AI models for drug design.

Results
The overview of Token-Mol
The comprehensive workflow of Token-Mol is illustrated in Fig. 1. The
initial phase involves pre-training on the dataset (Fig. 1a) through
random causal masking. Subsequently, the model undergoes fine-
tuning on customized datasets tailored to specific downstream tasks,
including conformation generation, pocket-based molecular genera-
tion, and prediction on multiple properties (Fig. 1b). For regression
tasks, the GCE loss function (Fig. 1c) is utilized during the fine-tuning
process. Furthermore, the performance for specific downstream tasks
can be further optimized using reinforcement learning.

The preprocessing of the pretraining dataset holds crucial sig-
nificance in this context. As shown in Fig. 1a, a depth-first search (DFS)
traversal is conducted on the entire molecule in the standard SMILES
format to extract the embedded torsion angles within the
molecular structure. Following this, each extracted torsion angle is
assimilated as a token appended to the SMILES string. Throughout the
pretraining phase, random causal masking based on causal regression
is implemented. After pretraining, fine-tuning is carried out across
downstream tasks. Importantly, the task prompts are specifically
designed for the construction of a dialogue system, as indicated by the
highlighted yellow box in Fig. 1a. This feature highlights a key advan-
tage of token-only models over other large-scale models: their cap-
ability to facilitate real-time interaction. At the end of the Results
section, examples will be presented to illustrate this particular
advantage.
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For the pocket-based molecular generation task, we have intro-
duced pocket encoder and fusion blockmodules to better incorporate
protein pocket information into the model. As depicted in Fig. 1d, we
utilized a multi-head condition-attention mechanism to thoroughly
incorporate information generated at each autoregressive step into
subsequent iterations. This mechanism treats each token generated
during autoregression as a prerequisite for further generation, thereby
ensuring that the entire query, key, and value matrices originate from
the original sequence.

One should note that, in practical scenarios, a lead compound
must not only exhibit high affinity for the target but also meet a series
of criteria, including high bioactivity and multiple favorable pharma-
cological properties. This puts higher requirements for pocket-based
molecular design tasks, where the integration of receptor-ligand
molecule pairs in the training dataset imposes inherent limitations.
The model predominantly generates ligand molecules by utilizing
information derived from the protein pocket. Consequently, the
properties of these generated molecules are heavily influenced by the
training data, restricting the explicitly control over their biophysical
and chemical properties. These constraints are particularly evident
when a precise modulation of molecular properties is desired. Token-
Mol, built on an autoregressive language model architecture, where
token generation aligns with actions in the RL framework, facilitates
the seamless utilization of RL for optimization, thereby ensuring tai-
lored outcomes.

Molecular conformation generation
Molecular conformation is a crucial determinant of the chemical,
physical, and biological properties of molecules, underscoring its
fundamental importance in structure-based drug design. The
integrity and diversity of three-dimensional molecular conforma-
tions are essential for various applications in drug discovery,
including three-dimensional quantitative structure-activity rela-
tionships, molecular docking and thermodynamic calculations.
Traditional techniques for obtaining accurate molecular

conformations, such as X-ray crystallography and nuclear magnetic
resonance (NMR), are either prohibitively expensive or computa-
tionally demanding, rendering them impractical for large-scale
dataset analysis. The emergence of deep geometric learning has
introduced promising alternative methodologies for the generation
of molecular conformations34,36–44.

In this study, we benchmarked our proposed approach against
established baselines using widely recognized conformation genera-
tion benchmarks. We employed the dataset utilized by Zhang et al.,
which includes the dataset from Shi et al. (test set I), comprising 200
molecules, each with fewer than 100 conformations. It is noteworthy
that this particular dataset is among the most extensively employed
within the conformer generation task. On the other hand, the GEOM-
Drug dataset presents a broader range of conformation counts per
molecule, from 0 to 12,000. To address this variance, Zhang et al.
introduced test set II26, consisting of 1,000 randomly selected mole-
cules with conformation counts distributed similarly to the entire
dataset, ranging from 0 to 500.

Our evaluation metrics include both Recall and Precision. Recall
measures the diversity of the generated conformations, while Preci-
sion evaluates the rationality of the generated conformations. We
calculated themean scores of coverage (COV) andmatching (MAT) for
both Recall and Precision. COV quantifies the extent to which the
quantum computation conformation set covers the generated con-
formation set within a specified RMSD threshold, with higher values
indicating better coverage. Conversely, MAT assesses the similarity
between the generated conformations and the quantum mechanical-
level training conformations, with lower values suggesting better
performance.

Table 1 presents the results for test set I. It indicates that Token-
Mol surpasses other SOTA methods in both Precision metrics, result-
ing in substantial advantages. Notably, Token-Mol achieves notable
improvement in the COV Precision (COV-P) metric, outperforming
Tora3D by approximately 11%, underscoring the superior quality of
molecules produced by Token-Mol relative to alternative methods.

Fig. 1 | The overview of Token-Mol. a Data processing workflow. b The workflow of Token-Mol. c The weight allocation in the GCE loss function, where GT stands for
ground truth token. d Pocket encoder and fusion block of pocket-based molecular generation.
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However, Token-Mol’s generated conformations exhibit slightly lower
Recall performance compared to GeoDiff and Tora3D, positioning it as
the second-highest performer overall.

The findings for test set II, depicted in Table 2, reveal Token-Mol’s
exemplary performance across all assessment metrics. Remarkably,
Token-Mol attains the highest performance in both Precision-based
evaluation metrics, COV-P and MAT-P, surpassing other models by
approximately 24% and 21%, respectively.

Subsequently, we investigated the relationship between the
benchmark performance and the number of rotatable bonds, as
illustrated in Fig. 2. Our analysis reveals a clear trend: the perfor-
mance across all assessment metrics declines as the number of
rotatable bonds increases. This decline becomes particularly pro-
nounced when the number of rotatable bonds exceeds 10. Notably,
Tora3D exhibits an obvious drop in performance when generating
conformations for molecules with a higher number of rotatable
bonds. In contrast, Token-Mol demonstrates substantial advantages
under these conditions.

Moreover, Token-Mol demonstrates impressive speed. During
our evaluation on test set I, utilizing the Tesla V100 for the generation
process, Token-Mol required an averageof 6.37 seconds togenerate all
conformations for a single molecule, compared to 8.78 seconds per
molecule for Tora3D.

Molecular property prediction
Molecular representation is fundamental to molecular design, as it cri-
tically influences the execution of downstream tasks. In this study, we
initially assessed themolecular representation capabilities of Token-Mol
in the context of molecular property prediction. For a detailed
description of the tasks, please refer to the Supplementary Information.

Classification task. For the classification task, we selected six com-
monly used classification datasets and compared Token-Mol against
five representative baselines: XGBoost45 (conventional machine learn-
ing), K-Bert46 (sequence-based model), Chemprop47 (graph neural
networks), GEM28 (geometry-enhanced graph neural networks), and
MapLight+GNN48 (an integratedmodel combining traditionalmachine
learning with graph neural networks). As outlined in Table 3, Token-
Mol demonstrates noteworthy performance across all datasets, out-
performing XGBoost and Chemprop in terms of accuracy, albeit
marginally trailing behind MapLight+GNN and GEM. Notably, Token-
Mol achieves state-of-the-art proficiency on single-task-focused data-
sets such as BBBP and BACE.

Regression task. We employed a set of six regression datasets for a
thorough comparison and analysis. To extend beyond established
benchmarks, we introduced the token-only Regression Transformer
(RT)33, a model conceptually akin to Token-Mol, to enrich our evalua-
tion framework. Both RT and Token-Mol fully tokenize the input and
output, enabling seamless integration with foundational largemodels,
a feature not shared by other models.

A key advantage of token-only models over traditional regres-
sion models is their ability to interface seamlessly with large models
such as LLaMA, enabling real-time interaction. However, previous
models like RT have shown suboptimal performance in prediction
tasks, limiting their utility for high-quality interactions. In contrast,
Token-Mol treats each numerical value as a single token, rather than
decomposing them into multiple tokens like RT. This approach
enables one token prediction, thereby accelerating the prediction
process. Combined with the GCE, Token-Mol achieves high-quality
prediction results. This methodology allows Token-Mol to perform
faster and deliver higher prediction quality.

As illustrated in Table 4, Token-Mol’s capabilities in regression
tasks are evident, outperforming established benchmarks such as
XGBoost, K-Bert, and token-only RT. Notably, Token-Mol con-
sistently surpasses RT across all tasks, showcasing an average per-
formance enhancement of approximately 30%. Particularly
remarkable is Token-Mol’s substantial performance boost on the
Aqsol dataset, achieving an improvement of around 50%. Addition-
ally, as depicted in Table 5, Token-Mol’s performance closely mirrors
that of graph neural network-based models on datasets with large
amounts of data, such as Aqsol, LD50, and Lipophilicity. These
results collectively underscore the significant potential of Token-Mol
in property prediction tasks.

The efficiency of GCE. Token-only generative models conventionally
employ cross-entropy loss for regression tasks, but they often exhibit
insensitivity to numerical values and fail to capture the relationships
between them. To address this issue, we proposed the GCE loss
function for regression-related downstream tasks in molecular prop-
erty prediction. To assess the efficacy of GCE, we conducted ablation
experiments to compare models with and without GCE (Table 4). Our
results indicate that the absence of GCE notably impairs Token-Mol’s
performance across all datasets, with an average RMSE increase of
approximately 12%, underscoring the critical role of GCE in regression
tasks.Compared toRT,whichdecomposes individual numerical values
intomultiple token representations, Token-Mol’s one tokenprediction
approach, enhanced with GCE, demonstrates substantial improve-
ments in both prediction accuracy and efficiency.

Despite the improvements demonstrated by Token-Mol com-
pared to RT, it still exhibits certain limitations relative to other large
models based on GNN. This discrepancy is primarily due to the
model’s insufficient sensitivity to numerical values. Although we
proposed the GCE loss function to address this issue, Token-Mol still
lags behind graph neural network-based regression models. Future
work will focus on enhancing the model’s performance in regression

Table 1 | Performance comparison of models on test set I

Model COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓

CGVAE109 0.00 3.0702 - -

GraphDG37 8.27 1.9722 2.08 2.4340

CGCF38 53.96 1.248 21.68 1.8571

ConfVAE39 55.20 1.2380 22.96 1.8287

GeoMol43 67.16 1.0875 - -

ConfGF110 62.15 1.1629 23.42 1.7219

GeoDiff40 82.96★ 0.9525 48.27 1.3205

Tora3D42 80.37 0.9272★ 62.22☆ 1.1524☆

Token-Mol 80.65☆ 0.9488☆ 69.20★ 1.0865★

★ represents the best,☆ represents the second best.

Table 2 | Performance comparison of models on test set II

nRotb Model COV-R
(%) ↑

MAT-R
(Å) ↓

COV-P
(%) ↑

MAT-P
(Å) ↓

All nRotb CGVAE 40.06 1.3771 - -

GeoMol 72.50 1.1000 61.15 1.2009

Tora3D 81.92 0.9297 62.16 1.1600

Token-Mol 82.34 0.8936 76.87 0.9107

nRotb ≤ 10 CGVAE 42.43 1.3296 - -

GeoMol 76.36 0.9380 57.29 1.1611

Tora3D 83.03 0.8704 63.81 1.0906

Token-Mol 83.25 0.8404 78.96 0.8108

nRotb > 10 Tora3D 57.23 1.2455 29.02 1.5583

Token-Mol 65.09 1.1257 47.52 1.3670

Bold formatting represents the best.
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tasks through approaches such as multi-task prediction and data
augmentation.

Pocket-based molecular generation
In modern drug discovery, structure-based drug design holds para-
mount importance, driving researchers to rapidly identify high-affinity
ligands within given protein binding pockets. Hence, pocket-based
molecular generation, a method for generating potential ligands for
specific pockets, not only avoids computationally intensive physical
methods like traditional molecular docking but also broadens the
exploration of chemical space. Consequently, it serves as a crucial
downstream task to demonstrate the effectiveness of our proposed
model. Our goal is to generate ligand molecules tailored to specific
protein pockets. To achieve this, as illustrated in Fig. 1d, we amalga-
mated a pocket encoder and a fusion block. We utilized a pretrained
encoder to characterize protein pockets, ensuring its parameters

frozen during fine-tuning. Furthermore, we employed condition-
attention to integrate both protein and molecule information, mir-
roring a prompt-like mechanism that incorporates protein pocket
information into the ligand molecule generation process. The addi-
tional methodological details are outlined in the Methods section.

We compared our model with three popular baseline models in
3D, which is the mainstream method in the pocket-based molecular
generation task, namely GraphBP49, Pocket2Mol50, and TargetDiff51.
The first two models employ an autoregressive generative graph
neural network (GNN) architecture, with Pocket2Mol introducing a
geometric deep learning framework that enhances the perception of
three-dimensional pocket features. In contrast, TargetDiff adopts a
non-autoregressive, probabilistic diffusion model based on an SE(3)-
equivariance network. However, since Token-Mol differs from these
models with 3D in-situ paradigm by generating only the three-
dimensional structure of molecules without simultaneously

Fig. 2 | Performance for different number of rotatable bonds on test set II.The x-axis represents the number of rotatable bonds, and the y-axis indicates the prediction
performance. a COV-R, (b) MAT-R, (c) COV-P and (d) MAT-P. Source data are provided as a Source Data file.

Table 3 | Performance on different dataset for classification tasks

Classification (ROC-AUC %↑)

DataSets
#Moleculars
#Tasks

BBBP
2039
1

BACE
1513
1

ClinTox
1478
2

Tox21
7831
12

ToxCast
8575
617

SIDER
1427
27

Average
-
-

XGBoost45 0.888±0.028 0.872±0.016 0.863±0.034 0.801±0.061 0.668±0.164 0.652±0.086 0.791

Chemprop47 0.927±0.021 0.865±0.037 0.877±0.037 0.845±0.015 0.736±0.005 0.639±0.028 0.815

MapLight+GNN48 0.912±0.026 0.883±0.007 0.895±0.041 0.865±0.067 0.771±0.156 0.695±0.051 0.836

GEM28 0.940±0.022 0.898±0.019 0.940±0.026 0.862±0.014 0.766±0.009 0.670±0.012 0.846

K-Bert46 0.945±0.008 0.879±0.028 0.913±0.046 0.665±0.004 0.510±0.003 0.608±0.012 0.757

Token-Mol 0.934±0.001 0.896±0.015 0.927±0.021 0.829±0.005 0.746±0.012 0.644±0.020 0.829

Bold formatting represents the best.
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producing the Cartesian coordinates that represent the spatial rela-
tionship of themolecules to the pocket, additional docking is required.
Furthermore, these 3D in-situ models have faced some criticism in
recent studies52,53. To address this, we additionally employed a 2D-
based pocket-based molecular generation model, namely TamGen54,
which utilizes a pretrain-finetuning paradigm similar to Token-Mol,
involving pre-training on a large dataset of sequence representations
of small molecules, followed by fine-tuning based on pocket-ligand
pairs, aswell as applying the cross-attentionmechanism to incorporate
pocket information.

Performance onbenchmark. We initially evaluated the generalization
capability on pocket-based generation (without RL) by the following
three criteria: fundamental attributes of the generated molecular sets,
binding affinity towards a given pocket, and the physiochemical
properties that indicate drug-likeness.

As shown in Table 5, the molecules generated by Token-Mol
exhibit satisfactory performance across the entire molecular set. In
terms of validity, graph-based models tend to generate some mole-
cules with structural flaws, leading to a decreased validity51. Our
experiments partly confirm this issue in several graph-based models,
excluding Pocket2mol. Although Token-Mol is a language model,
inaccuracies in predicting token counts or values pertaining to torsion
angles during autoregressive generation can yield invalid structures.
Regarding the diversity, Token-Mol achieves a comparable result than

baseline models in the internal diversity metric, while obtaining a
relatively moderate results in the #Circle metric which is more sensi-
tive to chemical space coverage.

However, for pocket-basedmolecular generation, the essence lies
in learning how to generate molecules within a specific constrained
chemical space55. An idealmolecular generationmodel should balance
and weigh both novelty and similarity to known molecules. Conse-
quently, we also compared the similarity of the generatedmolecules to
the training set and the original ligands in the test targets. The results
obviously exhibit that graph-based models exhibit relatively poor
similarity, while sequence-based models demonstrate nearly similar
levels of similarity. From the perspective of overall similarity and
diversity, Token-Mol achieves desirable similarity over 0.1 to training
set and the original ligands in the unseen pockets while maintaining
adequate diversity, reaching a better performance among a variety of
models.

Binding affinity is a crucial metric in measuring the capabilities of
pocket-based generation models. Consistent with established prac-
tices, we employ the Vina score as the proxy measure of binding affi-
nity. We first probed into the ability to enrich high-affinity molecules,
with the Vina score of the original ligands in the test set pockets as
references. On average, approximately 47.2% of the molecules gener-
ated by Token-Mol demonstrated higher affinity, surpassing those
produced by baseline models. We further explored the overall affinity
distribution of generated molecules (Fig. 3a and Supplementary
Table 1). From both the median and mean perspectives, the perfor-
mance of the Token-Mol did not obviously inferior from each optimal
value. When viewed from the perspective of the entire distribution,
there was also no statistically significant difference in the Vina score
distribution of themolecules generated by Token-Mol compared to all
the baseline models. Considering the above, it can be concluded that
the Token-Mol is capable of generating molecules with binding affi-
nities comparable to those produced by specialized models through
fine-tuning or training from scratch. Even though there is no statistical
difference, it can be observed that the Vina score distribution of two
graph-based models, Pocket2Mol and TargetDiff, extend into the
region of value less than −10, which is considered to indicate good
affinity. However,many of these results are possibly outliers caused by
hallucinations56, displaying low Vina scores but containing obvious
structural anomalies that render themunsuitable asdrug candidates in
reality. These concerns are further explored in the section Pocket-
based generation on real-world targets.

Physiochemical properties of molecules play a pivotal role in
drug-likeness of drug candidates. In this regard, Token-Mol sig-
nificantly outperforms the graph-based models in generating mole-
cules with better QED and SA score, exceeding 5 ~ 10% benchmarks,
thereby demonstrating its proficiency in creating more drug-like
molecules. Compared to the sequence-based model TamGen, Token-

Table 5 | Properties of the generatedmolecules by our model
and other baseline models

Metric Token-
Mol

TamGen GraphBP Pocket2Mol TargetDiff

Valid 0.973 0.997 0.830 1.000 0.972

IntDiv 0.849 0.829 0.879 0.812 0.860

#Circle 52.698 38.573 73.181 33.568 68.897

Simi Ori. 0.112 0.109 0.051 0.097 0.107

Simi
Training
set

0.120 0.123 0.047 0.107 0.093

Higher
Score

0.472 0.450 0.360 0.455 0.411

Valid: Validity of generated 3D structure, calculated as the proportion of 3D structures that can
be translated into canonical SMILES; IntDiv: Internal diversity90, an assessment of the distinc-
tiveness of molecules within a molecular set, calculated using Tanimoto distance based on
ECFP4 fingerprints91,92; #Circle: a locality-basedchemical spacecoveragemeasurewith a setting
maximum value as 80, refer to the detailed description in the Methods section; Simi: Jaccard
similarity between two molecular sets, also calculated based on ECFP4 fingerprints. Higher
score: the average ratio of Vina score of generated molecules exceeding the original ligands
within each pocket from the test set (Ori.). The bolded values represent the best performers in
that metric. Bold formatting represents the best.

Table 4 | Performance on different dataset for regression tasks

Regression (RMSE↓ )

DataSets
#Molecules

ESOL
1128

FreeSolv
642

Lipo
4200

Caco2
906

LD50
7385

Aqsol
9012

Average
-

XGBoost 1.112±0.086 1.958±0.245 0.909±0.032 0.455±0.031 0.651±0.024 1.199±0.052 1.047

Chemprop 0.549±0.028 1.106±0.125 0.603±0.020 0.429±0.019 0.600±0.021 0.907±0.027 0.699

MapLight+GNN 0.529±0.062 0.959±0.278 0.623±0.018 0.352±0.016 0.600±0.032 0.906±0.024 0.662

GEM 0.543± 0.041 0.976±0.140 0.584±0.030 0.345±0.038 0.576±0.015 0.827±0.008 0.642

K-Bert 0.671±0.086 1.026± 0.077 0.641±0.011 0.377±0.022 0.596±0.043 0.931±0.004 0.707

RT 0.657±0.031 1.389±0.235 1.046±0.528 0.483± 0.049 0.698±0.055 1.072±0.048 0.891

Token-Mol
(w/o GCE)*

0.722±0.022 1.468±0.220 0.670±0.028 0.441±0.048 0.644±0.025 0.957±0.023 0.817

Token-Mol 0.593±0.036 1.225±0.211 0.645±0.026 0.399±0.010 0.611±0.038 0.940±0.033 0.735

Token-Mol (w/o GCE) is the model without GCE. Bold formatting represents the best.
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Mol shows no statistical difference in QED but performs worse in
synthetic accessibility. We analyze these two metrics fundamentally,
focusing on molecular structure (Supplementary Table 3). TamGen
incorporates a VAE-based contextual encoder sampling the corre-
sponding ligands within the pocket54, resulting in generatedmolecular
structures that closely resemble the originals, which aligns with

previous observations of the model’s poor molecular diversity. We
suppose that this mechanism enables the generated molecules to
exhibit more reasonable structures, particularly in substructure fea-
tures. Since the penalty terms contributing to the SA Score, such as the
number of chiral centers, ring and macrocyclic structure are quite
similar between Token-Mol and TamGen, the significant difference
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Fig. 3 | Distributions ofmolecular properties between Token-Mol and baseline
models. a Comparison of the average molecular properties distribution in the test
set pockets (n = 77) for the molecules generated by Token-Mol and other baseline
models (two models have different sample sizes due to the failed generation:
GraphBP, n = 53; TargetDiff, n = 74). For monotonic metrics, significance markers
have been noted with Token-Mol serving as the reference group, while the light
blue area indicates the ideal range for intervalmetrics. A detailed description of the
metrics can be found in the Benchmark of Methods section. The data are shown
with box plots, which display the median at the center line, upper and lower
quartiles as box limits, and 1.5x interquartile range as whiskers. b Independent

distributions of all detectable torsion angles for eachmodel,wheren represents the
number of detected torsion angles. c Distributions of frequently occurring torsion
angles (n = 48) that can be jointly detected in the selected models. In (a) & (c),
significance tests were analyzed with a two-sided Mann-Whitney U test, p-values
adjusted for multiple comparisons using the Bonferroni correction. Other details
are described in theMethods section. All experimental groups were independently
compared to the control group (Token-Mol), detailed p-values can be found in
Supplementary Table 9. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. Source
data are provided as a Source Data file.
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could chiefly arises from the fragments term that constitutes the main
components of the SA score57: From TamGen, approximately 10%
fewer substructure features are extracted compared to those from
Token-Mol. Moreover, the sampling of known ligand information in
TamGen may lead to the incorporation of more common fragments,
which could subsequently result in a lower SA score for the generated
molecules.

Additionally, analysis from theperspective ofmolecular structural
information yields other interesting conclusions: Token-Mol incorpo-
rates three-dimensional information through torsional angles, enrich-
ing the number of torsional angles and rotatable bonds. Thismay allow
the generation of more flexible ligands that can better fit certain
uniquely shaped pockets, as well as increasing molecular diversity.
Compared to TamGen which is also sequence-based, Token-Mol does
not exhibit distinct differences in other structural features while
incorporating 3D information. For instance, the proportion of mac-
rocyclic structures or fused ring systems is much lower in Token-Mol
than in graph-based baselinemodels, and it is these structural features
that enhance the performance of Token-Mol in terms of QED and SA
scores. The capabilities ofToken-Mol inmolecular structureprovides a
potential third pathway for molecular representation paradigms,
bridging the gap between 2D sequence-based and 3D graph-based
approaches, and holds promise for overcoming some inherent lim-
itations of both methods.

In the three additional physicochemical properties closely related
to drug-likeness, the overall distributions of molecules generated by
Token-Mol for LogP and molecular weight entirely fall within the ideal
range. Compared to the results fromothermodels, Token-Mol exhibits
a moderate distribution position and range. The metric TPSA deter-
mines the oral bioavailability and membrane permeability of
molecules58, with values below 140 Å2 for cell membrane traversal and
below 90Å2 for blood-brain barrier penetration. The TPSA distribution
of molecules generated by Token-Mol falls within the range of 70-100
Å2, which is more reasonable compared to other baseline models,
suggesting superior absorption and potential for further drug dis-
covery in central nervous system diseases59.

Beyond metrics such as binding affinity and molecular proper-
ties, the fidelity of torsion angles within generated molecules needs
to be considered. Torsion angles will be used as an indicator to
evaluate the reasonableness of the initial conformation. A molecule
with torsion angle distribution closer to that of the ground truth
molecule suggests that its conformation is more likely to be closer to
the real molecule and does not violate inherent physical constraints.
Moreover, excessively twisted torsion angles in the initial con-
formation can induce the conformation’s energy to become trapped
in local minima during molecular docking, making it difficult to
escape and causing deviations in the docking results. Therefore,
reasonable torsion angles are also beneficial for virtual screening
based on docking.

Our analysis involved the examination of torsion angles within the
3D conformations of approximately 100,000 molecules from the
training set in CrossDocked2020 dataset as a reference (Supplemen-
tary Fig. 1), we extracted a total of 273 different types of torsion angle
distributions. Subsequently, we curated a subset of torsion angles,
characterized by their abundance and non-random distribution,
enabling an in-depth comparative analysis. Jensen-Shannon diver-
gence (JSD) is used to assess the disparity between the torsion angle
distributions in the test set and those of the molecules generated by
the models.

We first conducted a comprehensive evaluation to examine all
detectable dihedral angles. For the TamGen, the conformations we
used were obtained using the ETKDG method from RDKit, which is a
widely used conformer generation algorithm that incorporates torsion
angle preferences derived from experimental data to refine the initial
conformations generated by distance geometry methods60. In

addition, utilizing ETKDG ensures a fair comparison with Token-Mol,
as our approach also derives the initial conformations from ETKDG,
followed by a subsequent refinement with the generated torsion angle
tokens.

However, independent assessments of the torsion angle dis-
tributions for molecules generated by each model (Fig. 3b) indicate
that Token-Mol may capture torsion angles that occur very infre-
quently in the reference molecular set, achieving approximately 90%
recovery for these torsion angles, while the majority of baseline
models fell around 60%-80%. This discrepancy of recovery presents a
challenge for making fair comparisons of the overall distribution
landscape of all detectable torsion angles between each model. Addi-
tionally, it explains why the distribution of Token-Mol exhibits outliers
with JSDgreater than0.4. Since themodel directly learns thenumerical
distribution of torsion angles, itmay struggle to accurately capture the
distributions of less frequently occurring torsion angles, resulting in
performance that is inferior to the experimentally based ETKDG
method.

While in the more common torsion angles, the advantages of
learning the numerical distribution of dihedral angles are clearly
evident. We selected 48 frequently occurring torsion angles that
were present in molecules generated by all the selected models, with
each angle appearing more than 1,000 times. This indicates that
these torsion angles exist in at least 1% of the reference molecules.
We plotted the distribution of these torsion angles (Fig. 3c). From the
plots, it is evident that Token-Mol exhibited significantly lower JSD
values for these frequently occurring torsion angles compared to the
other models. This suggests that Token-Mol can more effectively
learn the numerical information associated with torsion angles that
occur with sufficient frequency, aligning with our initial intent to use
torsion angles as a representation of molecular three-dimensional
information.

Eventually, we calculated the average molecular generation time
for each model. A faster generation speed may significantly boost
researchers’ efficiency by facilitating the acquisition of a more diverse
array of molecules in a shorter timeframe and by speeding up the
processes of screening and validating the generated compounds. This
efficiency also reduces the demand for computational resources,
enabling researchers with limited resources to effectively utilize
the model.

To ensure a fair comparison, we measured the cumulative time
spent by each model in sampling pockets and generating molecules
until an output file (in sdf/mol2 format) was obtained. As shown in
Supplementary Table 13, when compared to models utilizing geo-
metric deep learning frameworks, Token-Mol demonstrated a
remarkably higher generation speed, averaging approximately 35
times faster for individual molecules. This efficiency stems from the
different methodologies adopted by competing models. For
instance, Pocket2Mol necessitates extensive sampling of molecular
objects, excluding invalid or duplicated molecules to maintain
diversity and validity. Similarly, TargetDiff requires performing
thousands of rounds of sampling on the atoms within the pocket
before molecular generation, ensuring high-quality outputs but sig-
nificantly impeding the generation process for both models. In
comparison to TamGen, which is also based on large language
models, Token-Mol’s generation speed is relatively less competitive.
We attribute this to differences in model architecture. Token-Mol
requires the computation of multi-head conditional attention in the
fusion block during each inference, which affects the inference
speed. Compared to TamGen, Token-Mol also requires additional
inference for the torsion angle tokens, which necessitates longer
sequence lengths and a larger vocabulary. These factors contribute
to an increase in inference time. Additionally, TamGen is developed
using the Fairseq toolkit, and the differences in model encapsulation
may further contribute to variations in inference speed.
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Drug design for real-world targets
To evaluate the generatability of models in designing drug candidates
for real-world therapeutic targets, we selected 8 targets from three
important protein families, namely kinases, G-protein coupled recep-
tors (GPCRs) and viral proteins, which had been widely studied in
structure-based drug design61–63 and molecular generation64–67. Spe-
cially, our selection includes a unique dimeric pocket from Pro-
grammed cell death 1 ligand 1 (PD-L1), aiming to explore the models’
capability in designing small-molecule modulators for protein-protein
interactions.

To mimic a realistic drug discovery scenario, we designed a pro-
cess similar to virtual screening. This involved generating an equal
number of molecules targeting various receptors, followed by per-
forming molecular docking to identify high-affinity candidates. Sub-
sequently, we filtered these candidates based on their QED and SA
Scores. Our goal was to produce potent drug-like molecules that
possess high affinity to the target, excellent drug-likeness, and favor-
able synthetic accessibility. To this end, we set criteria that a potent
drug-like molecule should simultaneously satisfy Vina Score lower
than the average Vina Score of reference molecules from its corre-
sponding target (Supplementary Table 7), QED of at least 0.5, and SA
Score not exceeding 5.0.

As shown in Supplementary Table 15, our approach generated
potent drug-like molecules across all targets, a capability that none of
the baseline models achieved. Approximately 20% of the generated
molecules met this criterion, with six out of eight targets achieving
optimal or second-best proportions. Further analysis of the distribu-
tions of Vina Scores and QED (Supplementary Fig. 2, Supplementary
Table 4) for the molecules generated by those models reveals that
Token-Mol not only produces molecules with high affinity but also
ensures they possess desirable properties. This aligns with the results
for our test sets, suggesting that our model is capable of identifying
promising lead compounds in real-world drug discovery scenarios.

From the perspective of the targets, one factor influencing the
results above is that the selected pockets do not all bind molecules
with high affinity for the respective targets, as the input pocket centers
for molecular generation and the docking grid centers depend on the
original ligands. For instance, in the case of DDR1, the original ligand is
a low-affinity hit fragment identified through fragment screening68.
Therefore, most methods, including Token-Mol, encountered chal-
lenges with this target, while TamGen may have achieved optimal
results by sampling the original fragments. TamGen also gained
advantages in several target pockets with high-affinity original ligands,
with the proportion of drug-like molecules being several times higher
than that of Token-Mol.

However, our analysis revealed a strong positive correlation
between the proportion of drug-like molecules generated by TamGen
and the pIC50 values of the original ligands, with a Pearson correlation
coefficient of 0.81, while other methods scored below 0.5 (Supple-
mentary Table 8). This does not reflect real drug discovery scenarios,
especially when facing targets without reported high-affinity ligands.
In such cases, the generated pocket structures may only contain nat-
ural ligands, low-affinity ligands obtained through simple screening, or
even computational structures without ligands. TamGen’s approach
can even be misled. For example, in the case of 3CLPro, the original
high-affinity ligand within the pocket is covalent binding, while the
actual affinity of the non-covalent, structurally similar ligand telaprevir
is 18 μM69,70. In contrast, our method performed exceptionally well for
this target, with approximately 25% of the generated molecules sur-
passing the average affinity of reference ligands while maintaining
excellent drug-like properties. Overall, although Token-Mol did not
achieve the best results across all targets, it demonstrated stable
generalizability, generating an acceptable proportion of promising
molecules for unseen targets, showcasing its potential for application
in real drug discovery scenarios.

Furthermore, to evaluate the gains of RL within this model fra-
mework, we selected cyclin-dependent kinase 2 (CDK2), representing
kinases, and the adenosine A2A receptor (ARA2A), representing
GPCRs, as two moderately performing targets from two significant
families. As shown in Fig. 4, the molecules generated by Token-Mol
exhibit favorabledrug-likeness, synthesizability, andpromising affinity
within the target pockets of two proteins that exhibit significant
structural and functional differences. These molecules possess more
rational structures compared to those generated by other models and
display distinct scaffolds between the two different targets.

Among the molecules generated by other baseline models, those
produced by GraphBP exhibit distorted conformations, while those by
Pocket2Mol are simple aromatic ring derivatives and exhibit minimal
differences between the two targets. Similar phenomena can also be
observed in the molecules generated by the aforementioned two
models in other use cases (Supplementary Fig. 3). For the molecules
generated by TamGen, the molecule generated to CDK2 is a widely
reported pan-JAK inhibitor, withmultiple JAK family protein structures
containing this ligand available in the PDB database71. Although this
molecule does exhibit weak activity against CDK272, it is difficult to
ascertain whether the model accurately generated the specific mole-
cule or if it simply overfitted and output a molecule present in the
training set. While in the case of ARA2A, the generated molecule is a
simple amino acid derivative, as it references the original ligand with a
similar low molecular weight. As for TargetDiff, while the molecules
demonstrate favorable results in terms of QED and Vina score, it is
noteworthy that molecules for two targets contain tricyclic scaffolds
and 7-membered cyclic groups, which are challenging to synthesis.
This can explain why the molecules generated by TargetDiff have
higher Vina scores in the former test, as these groups with large
volume occupy as much space as possible within the pocket, creating
more hydrophobic contacts. The predicted binding modes in the two
selected cases exhibit that, as the molecules generated by Token-Mol
fit the shape of the pocket cavity more precisely, whereas those gen-
erated by other baselinemodels only occupy part of the pocket cavity.

To further demonstrate Token-Mol’s capability to generate
molecules that resemble real-world ligands, we calculated the simi-
larity of Bemis-Murcko scaffold73 and Fréchet ChemNet Distance74

(FCD) between the molecules generated by Token-Mol and other
baseline models and the reference molecules (Supplementary
Table 6). The results indicate that while TamGen achieved the highest
scaffold similarity for most targets by generating molecules based on
theoriginal ligands as references, Token-Mol producedmoleculeswith
greater similarity across all tested targets in a series of models that
were not constrained by this reference condition. Despite TamGen
excelling in scaffold similarity, it did not completely outperform
Token-Mol in the FCD comparison, which assesses chemical and bio-
logical feature similarities. In contrast, Token-Mol secured higher FCD
rankings across most targets, underscoring its advantage in overall
similarity. Notably, molecules generated by Token-Mol maintain an
acceptable similarity to known ligands while also preserving good
diversity, offering hope for the discovery of novel chemical entities in
real-world targets.

Simultaneously, we chose ARA2A as the target to visualize the
similarity between ligands and generated molecules. We selected
several molecules from Token-Mol and TargetDiff that exceeded the
average Vina score and QED thresholds of reference molecules (Sup-
plementary Table 7) against ARA2A for display. We present six real
ligands of ARA2A, including agonists and antagonists (Supplementary
Fig. 4). Notably, adenosine, the leftmost ligand, serves as the natural
ligand of ARA2A and contains a purine scaffold. The other discovered
ARA2A ligands all possess a nitrogen heterocyclic core as their scaf-
fold, similar to purine, which can bemonocyclic, bicyclic, or tricyclic75.
From theperspective ofmedicinal chemists, for the antagonists, which
are majority of ARA2A ligands, their structure-activity relationship
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(SAR) and co-crystallized structures indicate that, in addition to the
nitrogen heterocyclic scaffold, there are aromatic rings such as furan,
thiophene, or benzene directly connected to the scaffold or located
one or two carbon atoms away from it76. These aromatic groups can
penetrate more deeply into the internal space of the orthosteric
pocket, facilitating hydrophobic interactions with the surrounding
lipophilic residues77,78, thereby enhancing the ligand’s affinity for the
receptor and enabling strong competition with the natural ligand.

Among themolecules generatedbyToken-Mol, it canbeobserved
that most contain monocyclic or bicyclic nitrogen heterocyclic scaf-
folds resembling real-world ligands, whereas those generated by

TargetDiff differ obviously from real-world ligands. Furthermore,
thesemolecules with nitrogen heterocyclic scaffolds possess aromatic
rings, such as benzene or pyrazole, directly connected to the scaffold.
However, we conducted an in-depth analysis of the binding modes of
these four ligands, which feature scaffolds similar to those of real
ligands. The results demonstrate (Supplementary Fig. 8) that these
four molecules do not achieve optimal recovery rates for key inter-
actions, for instance, hydrogen bonds with N253 and E169 and π-π
stacking interactionswith F168.Mostof themonly formed interactions
with either N253 or F168, while only onemolecule exhibits interactions
with both residues. This indicates that although our model achieved
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Fig. 4 | Evaluationon real-world targets.Comparison between (a) structures and
binding modes, and (b) related molecular properties of drug-like molecules with
the highest affinity generated for CDK2 and ARA2A by the Token-Mol and baseline

models. The detailed information of molecular properties is presented in Sup-
plementary Table 5.

Article https://doi.org/10.1038/s41467-025-59628-y

Nature Communications |         (2025) 16:4416 10

www.nature.com/naturecommunications


better results in terms of ligand similarity compared to other models,
the target-specific interactions were not well reproduced. One reason
for this is the inherent limitations of the docking algorithmused,which
leads to discrepancies between the predicted binding poses and the
actual ones. On the other hand, themodel still has some shortcomings
in utilizing information about the protein pocket, which remains a key
area for improvement for our model and future pocket-based mole-
cular generation approaches.

Further optimization with reinforcement learning
The content above has already demonstrated that Token-Mol can
generate molecules with high drug-likeness, ease of synthesis, and
rational structures in the pockets of given targets. However, when
compared to the expert models like TargetDiff for pocket-aware gen-
eration, the molecules generated by Token-Mol still exhibit lower
affinity to pockets from the test set and selected real-world targets
(Supplementary Tables 1 and 2). To address this, we employed a
reinforcement learning approach proposed by Olivecrona et al.79 to
optimize the affinity of generated molecules for specific target pock-
ets. Within this framework, constraints such as conformational clash
and drug-likeness are enforced to ensure that the molecules maintain
desirable properties. This strategy aims to maximize affinity for target
pockets while preserving the excellent molecular properties demon-
strated by the model, as detailed in the Methods section. Notably,
optimizing geometric graph-based models such as TargetDiff is chal-
lenging due to their high complexity, and RL has not yet been applied
to these models for 3D pocket-based molecular generation.

We conducted a total of 1,000 steps of reinforcement learning
optimization on CDK2 and ARA2A, the two targets used for demon-
stration in the previous section. Throughout the reinforcement
learning process, we recorded the average values of key metrics at
each step (Fig. 5a). It can be observed that during the training of the
two targets, the reward score essentially convergedwithin 1,000 steps,
indicating the stabilization of the agent model’s training. Regarding
our primary optimization objective, the Vina score, the average value is
optimized from around −8 to approximately −9.5, with no apparent
oscillations observed after convergence. As for QED, which serves as a
constraint condition, although the reward term in the reward function
is binary rather than positively correlated with QED, it was found that
the QED value initially increased and then converged as the reinfor-
cement learning steps increased for both targets, suggesting that QED
is also optimized under the set reward function. Although different
trends were observed in the SA score during the reinforcement
learning process for the two targets, the results remained below the
threshold of 5, consistent with our previous tests (Supplementary
Fig. 5) that focused solely on affinity optimization. These trends
demonstrate that our model can achieve optimization in molecule
generation tasks for specific target pockets through reinforcement
learning under constraints.

Additionally, we selected molecules from the first step, the last
step, and stepbefore the convergenceof the reward score, showcasing
themolecule with the highest affinity in those steps (Fig. 5a). From the
perspective of specific molecules, it is obvious that the molecular
scaffolds undergo substantial changes at different training stages, and
the occurrence of unreasonable structures such as tricyclic structures
or seven-membered ring groups also decreases. For their binding
modes (Fig. 5b), it can be seen that the scaffold gradually fits into the
pocket, which explains the gradual improvement of the Vina score
during the training process.

Furthermore, to reduce the bias introduced by a single docking
method, we conducted additional docking tests using Glide80 and
Surflex-dock81 for the molecules presented in Fig. 5c, and the results
demonstrate that reinforcement learning indeed optimized the
molecules’ affinity for the targets. In the case of CDK2, the docking
scores (i.e., the predicted affinities) obtained from all three methods

improved as the training steps increased. In ARA2A, a similar trendwas
observed, with the exception of Glide. Overall, in both targets, the
molecules obtained after training convergence achieved the best
results across all three docking methods, further confirming the cap-
ability of reinforcement learning to optimize the affinity of generated
molecules for the target pockets.

Chat to Token-Mol
Token-Mol’s token-only framework confers a significant advantage
over traditional regression models by enabling the seamless integra-
tion of cutting-edge large-scale model techniques, including prompt
learning, mixture of experts (MoE)82, and retrieval-augmented gen-
eration (RAG)83. In this context, we demonstrate an instance of prompt
learning.

To illustrate this capability, we present several straightforward
dialogue use cases. By employing prompt learning, we can control the
executionof tasks such aspropertypredictionmentioned in this study.
Initially, we insert specific prompts, such as “Predict ESOL” to fine-tune
the model. As shown in Supplementary Fig. 6, this enables direct
interaction with the model post-prompting, allowing users to request
predictions of different molecular properties. In this example, we
queried various properties of different molecules, and Token-Mol
successfully provided the corresponding predictions. This demon-
strates the potential of Token-Mol for engaging in meaningful dialo-
gues with chemists. Users may provide molecular conformations, but
since Token-Mol can generate the corresponding conformations, the
final output will include only the predicted target properties.

Additionally, future iterations can incorporate RAG. When
querying Token-Mol about a specific property of a molecule, the sys-
tem employs vector search based on embeddings to convert the query
into a vector. This vector is then matched with highly relevant vector
descriptions from a database to provide contextual information. The
query, along with the retrieved context such as spatial structure
information and other relevant properties, is then input to Token-Mol,
which then generates the answer.

The aforementioned example highlights the unique of token-only
models to seamlessly integrate with generalmodels, a capability that is
not exhibited by regression models.

Discussion
This study proposes Token-Mol, the inaugural token-only, extensive
pre-trained language model tailored for drug design. Rooted in the
GPT framework, Token-Mol integrates random causal masking to
enhance its flexible applicability across diverse drug design tasks.
Additionally, we propose the Gaussian cross-entropy loss function to
foster improved acquisition of continuous spatial information
throughout model training, thereby notably reinforcing its perfor-
mance in regression tasks. Furthermore, through the integration of RL,
Token-Mol achieves expedited optimization towards predetermined
objectives in specific tasks, aiming to achieve desired outcomes effi-
ciently. To substantiate these capabilities, we conducted assessments
across three pivotal drug design tasks.

In the pocket-based generation task, Token-Mol achieves results
close to expert models in the pocket-based generation task and
obtains optimal results in terms of drug-likeness and synthesizability
of molecules. Benefit from the rapid inference of the language model,
Token-Mol can generatemolecules within the pocket in a shorter time.
Additionally, tests on specific real-world targets have also demon-
strated that our model can obtain molecules with excellent affinity,
drug-likeness, and synthesizability under various conditions simulat-
ing real-world virtual screening with a higher proportion. For specific
optimization goals in the specific targets, weperformed reinforcement
learning, and the results also proved that Token-Mol can achieve
optimization under constraint conditions, demonstrating the broad
application potential of our model.
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We subsequently evaluated its capability in molecular conforma-
tion generation. Token-Mol demonstrated superior performance
relative to other SOTA models, exceeding their performance by
approximately 24% in COV-P and 21% in MAT-P. Notably, Token-Mol

exhibited improved efficacy in molecules with a higher number of
rotatable bonds.

Lastly, we assessed its performance in molecular property predic-
tion tasks. Leveraging the advantagesof theGaussian cross-entropy loss
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function, Token-Mol demonstrated accuracy on par with state-of-the-
art models. In regression tasks, Token-Mol outperformed the token-
onlymodel RT by approximately 30% and surpassed existing sequence-
basedmethods, approaching the performance of GNN-basedmethods.

Meanwhile, Token-Mol demonstrates the ability to simplify com-
plexproblems, capitalizingon the inherent advantagesof large language
models. This proficiency is particularly pronounced in sophisticated
tasks such as pocket generation, where Token-Mol achieves a good
balance of speed and efficacy. Notably, in comparison to the state-of-
the-artmodel TargetDiff, Token-Mol’s inference speed is 35 times faster.

While Token-Mol demonstrates considerable potential, several
areas require further enhancement. In this study, we evaluated its
performance on only three representative downstream tasks, leaving
many others unaddressed. The molecular diversity within the pre-
training data is also limited. In comparison to most of the expert
models cited in the references, Token-Mol features a larger number of
parameters. This relatively substantial model size may impose certain
limitations on its deployment and application. However, we believe
that the multitasking flexibility afforded by the pre-training and fine-
tuning paradigm for the backbonemodel allows Token-Mol to achieve
a favorable balance between size and application potential. None-
theless, this also poses challenges for the iterative development of
larger-scale models in the future.

Future researchwill focus onoptimizing Token-Mol by expanding
the training dataset and developing specific components tailored to
particular downstream tasks. Comprehensive evaluations across a
broader range of drug design tasks will be conducted. Additionally, we
aim to integrate Token-Mol with general artificial intelligence models,
utilizing techniques from various large language models such as
prompt learning, MoE, and RAG. This integration will facilitate direct
interaction between researchers and Token-Mol through conversa-
tional interfaces, enhancing its role as a research assistant.

In summary, this study presents a token-only foundational model
for drug design, introducing the initial version of Token-Mol. Its
development offers an approach towards unifying AI drug design
models, paving the way for comprehensive drug design using a single
foundational model.

Methods
Model architecture
Backbone. Token-Mol is structured with 12 layers of Transformer
decoders, each equipped with 8 attention heads. Employing auto-
regressive approach, Token-Mol predicts both the 2D and 3D struc-
tures of molecules while explicitly representing them. To ensure data
integrity during autoregressive training and inference, masking
matrices are employed to conceal unencoded segments, thus pre-
venting information leakage. The multi-head attention mechanism,
integral to the Transformer architecture, empowers Token-Mol to
simultaneously attend to diverse subspaces of the input, facilitating
the capture of richer information. Within this mechanism, each
attention head learns a unique set of weights to compute attention
scores for different positions in the input sequence, facilitating the
calculation of the input sequence’s representation. By harnessing
parallel computation acrossmultiple attention heads, Token-Mol gains
the capacity to interpret the input sequence fromvarious perspectives,
consequently enhancing its representational capability and general-
ization performance. The attention mechanism is shown in Eq. 1:

Attention Q,K ,Vð Þ= softmax
QKTffiffiffiffiffiffi
dk

p
 !

V : ð1Þ

where Q, K , and V represent the query, key, and value matrices,
respectively, and dk is the dimension of K .

To indicate the beginning or end of the sequence during sam-
pling, it is necessary to define a start token and an end token, denoted

as “<|beginoftext | >” and “<|endofmask | >”, respectively. During the
training, the “<|beginoftext | >” token is concatenated to the sequence
as the input. The objective during the training phase is tominimize the
negative log-likelihood, as shown in Eq. 2:

L= �
Xn
i= 1

logp xijx<i

� �
: ð2Þ

During the generation phase, molecular strings are generated
using an autoregressive approach based on smiles, which are then
concatenated together as shown in Eq. 3:

p xð Þ=
Yn
i= 1

p xijx<i

� �
: ð3Þ

Gaussian cross-entropy (GCE) loss function. Language models
commonly employ the cross-entropy loss function as their primary
loss function. The cross-entropy loss function is generally utilized to
quantify the disparity between the probability distribution produced
by the model and the actual labels. Assuming a classification problem,
for each sample, the model outputs a probability distribution indi-
cating the likelihood of the sample belonging to each class. The gen-
uine labels, on the other hand, are one-hot encoded vectors
representing the class to which the sample belongs. The cross-entropy
loss function is employed to measure the dissimilarity between the
probability distributionproducedby themodel and thegenuine labels.
In the context of languagemodels, the specific equation for calculating
the cross-entropy loss function is as follows:

L= � 1
m

Xm
i = 1

Xn
j = 1

yij logqðxijÞ: ð4Þ

Here, m represents the batch size, and n denotes the length of
eachdata point. yij signifies the j-th element of the true label for the i-th
data point (taking values of 0 or 1), and qðxijÞ represents the j-th ele-
ment of the probability distribution output by the model. A lower
cross-entropy loss indicates a closer resemblancebetween themodel’s
output probability distribution and the true labels, thereby reflecting
better model performance.

However, the conventional employment of the cross-entropy loss
function is primarily confined to discrete category prediction tasks,
rendering it inadequate for continuous value prediction endeavors
such as regression. In our investigation, we encounter a spectrum of
tasks encompassing both classification, exemplified by SMILES strings,
and regression, including torsion angles and molecular property pre-
diction. In response to this challenge, the regression transformer dis-
assembles each digit of continuous numerical values into distinct
tokens and incorporates specialized numerical embeddings. None-
theless, theirmethodology does not fundamentally rectify the issue, as
it neglects to facilitate the model’s comprehension of the relative
magnitude relationships inherent in numerical values. Notably, the
model uniformly assigns loss values in the event of inaccurate pre-
dictions, irrespective of the predicted token. For instance, if the label
denotes a torsion angle of π, erroneous predictions of 3 or 0 result in
identical loss values.

To surmount this constraint, we propose the GCE loss function
tailored specifically for regression tasks. As shown in Fig. 1, for each
prediction, we construct a Gaussian distribution centered around the
label’s value, thereby adjusting the probabilities of surrounding tokens
from their original values of 0 to correspond with the Gaussian dis-
tribution. Consequently, in Eq. 5, where ðpxijÞ is initially denoted as
either 0 or 1, we modify it to signify a Gaussian distribution centered
around the label’s value, thereby effectively mitigating the issue.
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The GCE loss function is defined as:

L= � 1
m

Xm
i = 1

Xn
j = 1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
ðxij�yij Þ2

2σ2 logqðxijÞ: ð5Þ

Through the implementation of this configuration, tokens in
proximity to the label are allocated greater weights, whereas tokens
distanced from the label receive diminished weights. This methodol-
ogy facilitates the comprehensive learning of relationships between
numerical values by the model.

Pocket encoder and fusion block. We utilized the protein pocket
encoder trained by Odin et al.65, maintaining its parameters frozen
throughout the training process. To merge the information derived
from the pocket encoder with the existing molecule information
within the model, we employed a multi-head condition-attention
mechanism. Diverging from traditional cross-attention mechanisms,
our approach involved the adoption of a multi-head condition-atten-
tion mechanism to fully integrate the information generated at each
autoregressive step into subsequent generations. This mechanism
treats each token produced during autoregression as a prerequisite
condition for iterative generation. Consequently, the entire query, key,
and value matrices stem from the original sentence itself. Particularly,
as shown in Fig. 1c, this condition-attention fundamentally regards
protein information as prompt data, enabling themodel to analyze the
interaction between protein information and previously generated
tokens.

Reinforcement learning. REINFORCE84, an RL algorithm based on
policy gradients, utilizes Monte Carlo methods to determine the
optimal policy, and it hasbeen applied in variousmolecular generation
methods79,85–87. In this work, we used its variant REINVENT79 algorithm
to optimize the model. We aim to optimize the pre-trained model
parameter θ for the task of generating molecular sequences, so that
the optimized model can generate molecules with desired properties,
as shown in Eq. 6:

θ* =argmaxθðEτ�πθ
ðGðτÞÞÞ: ð6Þ

The presented formula elucidates the policy πθ as contingent
upon model parameters θ, with τ delineating a trajectory spanning
states st and actions at from the initial time step t =0 to the terminal
step t =T . The action probabilities of a sequence A are defined as
P Að Þ=QT

t πθ at jst
� �

, and logπθ at jst
� �

represents the sum of the log
probabilities of each action given the prior state. According to the
REINFORCE, the objective function can be derived as follows:

J θð Þ= Eπθ
G st ,at

� �� �
=
XT
t =0

logπθ at jst
� �

G st ,at

� �
: ð7Þ

The reward at t within the trajectory is designated as r st ,at

� �
.

Equation 8 concisely portrays the aggregate reward accumulation
from time step t to the final state, encapsulating the core essence of
the trajectory’s reward accumulation dynamics.

G st ,at

� �
=
XT
k = t

γk�t r sk ,ak

� �
: ð8Þ

Within the molecular generation realm, computing G st ,at

� �
for

each step in a trajectory, corresponding to incomplete molecules,
proves impracticable given the inability to reliably estimate the total
molecule score from its constituent fragments alone. This scenario
converges with the sparse reward paradigm prevalent in reinforce-
ment learning. To surmount this challenge and enable the deployment
of the REINFORCE algorithm in this context, we advocate for equating

the complete molecule score with the score at each step, thereby
reformulating JðθÞ as:

J θð Þ=G τð Þ
XT
t =0

logπθ at jst
� �

: ð9Þ

In REINVENT, two policies are defined: the Prior policy and
the Agent policy, with their respective action probabilities
denoted as P Að ÞPrior and P Að ÞA. An augmented likelihood is
introduced as log PðAÞU =P Að ÞPrior + σR Að Þ, where R Að Þ represents
the reward of sequence A. The expression for G Að Þ is
restructured to ½logP Að ÞA � log P Að ÞU�2= logP Að ÞA. Consequently,
the J θð Þ= ½logP Að ÞA � logP Að ÞU�2.

Reward function. To optimize affinity, the reward function is designed
to prioritize molecules that meet a promising Vina score. Molecules
that exceed the affinity threshold and complywith theQEDconstraints
receive additional rewards. Molecules that do not meet the affinity
threshold or are non-compliant are penalized. Thus, the reward func-
tion R mð Þ is described as Eq. 10:

R mð Þ=
ω � Vina mð Þ � init +0:1ð Þ+θqed, if VinaðmÞ ≤ init

0:1, if VinaðmÞ> init
0, if invalid

8><
>: ð10Þ

where m is molecule; Vina(m) represents Vina score, where a smaller
value is preferable; init is the threshold value of Vina score, which is set
as −8. To avoid the issue of sparse rewards, we have imposed a reward
weight ω, set as 5, and a proper penalty term set as 0.1 for molecules
whichdonotmeet the thresholdof Vina score.θqed is a reward term for
molecules that comply with the restraint of QED, describe as Eq. 11:

θqed =
1, QED ≥ 0:5

0, QED < 0:5

�
ð11Þ

Random causal masking
The conventional left-to-right causal masking method exclusively relies
on the context preceding the generated tokens, thereby proving
inadequate for accomplishing the infilling task. To enhance the adapt-
ability to a wider array of downstream tasks, we opted to train it using
random causal masking88,89 in lieu of the left-to-right causal masking.

Throughout the training process, we commence by sampling the
number of mask spans from a Poisson distribution centered around a
mean of 1, while enforcing a limit that confines the count of mask spans
within the range of 1 to 6. Following this, we employ random sampling to
establish the length of each span. The locations of the masks are iden-
tified using placeholders denoted as “<|mask:k | >”, with “k” signifying the
index of the specific mask span. Subsequently, the content subjected to
masking is affixed to the sequence’s end, preceded by the “<|mask:k | >”
prefix. In the inference phase, a sequence incorporating placeholders “<|
mask:k | >” is presented as the contextual input, complemented by the
addition of “<|mask:k | >” at the sequence’s conclusion to steer the
model’s generation of content for the “<|mask:k | >” segments.

Benchmark
Molecular conformer generation. COV and MAT scores are funda-
mental metrics utilized as benchmarks in the Conformer generation
task, extensively employed across conformer generation endeavors.
COV andMATmetrics are further categorized into Recall and Precision
measures. Recall is defined as:

COV� RðSg , Sr Þ=
1
Sr
�� ��

��� C 2 Sr
���RMSD C, Ĉ

� �
≤ δ, Ĉ 2 Sg

n o
: ð12Þ

MAT� RðSg , SrÞ=
1
Sr
�� ��

X
C2Sr

min
Ĉ2Sg

RMSD C, Ĉ
� �

: ð13Þ
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where Sg denotes the ensemble of generated conformations, while Sr
represents the ensemble of true conformations. C and Ĉ represent
individual conformations from the sets of true and generated con-
formations, respectively, with δ acting as the threshold, set at 1.25 Å.
The COV metric evaluates the percentage of structures in one set
that are encompassed by another set, where inclusion indicates that
the RMSD between two conformations falls below a specified
threshold δ. Conversely, the MAT scores gauge the average RMSD
between conformers in one set and their nearest counterparts in
another set. Precision, as described in the provided equation, inter-
changes Sg and Sr . Consequently, while Recall entails comparing each
true conformation with all generated conformations, Precision
involves comparing each generated conformation with all true con-
formations. Precision typically accentuates quality, while Recall is
more concerned with diversity.

Pocket-based molecular generation
Unless otherwise specified, the following molecular descriptors and
molecular fingerprints are calculated using RDKit (version 2022.09.1).

Valid. Validity of the generated 3D structure, calculated as the pro-
portion of 3D structures that can be translated into canonical SMILES.

IntDiv. Internal diversity90, an assessment of the distinctiveness of
molecules within a molecular set, calculated using Tanimoto distance
based on ECFP4 fingerprints91,92, which can be described as:

IntDiv: =
1

Sj j2
X

x, y 2 S
x≠y

d x, yð Þ
ð14Þ

where S is the generated molecules set, d is Tanimoto distance, which
is defined as 1 minus the Jaccard similarity coefficient calculated using
molecular fingerprints.

#Circle. a locality-based chemical space coverage measure93. Descri-
bed as:

#Circles S;d, tð Þ: = max
C�S

jCj s:t:d x, yð Þ> t, 8 x ≠ y2 C ð15Þ

where t is a distance threshold set as 0.75. C is a subset of S, containing
a specific molecule x and it’s non-neighboring molecules. Due to the
sensitivity of thismetric to the number of generatedmolecules Sj j and
the varying counts of available molecules produced by different
models for a given target, this value is calculatedby randomly selecting
80 molecules for each target.

Simi. Jaccard similarity between two molecular sets, as
mentioned above.

Vina score. The binding energy of ligands to protein pockets by using
QVina294.

Higher score. The average ratio of generatedmolecules exceeding the
original molecule within each pocket.

MW. Molecular weights. the optimal range is between 100 and 60095.

TPSA. topological polar surface area96, the optimal range is between 0
and 14058.

LogP. The octanol-water partition coefficient, typically falls within the
range of −0.4 to 5.6 for the majority of druglike compounds97.

Lipinski. Lipinski’s rule-of-five98, which consists of the following cri-
teria: the molecular weight of the compound is less than 500 Daltons;
the number of hydrogen bond acceptors in the compound’s structure
(including hydroxyl and amino groups) does not exceed 5; the number
of hydrogen bond donors in the compound does not exceed 10; the
logarithm of the compound’s logP falls within the range of −2 to 5. the
number of rotatable bonds in the compound does not exceed 10.

QED. Quantitative estimation of drug-likeness99, subsequent
researchers have normalized the properties of Lipinski’s rule-of-five
into continuous values ranging from 0 to 1, where higher values indi-
cate higher drug-likeness of molecules.

SA score. Synthetic accessibility score57, the SA score represents the
synthesis accessibility of molecules and is designated on a scale of 1 to
10, based on chemical expertise. A higher value indicates greater dif-
ficulty in synthesis.

Significance tests. All significance tests were conducted using the
Mann-Whitney U test with SciPy 1.10.0100 and adjusted for multiple
comparisons using the Bonferroni correctionwith statsmodels101. Prior
to performing these tests, the Kolmogorov-Smirnov test was used to
confirm that the data groups did not conform to a normal distribution.

Molecular property prediction. During the evaluation, we employ
greedy decoding for property prediction. Each method is run inde-
pendently three times, and the average and standard deviation are
reported. We utilize the area under the receiver operating character-
istic curve (ROC-AUC)102 metric to evaluate the classification datasets.
For the regression datasets, root mean square error (RMSE) is used to
quantify the average difference between predicted values and actual
values, which is often applied in regression analysis.

For information regarding themodel size of all baselinemodels in
the benchmark, please refer to Supplementary Table 12.

Dataset
Pretraining. The pretraining dataset is sourced from the geometric
ensemble of molecules (GEOM) dataset, which includes conformers
for 317,000 species, augmented with experimental data spanning
biophysics, physiology, and physical chemistry domains103. These
conformers are generated using sophisticated sampling methods
coupled with semi-empirical density functional theory (DFT). Follow-
ing this, data curation procedures are implemented to exclude mole-
cules containing heavy metals, lacking torsions, or test molecules.
Subsequently, eachmolecule underwent pre-training with amaximum
of 30 conformers, yielding a final dataset containing 8,452,080 entries.

Pocket-basedmolecular generation. The dataset utilized for pocket-
based generation is the same as existing work, which is an open-
available dataset consisted of over 20million of pose pairs from nearly
20,000 protein-ligand complexes from CrossDock2020104. Following
the protocol outlined in previous studies50,65, we discarded all poses
with anRMSDgreater than 2 Å, andadditionally partitioned thedataset
into training and testing sets based on a principle of sequence simi-
larity less than 40%, ensuring a fairer evaluation of the generalizability
to unknown pockets. Additionally, we excluded protein-ligand pairs
which ligand lacked torsionangles fromthedataset, resulted in slightly
smaller training and testing sets compared to several models we
mention subsequently.

The real-world targets’ structure are download from RCSB PDB105,
and reference molecules corresponding to each targets are collected
from ChEMBL30 database106. Molecules with a Kd or Ki value less than
1,000 nM for a given target are considered active, counting into the
reference sets. If the number ofmoleculesmeeting this criterion is low,
molecules with an IC50 value less than 1,000 nM are also included in
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the reference sets. The collectedmolecules are deduplicated based on
SMILES and molecules containing salts are removed.

Molecular conformationgeneration.Weperformedfine-tuning using
datasets consistent with those utilized in earlier studies34,38,40,42. For the
test set, we employed a dataset akin to Tora3D26. Test set I contains
200 molecules, each with fewer than 100 conformations. Test set II
comprises 1,000 randomly selected molecules with conformation
counts distributed similarly to the entire dataset, spanning from
0 to 500.

Molecular property prediction. We assembled a comprehensive col-
lection of 12 datasets sourced from MolecularNet107 and therapeutics
data commons (TDC)108, accompanied by comprehensive datasets
descriptions provided in the Supplementary. Drawing upon Molecu-
larNet’s established status as a primary benchmark for molecular
property prediction, our selection comprised six classification data-
sets and three regression datasets. Furthermore, within TDC, widely
acclaimed as the premier public benchmark for ADMET analysis, we
specifically identified three datasets characterized by relatively
homogeneous data distributions. Each dataset underwent three ran-
dom partitions following the 8:1:1 ratio for testing.

Data availability
The datasets utilized in our study are as follows: The GEOM dataset is
available at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/JNGTDF. For pocket-based molecular
generation dataset is provided at https://zenodo.org/records/
15194424. The molecular conformation generation, the dataset can
be accessed at https://github.com/zimeizhng/Tora3D. Lastly, the
datasets for property prediction are available at https://moleculenet.
org/datasets-1 and https://tdcommons.ai/single_pred_tasks/adme/
. Source data are provided with this paper.

Code availability
The code used in the study is publicly available from the GitHub
repository (https://github.com/jkwang93/Token-Mol) or Zenodo
(https://doi.org/10.5281/zenodo.1511068).
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