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Abstract: Low-level laser therapy/treatment (LLLT) using a minimally invasive laser needle system
(MILNS) might enhance bone formation and suppress bone resorption. In this study, the use of
405 nm LLLT led to decreases in bone volume and bone mineral density (BMD) of tibial trabecular
bone in wild-type (WT) and Per2 knockout (KO) mice. Bone volume and bone mineral density of
tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and
four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase
(ALP) and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP
gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2
KO mice compared to the non-irradiated left tibia (p < 0.001). Per2 mRNA expression in WT mice
was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated
left tibia (p < 0.001). To identify the decrease in tibial bone mediated by the Per2 gene, levels of
runt-related transcription factor 2 (Runx2) and ALP mRNAs were determined in non-irradiated WT
and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA
levels in Per2 KO mice (p < 0.001). Therefore, the reduction in tibial trabecular bone resulting from
405 nm LLLT using MILNS might be associated with Per2 gene expression.

Keywords: tibia; trabecular bone; Per2; ALP; Runx; low-level laser therapy; minimally invasive laser
needle system

1. Introduction

Although the biological mechanisms of low-level laser irradiation or low-level laser
therapy/treatment (LLLT) have not been fully revealed, LLLT is a successfully and widely used
non-pharmacological method for bone regeneration in experimental in vivo and in vitro models [1–12].
Current research suggests that LLLT stimulates the proliferation and differentiation of various cell
types and promotes the repair process in vivo and in vitro: a wavelength of 600–904 nm and an output
power of 1–500 mW; activation of ERK1/ERK2 and a phosphatidylinositol 3-kinase (PI3K) pathway;
the increase of reactive oxygen species (ROS) and ATP/cyclic AMP; the absorption of light by a
photoreceptor and the photoactivation of enzymes in the mitochondria; etc. [1,2]. With respect to
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bone, LLLT has been shown to modulate inflammatory processes and bone repair [3–5], accelerate
osteoblast proliferation and bone formation [6–10], and enhance bone healing [1,11,12].

Low-level laser irradiation (LLLT) can scatter across the skin surface, limiting penetration to
the deep bone layers. Thus, LLLT has been directly applied to the bone site of interest through tissue
incision. In addition, initial photon density and therapeutic efficacy of LLLT is reduced by light-tissue
interaction, such as absorption and scattering [13,14]. LLLT (660 nm wavelength) using a MILNS has
been developed to overcome these light limitations in tissue. The effectiveness of this technique for
preventing trabecular bone loss has been demonstrated in previous research [13,15,16].

The circadian clock genes Period 2 (Per2) and Cryptochrome 2 (Cry2) regulate distinct pathways
in bone volume; Cry2 chiefly influences the osteoclasts, and Per2 acts on osteoblasts, indicating
that Per2 and Cry2 differentially balance bone formation [17,18]. Mammalian Cry protein with
flavin adenine dinucleotide (FAD) serves as a blue-light photoreceptor of 405 nm wavelength in
murine cells [19,20]. The Kushibiki group has shown that LLLT (405 nm) can promote osteogenesis
and reduce adipogenesis of mouse mesenchymal stromal cells (MSCs) by inducing translocation
of Cry1 and Per2 proteins and decreasing Cry1 mRNA level. LLLT can effectively control the
in vitro fate of MSCs as a therapeutic strategy by suppressing Cry transcription [19,20]. Therefore,
the present study demonstrated that 405 nm laser stimulation using MILNS applied in vivo tibial
trabecular bone in WT and Per2 gene KO mice to investigate bone volume and BMD with an
in vivo micro-CT and expressions of Per2, Runx2, and ALP mRNAs through real-time quantitative
polymerase chain reaction.

2. Results

The structural parameters to quantify tibial trabecular bone changes using micro-CT systems
were shown in the 405 nm laser-irradiated WT and Per2 KO mice, respectively (Figure 1). The bone
microarchitecture values of BV/TV, Tb.Sp, Tb.N, Conn.Dn, and BMD were significantly changed in
the 405 nm laser-irradiated WT and Per2 KO mice at four weeks compared to two weeks, respectively
(BV/TV, Tb.Sp, and Tb.N, p < 0.01; Conn.Dn and BMD, p < 0.001) (Figure 1). Three-dimensional
(3D) images of decreased trabecular bone were seen in Per2 KO mice compared to WT mice that
received 405 nm laser irradiation at 0, 2 and 4 weeks (Figure 2A). Changes in structural parameters
were evaluated with total bone volume and BMD in WT mice and Per2 KO mice at 0, 2 and 4 weeks
(Figure 2B,C). Total bone volume and BMD were significantly reduced in Per2 KO mice compared to
WT mice (p < 0.001).

To measure the reduction of tibial bone affected by LLLT using MILNS, levels of ALP and
Per2 mRNA were investigated in the 405 nm laser-irradiated WT and Per2 KO mice at four weeks,
respectively (Figure 3). ALP mRNA level was significantly reduced in right tibial bone of WT and Per2
KO mice compared to left tibia, respectively (p < 0.001) (Figure 3A). In addition, Per2 mRNA level in
WT mice was significantly lower in right tibial bone compared to left tibia (p < 0.001) (Figure 3B).

To identify the decrease in tibial trabecular bone via Per2 gene, levels of Runx2 and ALP mRNA
were determined in non-irradiated WT and Per2 KO mice, demonstrating significant down-regulation
of Runx2 and ALP mRNA levels in Per2 KO mice compared to WT mice (p < 0.001) (Figure 4A,B). Per2
mRNA was expressed in WT mice and was not detected in Per2 KO mice (Figure 4C). Therefore,
the reduction in tibial trabecular bone by 405 nm laser irradiation according to MILNS might be
associated with Per2 genes.
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Figure 1. Structural parameters in 405 nm LLLT using MILNS in WT (A) and Per2 KO mice (B), 
respectively. Trabecular bone parameters measured with micro-CT and depicted as a histogram. 
Dotted line indicates relative variation at the start of LLLT using MILNS. The tibia was directly 
irradiated with LLLT using the MILNS (405 nm, 5 mW, 3 J/cm2, 600 s). Mice were irradiated five 
days/week for four weeks. At two and four weeks after laser irradiation, BV/TV (%), Tb.Th (mm), 
Tb.Sp (mm), Tb.N (mm−1), Tb.Pf (mm−1), SMI, Conn.Dn (mm−3), and BMD (g/cm3) were measured 
from two-dimensional images obtained using CT-AN 1.8. Data are expressed as mean ± SEM (n = 9) 
at each point and were subjected to statistical analysis, ** p < 0.01; ***p < 0.001. LLLT: Low-level laser 
therapy/treatment; MILNS: minimally invasive laser needle system; WT: wild-type; BV/TV: 
structural parameters including bone volume fraction; Tb.Th: trabecular thickness; Tb.Sp: trabecular 
separation; Tb.N: trabeculae number; Tb.Pf: trabecular bone pattern factor; SMI: structure model 
index; Conn.Dn: connective density; BMD: bone mineral density.  
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Figure 1. Structural parameters in 405 nm LLLT using MILNS in WT (A) and Per2 KO mice (B),
respectively. Trabecular bone parameters measured with micro-CT and depicted as a histogram.
Dotted line indicates relative variation at the start of LLLT using MILNS. The tibia was directly
irradiated with LLLT using the MILNS (405 nm, 5 mW, 3 J/cm2, 600 s). Mice were irradiated five
days/week for four weeks. At two and four weeks after laser irradiation, BV/TV (%), Tb.Th (mm),
Tb.Sp (mm), Tb.N (mm´1), Tb.Pf (mm´1), SMI, Conn.Dn (mm´3), and BMD (g/cm3) were measured
from two-dimensional images obtained using CT-AN 1.8. Data are expressed as mean ˘ SEM (n = 9)
at each point and were subjected to statistical analysis, ** p < 0.01; ***p < 0.001. LLLT: Low-level
laser therapy/treatment; MILNS: minimally invasive laser needle system; WT: wild-type; BV/TV:
structural parameters including bone volume fraction; Tb.Th: trabecular thickness; Tb.Sp: trabecular
separation; Tb.N: trabeculae number; Tb.Pf: trabecular bone pattern factor; SMI: structure model
index; Conn.Dn: connective density; BMD: bone mineral density.
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Figure 2. (A) Representative longitudinal 3D micro-CT images showing changes in right trabecular 
bone microarchitecture regions of interest in 405 nm LLLT using MILNS in WT and Per2 KO mice:  
(A) a and d, 0 weeks; b and e, two weeks; and c and f, four weeks. The tibia was directly irradiated 
with LLLT using the MILNS (405 nm, 5 mW, 3 J/cm2, 600 s). Mice were irradiated five days/week for 
four weeks. Scale bar, 0.5 mm; At 0, two, and four weeks after laser irradiation, total bone volume 
(mm3) (B) and bone mineral density (g/cm3) (C) were measured on two-dimensional images obtained 
using CT-AN 1.8. Data are expressed as mean ± SEM (n = 9) and were subjected to statistical analysis,  
* p < 0.05; *** p < 0.001. 

 
Figure 3. The expressions of ALP (A) and Per2 (B) mRNAs in tibial bone marrows of WT and Per2 KO 
mice, respectively, in 405 nm LLLT using MILNS. The data are mean ± SEM (n = 3). Statistical 
significance is indicated by *** p < 0.001. 
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Figure 2. (A) Representative longitudinal 3D micro-CT images showing changes in right trabecular
bone microarchitecture regions of interest in 405 nm LLLT using MILNS in WT and Per2 KO mice:
(A) a and d, 0 weeks; b and e, two weeks; and c and f, four weeks. The tibia was directly irradiated
with LLLT using the MILNS (405 nm, 5 mW, 3 J/cm2, 600 s). Mice were irradiated five days/week
for four weeks. Scale bar, 0.5 mm; At 0, two, and four weeks after laser irradiation, total bone volume
(mm3) (B) and bone mineral density (g/cm3) (C) were measured on two-dimensional images obtained
using CT-AN 1.8. Data are expressed as mean ˘ SEM (n = 9) and were subjected to statistical analysis,
* p < 0.05; *** p < 0.001.
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Figure 3. The expressions of ALP (A) and Per2 (B) mRNAs in tibial bone marrows of WT and Per2
KO mice, respectively, in 405 nm LLLT using MILNS. The data are mean ˘ SEM (n = 3). Statistical
significance is indicated by *** p < 0.001.
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Figure 4. Differences in mRNA expressions of Runx2 (A), ALP (B), and Per2 (C) genes between tibial 
bone marrows of WT and Per2 KO mice in 405 nm LLLT using MILNS. The data are mean ± SEM  
(n = 3). Statistical significant is indicated by *** p < 0.001. ND, no detection. 
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In vivo, Micro-CT system is an effective and noninvasive method for the evaluation of 
microstructural characteristics of bone tissues. Using micro-CT allows for clear and accurate imaging 
of internal and external bone structures in the smallest bone fraction [21–24]. The internal and 
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was evaluated by several structural parameters including tibial trabecular bone volume fraction 
(BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and connective density 
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densitometry using quantitative micro-CT systems provides clinical information about BMD 
implicated in the BV/TV. Both BMD and BV/TV can estimate the stiffness and strength of normal 
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Figure 4. Differences in mRNA expressions of Runx2 (A), ALP (B), and Per2 (C) genes between tibial
bone marrows of WT and Per2 KO mice in 405 nm LLLT using MILNS. The data are mean ˘ SEM
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3. Discussion

In vivo, Micro-CT system is an effective and noninvasive method for the evaluation of
microstructural characteristics of bone tissues. Using micro-CT allows for clear and accurate imaging
of internal and external bone structures in the smallest bone fraction [21–24]. The internal and external
architecture of bone has a major impact on its mechanical properties. The mechanical properties
of cancellous bone are relevant to its stiffness and strength [21–24]. The biomechanical stiffness
and strength of bone depend on both bone internal architecture and BMD [25]. This study was
evaluated by several structural parameters including tibial trabecular bone volume fraction (BV/TV),
trabecular separation (Tb.Sp), trabecular number (Tb.N), and connective density (Conn.Dn) (Figure 1)
as well as total bone volume (Figure 2B) and BMD (Figure 2C). Bone densitometry using quantitative
micro-CT systems provides clinical information about BMD implicated in the BV/TV. Both BMD and
BV/TV can estimate the stiffness and strength of normal and pathologic trabecular bone induced by
osteoporosis or metastatic cancer [26]. BMD has also been used clinically to evaluate osteoporosis and
fracture risk [27]. Our findings demonstrated that total changes in total bone volume and BMD from
trabecular bone of right tibia were significantly reduced in Per2 KO mice compared to in WT mice
due to 405 nm LLLT according to MILNS at 0 to four weeks (Figure 2B,C). The 3D images obtained
from micro-CT clearly identified decreased trabecular bone of right tibia in Per2 KO mice compared
to in WT mice (Figure 2A). This result suggests that the reduction in tibial trabecular bone caused by
405 nm LLLT using MILNS is mediated by the Per2 gene. Unfortunately, this study is lack of micro-CT
analysis in the trabecular bone of left tibia. However, we showed that the expressions of ALP mRNA
was significantly different between the right and left tibial bones (Figure 3A)

This study used micro-CT data to demonstrate that LLLT using MILNS led to significant
reductions in tibial trabecular bone. Our results are contrary to previous studies that reported
the capability of LLLT using MILNS to stimulate the cortical bone growth of osteoporotic mice,
prevent trabecular bone loss in ovariectomized mice, and suppress trabecular bone loss induced
by skeletal unloading [13,15,16]. These previous studies reported that LLLT using MILNS has
potential to inhibit bone loss at a wavelength of 660 nm, energy of 3 J/cm2, output power of 10 mW,
and irradiation time 300 s for five days per week for two weeks, indicating that it enhances bone
formation and suppresses bone resorption. However, the present study applied a wavelength of
405 nm, energy of 3 J/cm2, output power of 5 mW, and irradiation time of 600 s for five days per
week for two and four weeks (Figure 2B,C). The other experiment also demonstrated decreased
trabecular bone loss at a wavelength of 405 nm, energy of 3 J/cm2, output power of 10 mW, and
irradiation time 300 s (data not shown). However, the Kushibiki group used a wavelength of 405 nm,
100 mW/cm2, 180 s, and two weeks and demonstrated that LLLT enhanced mesenchymal stromal
cell differentiation to osteoblasts in vitro [19,20]. Therefore, an excessively high laser dosage might
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lead to inhibitory effects on cell growth and proliferation [28–30]. Two reviews have reported
that LLLT at wavelengths ranging from 600 to 904 nm and output powers of 1–500 mW is very
helpful in enhancing the proliferation of various cell lines and improving bone healing [1,2].
Tajali et al. [3] performed a meta-analysis through MEDLINE, EMBASE, PubMed, CINAHL, and
Cochrane Database of Randomized Clinical Trials published from 1966 to October 2008. Specifically,
they looked for studies that highlighted the effects of LLLT on biomechanical properties of bone
regeneration and the dose impact in animals. These reports might provide sufficient evidence to
support the role of LLLT in animal and human bone healing.

The role of the Per2 gene in bone is not clear, but previous studies have shown that Per2
plays a significant role in regulating bone growth [17,18]. Per2 KO mice demonstrate increases in
bone mass and bone volume [17,18]. In children with Smith-Magenis syndrome, a genetic disorder
associated with skeletal malformations, the Per2 gene is also expressed with high variability and
no Per2 rhythm [31]. Per2 might also influence bone growth by altering p21 cell cycle progression,
through its effects on ER-mediated gene expression and its action on parathyroid hormone
administration [32–34]. However, in the present study, Per2 KO mice showed significantly reduced
bone volume and BMD in tibial trabecular bone due to LLLT using MILNS (Figures 1 and 2B,C).

Runt-related transcription factor 2 (Runx2) is a master transcription factor of osteoblast
differentiation or osteogenesis. Runx2 expression is upregulated in immature osteoblasts, decreases
during bone development, and demonstrates a mature phenotype in osteoblasts, which are required
for mature bone formation [35,36]. ALP plays an essential role in the bone formation process and
reflects osteoblastic activity [37,38]. ALP is used clinically as a marker of bone formation. LLLT
has a biostimulatory effect on bone formation and increases ALP expression or activity. Previous
studies have shown that LLLT induces a significant increase in expression of Runx2 and ALP
mRNAs [4,39–43]. LLLT effects on osteoblast proliferation and bone formation involving the increase
of Runx2 mRNA [6,8]. The present study, however, demonstrated that Per2 KO mice rather than WT
mice significantly downregulated Runx2 and ALP mRNA levels in tibial trabecular bone after LLLT
using MILNS (Figure 4). This finding indicates that the reduction of Runx2 and ALP mRNA levels
in the tibial trabecular bone caused by 405 nm laser irradiation using MILNS is associated with the
decrease of Per2 gene expression.

4. Experimental Section

4.1. Experimental Animals

All procedures were performed according to a protocol approved by the Yonsei University
of Animal Care Committee (YMC-141112-1). Male inbred 129/Sv WT and mPer2 KO mice at
6 weeks of age (average weight 24.2 ˘ 0.8 g) (n = 9) were maintained in the animal facility of
Yonsei University, Wonju, Korea. Environment of cage was controlled within standard conditions,
temperature (23.5 ˘ 1 ˝C) and humidity (50% ˘ 5%). And also the mice were in controlled light
(12:12 h light/dark (LD) schedule; light on at 7:00 a.m.), and were fed ad libitum. Mice were stabilized
and synchronized with LD cycle in time-scheduled animal facility for at least 2 weeks.

4.2. LLLT Using MILNS

In this study, laser stimulation was performed using the MILNS technique previously developed
by the Department of Biomedical Engineering and Yonsei-Fraunhofer Medical Device Lab [13,15,16].
A 130-µm-inner diameter fine needle was used to guide a 100-µm-diameter optical fiber. A diode
laser (120 mW, 405 nm; No. ML320G2-11; ThorLabs, Newton, NJ, USA) was used as a light source.
The optical power output from the diode laser at the end of the fine needle was set to 10 mW just
before irradiation of the bone. The tibia was directly irradiated with the laser (405 nm, 5 mW) for
600 s (energy 3 J/cm2). The bone surface of the right tibia was directly irradiated percutaneously
using MILNS at the proximal end of the tibia. The left tibia was not irradiated, but treated with
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needle. Mice immobilized by a customized restrainer were treated 5 days per week for 2 or 4 weeks
without anesthesia.

4.3. Measurements of Structural Parameters

We scanned the tibiae before laser stimulation and after 2 or 4 weeks of laser stimulation with
an in vivo micro-CT (Skyscan 1076; Bruker, Belgium, Germany) at a resolution of 18 µm3 under
anesthesia. Anesthesia, using a combination of xylazine (0.5 mL/kg; Bayer Korea, Seoul, Korea) and
zoletil (0.5 mL/kg; Virbac, Seoul, Korea), was performed during micro-CT scanning. To estimate
the effects of LLLT, structural parameters of tibia were quantitatively measured. The structural
parameters such as bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th, mm), trabecular
separation (Tb.Sp, mm), trabecular number per unit length (Tb.N, mm´1), trabecular bone pattern
factor (Tb.Pf, mm´1), structure model index (SMI), connective density (Conn.Dn, mm´3), and bone
mineral density (BMD, g/cm3) were analyzed on two-dimensional images obtained by CT-AN 1.8
(Bruker, Germany). We selected the region of interest (ROI) for microCT analyses, 1.8 mm in length at
the distal metaphyseal secondary spongiosa (100 slices) from a point that is under 0.54 mm (30 slices)
from the end of the proximal growth plate on the tibia.

4.4. Preparation of cDNA and Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Total RNAs from tibial bone marrow were isolated from mice sacrificed at 4 weeks after LLLT.
Total RNA from each sample was extracted using TRI reagent (MRC, Cincinnati, OH, USA), following
the manufacturer’s instructions. Samples in 100 µL of TRI reagent were homogenized, and any
contaminating genomic DNA was eliminated using the RNase-Free DNase kit (Promega, Madison,
WI, USA). GoScript™ Reverse Transcription System (Promega) was used to synthesize cDNA from
2 µg of total RNA, according to the manufacturer’s protocol. The gapdh housekeeping gene was used
as a constitutive control for normalization. The specific primer pairs used for real-time PCR are listed
in Table 1. qPCR were carried out using SYBR Green reagent (Applied Biosystems, Foster City, CA,
USA) and the StepOnePlus Systems (Applied Biosystems). PCR conditions included one cycle of
10 min at 95 ˝C followed by 40 cycles of 15 s at 95 ˝C, 30 s at 58 ˝C, and 30 s at 72 ˝C. The relative
gene expression level was calculated using the 2´44Ct method [44]. All samples were analyzed in
triplicate and in three independent measures.

Table 1. Nucleotide sequences of the primer pairs used for real-time PCR.

Gene Strand Sequence Accession No.

Runx2
Forward 51-TAG CCA GGT TCA ACG ATC TG-31

NM001145920.2Reverse 51-TTC TGT CTG TGC CTT CTT GG-31

ALP
Forward 51-ATA TAA CAC CAA CGC TCA GG-31

NM007431.3Reverse 51-AGG ATG GAT GTG ACC TCA TT-31

Per2
Forward 51-TAT CGT GAA GAA CGC GGA TA-31

NM011066.3Reverse 51-AGC TGT GGA ACA CAC TGA CG-31

Gapdh Forward 51-GAC ATC AAG AAG GTG GTG AAG C-31
NM008084.3Reverse 51-GAA GGT GGA AGA GTG GGA GTT-31

4.5. Statistical Analysis

All the experiments were carried out at least three times. Data are presented as mean ˘ standard
error of the mean (SEM). The significance of differences between groups was determined using
Student’s t-test with SPSS 17.0 (SPSS Inc., Chicago, IL, USA). p-values less than 0.05 were considered
statistically significant.
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5. Conclusions

The results of our study illustrate that LLLT using MILNS plays a critical role in the decrease of
bone volume and BMD in tibial trabecular bone in WT and Per2 KO mice. This reduction of bone
depended on significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice compared
to WT mice. Future research should investigate whether specific pharmaceutical targeting of the Per2
gene can serve as a new therapeutic avenue to treat bone loss conditions such as osteoporosis.
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