
Research Article
Identification of Macrophage Polarization-Related Genes as
Biomarkers of Chronic Obstructive Pulmonary Disease Based on
Bioinformatics Analyses

Yalin Zhao , Meihua Li, Yanxia Yang, Tao Wu, Qingyuan Huang, Qinghua Wu,
and Chaofeng Ren

Respiratory and Critical Care Medicine, Kunming First People’s Hospital, Kunming, Yunnan Province, China

Correspondence should be addressed to Yalin Zhao; 39031381@qq.com and Chaofeng Ren; 593988414@qq.com

Received 31 March 2021; Accepted 4 June 2021; Published 21 June 2021

Academic Editor: Nagarajan Raju

Copyright © 2021 Yalin Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. Chronic obstructive pulmonary disease (COPD) is characterized by lung inflammation and remodeling. Macrophage
polarization is associated with inflammation and tissue remodeling, as well as immunity. Therefore, this study attempts to
investigate the diagnostic value and regulatory mechanism of macrophage polarization-related genes for COPD by
bioinformatics analysis and to provide a new theoretical basis for experimental research. Methods. The raw gene expression
profile dataset (GSE124180) was collected from the Gene Expression Omnibus (GEO) database. Next, a weighted gene
coexpression network analysis (WGCNA) was conducted to screen macrophage polarization-related genes. The differentially
expressed genes (DEGs) between the COPD and normal samples were generated using DESeq2 v3.11 and overlapped with the
macrophage polarization-related genes. Moreover, functional annotations of overlapped genes were conducted by Database for
Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resource. The immune-related genes were
selected, and their correlation with the differential immune cells was analyzed by Pearson. Finally, receiver operating
characteristic (ROC) curves were used to verify the diagnostic value of genes. Results. A total of 4922 coexpressed genes related
to macrophage polarization were overlapped with the 203 DEGs between the COPD and normal samples, obtaining 25 genes
related to COPD and macrophage polarization. GEM, S100B, and GZMA of them participated in the immune response, which
were considered the candidate biomarkers. GEM and S100B were significantly correlated with marker genes of B cells which had
a significant difference between the COPD and normal samples. Moreover, GEM was highly associated with the genes in the
PI3K/Akt/GSK3β signaling pathway, regulation of actin cytoskeleton, and calcium signaling pathway based on a Pearson
correlation analysis of the candidate genes and the genes in the B cell receptor signaling pathway. PPI network analysis also
indicated that GEM might participate in the regulation of the PI3K/Akt/GSK3β signaling pathway. The ROC curve showed that
GEM possessed an excellent accuracy in distinguishing COPD from normal samples. Conclusions. The data provide a
transcriptome-based evidence that GEM is related to COPD and macrophage polarization likely contributes to COPD diagnosis.
At the same time, it is hoped that in-depth functional mining can provide new ideas for exploring the COPD pathogenesis.

1. Introduction

Chronic obstructive pulmonary disease (COPD), an inflam-
matory disease of the lungmainly caused by smoking tobacco
cigarettes and environmental exposure from burning bio-
mass fuels or air pollution [1, 2], has become a major health
problem around the world [3]. It has been reported that
COPD killed about 3 million people in 2016, and the mortal-

ity rates of COPD are still growing [4]. Worse, although
COPD has long been considered treatable, the diagnosis
and treatment of COPD in the clinical practice remain to
be improved [5, 6]. Currently, the diagnosis of COPDmainly
depends on the use of spirometry by identifying pulmonary
dysfunction [7], which is full of limitations, such as the detec-
tion of the early stage of COPD. Moreover, although some
blood-related biomarkers were related to exacerbations,
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progression, or mortality of COPD, it was unknown whether
they could be selected as the diagnostic biomarkers [8]. On
the other hand, even if the traditional treatments including
lung volume reduction surgery for COPD have made great
strides, there were still some uncontrollable complications
[9]. In addition, even if some pulmonary rehabilitation pro-
grams, such as exercise training, education, and behavior
change followed by patient-tailored therapies have been
regarded as promising measures for improving the COPD
patients, a few patients still cannot gain the benefit from the
exercise training [10]. Hence, it is very wishful for further
parsing the molecular mechanism and recognizing the novel
biomarkers of COPD.

With the development of bioinformatics, recent studies
have revealed that COPD susceptibility is associated with
the genes’ expression [11–14]. For example, it has been sug-
gested that the expression of B3GNT, LAF4, and ARHGEF10
can predict the frequent exacerbations of COPD [11]. More-
over, IL6 and SOCS3 also have been suggested to play a key
role in COPD and can be used as the therapeutic targets of
COPD [12]. Moreover, Zhang et al. also found that TLR2
and CD79A may be used as the potential biomarkers for
the clinical severity of COPD and related to the inflammatory
responses of COPD [13]. More importantly, it has been
revealed that COPD can be subdivided into three molecular
subtypes based on the gene expression profiles of 213
COPD-related genes [14]. Therefore, bioinformatics analysis
of gene expression profiling may contribute to screening
novel biomarkers of COPD resulting in improving the treat-
ment of COPD.

Increasing evidences have proposed that macrophage
which is an important effector cell for the innate immune
response plays a crucial role in COPD [15–17]. A recent
study has demonstrated that COPD patients exhibit more
macrophages in the bronchial alveolar lavage fluid, along
the airways and lung parenchyma compared to the normal
samples [15, 16]. Besides, Traves et al. also found more blood
monocyte-derived macrophages into the airspaces of COPD
[17]. More importantly, emerging evidences showed that
macrophage polarization may be associated with COPD
[18–20]. For example, a previous study has suggested an
increase in proinflammatory M1 macrophages in the small
airways of COPD compared to controls, but a reciprocal
decrease in M2 macrophages [18]. On the other hand, the
results of Eapen et al. suggested that lncRNA MIR155HG
modulated the progression of COPD by inducing the
granulocyte-macrophage colony-stimulating factor-mediated
M1/M2 macrophage polarization [19]. In addition, Shaykhiev
et al. suggested that the reprogramming for alveolar macro-
phage polarization likely contributes to COPD pathogenesis
[20]. Nevertheless, the research focusing on the molecular reg-
ulation mechanism of macrophage polarization in COPD is
inadequate.

With the development and extensive applications of bio-
informatics, the weighted gene coexpression network analy-
sis (WGCNA) has become an important and effective
method to screen hub genes for complex disease [21]. In
recent years, WGCNA has been performed to identify genes
which are related to clinical features in many diseases, such as

stroke [22] and schizophrenia [23]. Moreover, all of these
researches suggested that screening biomarkers for diagnosis
and treatment of complex disease by WGCNA was effective.

In the present study, we firstly downloaded the raw gene
expression profile dataset which included COPD samples
and normal samples from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi). Next, WGCNA was carried out to screen macro-
phage polarization-related genes. Finally, we identified hub
genes as the novel diagnostic biomarkers for COPD and fur-
ther analyzed their molecular mechanisms in COPD, which
will contribute to the treatment of COPD.

2. Materials and Methods

2.1. Dataset Acquisition. The raw gene expression profile
dataset (GSE124180, only peripheral blood samples) was
collected from the GEO database [24]. The dataset based on
GPL16791 platform included 6 COPD samples and 15
normal samples.

2.2. WGCNA. The weighted gene coexpression network
analysis was performed using WGCNA R package (v1.69)
in the COPD and normal samples [25]. A total of 35
macrophage polarization genes (Supplementary Table 1)
from the MsigDB database (https://www.gsea-msigdb.org/
gsea/msigdb) were considered different traits to investigate
the coexpressed genes related to macrophage polarization
genes. Soft thresholding was then applied by raising
correlation values to a power of 14 to amplify disparity
between strong and weak correlations. The soft thresholding
power was chosen to achieve approximately scale-free
network topology, as recommended for biological networks
[26, 27]. The resulting signed adjacency matrix was used to
calculate topological overlap matrix (TO), which was then
hierarchically clustered with (1-TO) as a distance measure.

Genes were then assigned into coexpression modules by
dynamic tree cutting algorithm requiringminimal module size
of 100 genes [28]. The modules with highly correlated eigen-
genes (correlation above 0.6) were merged. Module eigengene
(ME) is the first principal component of the gene expression
values within a module and is used to summarize the module’s
expression. The Pearson correlation between each gene and
ME was then calculated. This value is called module member-
ship (MM) and represents how close a particular gene is to a
module. Finally, each gene was assigned to a module for which
it had the highest MM. The module with the highest absolute
value of the correlation coefficient with the traits was chosen as
the key module for subsequent analysis.

2.3. Differential Expression Analysis and the Candidate Gene
Identification. The comparison of differential expressions
between the COPD and normal samples was generated using
DESeq2 v3.11 [29]. The p value < 0.05 and ∣log2FC ∣ >0:8
were considered the cutoff value. The candidate genes were
identified by overlapping the DEGs and the genes in the
key module, getting 25 genes related to COPD and macro-
phage polarization, and their expressions were displayed by
a heatmap in the COPD and normal samples.
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Figure 1: Construction weighted gene coexpression network and identification of modules related to the markers of macrophage
polarization. (a) Determination the optimal soft threshold to conform to the scale-free distribution. (b) Dendrogram of genes clustered
based on the highly correlated eigengenes (correlation above 0.6).
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2.4. The Functional Annotations and Correlation Analysis of
the Candidate Genes. DAVID bioinformatics resource
(v6.8), an online website (https://david.ncifcrf.gov/), was
devoted to conduct the functional annotations of the 25
genes [30]. The immune-related genes (as the candidate

genes) were selected from the 25 genes, and Pearson analysis
was used to investigate the correlation of the candidate genes
and the differential immune cells between the COPD and
normal samples, as well as marker genes and pathways of dif-
ferential immune cells.
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Figure 2: Identification of genes associated with COPD and macrophage polarization. (a) Volcano plot showed the DEGs between COPD
samples and normal samples. (b) Overlapping genes between DEGs and macrophage polarization-related genes. (c) Heatmap exhibited
the differential expression of the candidate genes between COPD samples and normal samples.
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Table 1: The results of GO functional annotation and KEGG pathways for the 25 candidate genes.

ID Biological process KEGG pathway

CBR3
GO:0042376~ phylloquinone catabolic process, GO:0050890~

cognition, GO:0055114~ oxidation-reduction process

hsa00590: arachidonic acid metabolism, hsa00980:
metabolism of xenobiotics by cytochrome P450, hsa01100:

metabolic pathways

FZD6

GO:0001736~ establishment of planar polarity, GO:0001843~
neural tube closure, GO:0001942~ hair follicle development,
GO:0007186~G-protein coupled receptor signaling pathway,
GO:0007223~Wnt signaling pathway, calcium modulating
pathway, GO:0007275~multicellular organism development,

GO:0030168~ platelet activation, GO:0033278~ cell
proliferation in midbrain, GO:0035567~ non-canonical Wnt

signaling pathway, GO:0035880~ embryonic nail plate
morphogenesis, GO:0042472~ inner ear morphogenesis,

GO:0043433~ negative regulation of sequence-specific DNA
binding transcription factor activity, GO:0060071~Wnt

signaling pathway, planar cell polarity pathway, GO:0090090~
negative regulation of canonical Wnt signaling pathway,

GO:1904693~midbrain morphogenesis

hsa04310: Wnt signaling pathway, hsa04390: Hippo
signaling pathway, hsa04550: signaling pathways
regulating pluripotency of stem cells, hsa04916:

melanogenesis, hsa05166:HTLV-I infection, hsa05200:
pathways in cancer, hsa05205: proteoglycans in cancer,

hsa05217: basal cell carcinoma

NEFL

GO:0000165~MAPK cascade, GO:0000226~microtubule
cytoskeleton organization, GO:0008089~ anterograde axonal

transport, GO:0008090~ retrograde axonal transport,
GO:0009636~ response to toxic substance, GO:0014012~

peripheral nervous system axon regeneration, GO:0019896~
axonal transport of mitochondrion, GO:0021510~ spinal cord

development, GO:0021766~ hippocampus development,
GO:0021987~ cerebral cortex development, GO:0031133~
regulation of axon diameter, GO:0033693~ neurofilament
bundle assembly, GO:0040011~ locomotion, GO:0043434~

response to peptide hormone, GO:0043524~ negative
regulation of neuron apoptotic process, GO:0043547~ positive
regulation of GTPase activity, GO:0045105~ intermediate

filament polymerization or depolymerization, GO:0045109~
intermediate filament organization, GO:0048812~ neuron

projection morphogenesis, GO:0050772~ positive regulation of
axonogenesis, GO:0050885~ neuromuscular process

controlling balance, GO:0051258~ protein polymerization,
GO:0051412~ response to corticosterone, GO:0061564~ axon
development, GO:1903935~ response to sodium arsenite,

GO:1903937~ response to acrylamide

hsa05014: amyotrophic lateral sclerosis (ALS),

ZNF676
GO:0006351~ transcription, DNA-templated, GO:0006355~

regulation of transcription, DNA-templated

PROX2

GO:0000122~ negative regulation of transcription from RNA
polymerase II promoter, GO:0006351~ transcription, DNA-
templated, GO:0030182~ neuron differentiation, GO:0045944
~ positive regulation of transcription from RNA polymerase II
promoter, GO:0055007~ cardiac muscle cell differentiation

HMMR
GO:0000086~G2/M transition of mitotic cell cycle,

GO:0030214~ hyaluronan catabolic process
hsa04512: ECM-receptor interaction

GEM

GO:0006955~ immune response, GO:0007067~mitotic
nuclear division, GO:0007165~ signal transduction,
GO:0007166~ cell surface receptor signaling pathway,

GO:0007264~ small GTPase mediated signal transduction,
GO:0051276~ chromosome organization, GO:0051310~

metaphase plate congression

HESX1

GO:0006351~ transcription, DNA-templated, GO:0007420~
brain development,GO:0030916~ otic vesicle formation,
GO:0043584~ nose development, GO:0045892~ negative

regulation of transcription, DNA-templated, GO:0048853~
forebrain morphogenesis,

hsa04550: signaling pathways regulating pluripotency
of stem cells
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Table 1: Continued.

ID Biological process KEGG pathway

PRDM6

GO:0006351~ transcription, DNA-templated, GO:0022008~
neurogenesis, GO:0034968~ histone lysine methylation,
GO:0045892~ negative regulation of transcription, DNA-
templated, GO:0051151~ negative regulation of smooth

muscle cell differentiation

RUNDC3B

S100B

GO:0007409~ axonogenesis, GO:0007417~ central nervous
system development, GO:0007611~ learning or memory,
GO:0007613~memory, GO:0008283~ cell proliferation,
GO:0008284~ positive regulation of cell proliferation,

GO:0008360~ regulation of cell shape, GO:0043065~ positive
regulation of apoptotic process, GO:0043123~ positive
regulation of I-kappaB kinase/NF-kappaB signaling,

GO:0045087~ innate immune response, GO:0048168~
regulation of neuronal synaptic plasticity, GO:0048708~

astrocyte differentiation, GO:0051384~ response to
glucocorticoid, GO:0051597~ response to methylmercury,

GO:0060291~ long-term synaptic potentiation, GO:0071456~
cellular response to hypoxia, GO:2001015~ negative regulation

of skeletal muscle cell differentiation

CENPS

GO:0000712~ resolution of meiotic recombination
intermediates, GO:0006281~DNA repair, GO:0006312~

mitotic recombination, GO:0006974~ cellular response to DNA
damage stimulus, GO:0007062~ sister chromatid cohesion,
GO:0007067~mitotic nuclear division, GO:0031297~

replication fork processing, GO:0031398~ positive regulation of
protein ubiquitination, GO:0034080~CENP-A containing
nucleosome assembly, GO:0036297~ interstrand cross-link

repair, GO:0051301~ cell division, GO:0051382~
kinetochore assembly

hsa03460: Fanconi anemia pathway

C10orf105

GZMA

GO:0006915~ apoptotic process, GO:0006955~ immune
response, GO:0019835~ cytolysis, GO:0032078~ negative

regulation of endodeoxyribonuclease activity, GO:0043065~
positive regulation of apoptotic process, GO:0043392~ negative
regulation of DNA binding, GO:0051354~ negative regulation
of oxidoreductase activity, GO:0051603~ proteolysis involved

in cellular protein catabolic process

hsa04080: neuroactive ligand-receptor interaction

NEBL GO:0071691~ cardiac muscle thin filament assembly

RNF43

GO:0016055~Wnt signaling pathway, GO:0016567~ protein
ubiquitination, GO:0030178~ negative regulation of Wnt
signaling pathway, GO:0038018~Wnt receptor catabolic
process, GO:0042787~ protein ubiquitination involved in

ubiquitin-dependent protein catabolic process, GO:0072089~
stem cell proliferation,

SPINK2

GO:0002176~male germ cell proliferation, GO:0007286~
spermatid development, GO:0009566~ fertilization,

GO:0043065~ positive regulation of apoptotic process,
GO:0060046~ regulation of acrosome reaction, GO:0072520~

seminiferous tubule development, GO:1900004~ negative
regulation of serine-type endopeptidase activity
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2.5. Construction of PPI Network and LASSO Model. To fur-
ther evaluate the functions of the candidate genes, the PPI
network was constructed by IPA (v01-18-05) to explore the
gene-related pathways. Besides, a LASSO model was estab-
lished by the candidate genes using the glmnet R package
(v4.0-2) [31]. The ROC curve was drawn by the pROC R
package (v1.16.12) and used to analyze the ability of the
model and gene to distinguish the COPD and normal
samples [32]. The higher the area under the curve (AUC),
the stronger the predictive capacity.

3. Results

3.1. Selection of Coexpressed Genes Related to Macrophage
Polarization. The coexpression network of the 21 samples
was divided into 26 modules. We had chosen the soft thresh-
old power 14 (marked with blue) to define the adjacency
matrix based on the criterion of approximate scale-free
topology (Figure 1(a)). The modules whose eigengenes were
correlated above 0.6 would be merged (Figure 1(b)). Subse-
quently, the analysis of the relationship of the modules and
the traits suggested that multiple modules (black, brown,
and midnight blue) were closely related to one or more traits,
especially the black module, which was the one with the
highest correlation coefficient strongly associated with the
macrophage polarization (Figure 1(c)). The black module
contained 4922 eignegenes (Supplementary Table 2). Thus,
the black module was selected as the coexpressed genes
related to macrophage polarization.

3.2. Candidate Gene Identification. A total of 203 DEGs was
generated between the COPD and normal samples and

shown by a volcano plot (Figure 2(a)), including 82
upregulated genes (Supplementary Table 3) and 121
downregulated genes (Supplementary Table 4). The DEGs
were overlapped with the 4922 eignegenes in the black
module (Figure 2(b)), obtaining 25 genes as the candidate
genes related to COPD and macrophage polarization. The
candidate genes were listed in Supplementary Table 5, and
their expression was shown by a heatmap which exhibited
an obvious difference between the COPD and normal
samples (Figure 2(c)). Almost all of the candidate genes in
COPD samples had lower expressions compared to that in
normal samples, except for C10orf105 which was highly
expressed in COPD samples, suggesting that it enabled
these candidate genes related to macrophage polarization to
commendably distinguish COPD from normal samples.

3.3. Functional Annotations of the Candidate Genes. To fur-
ther explore the functions of the candidate genes, func-
tional annotations were conducted by DAVID. Only 18
of the 25 candidate genes received corresponding func-
tional annotations. As shown in Table 1, GEM, S100B,
and GZMA participated in the immune response, which
were considered the candidate genes for subsequent analy-
ses. Macrophages are traditional innate immunocytes, as
well as being involved into adaptive immune response.
Macrophage polarization is a dynamic process, macro-
phages switch reversibly between M1 (proinflammatory)
phenotype and M2 (anti-inflammatory) phenotype which
is implicated in the immune response [33]. Therefore, we
next would attempt to investigate the correlation between
the candidate genes related to macrophage polarization
and immunity.

Table 1: Continued.

ID Biological process KEGG pathway

UTS2

GO:0001666~ response to hypoxia, GO:0003105~ negative
regulation of glomerular filtration, GO:0006936~muscle
contraction, GO:0007204~ positive regulation of cytosolic
calcium ion concentration, GO:0007268~ chemical synaptic
transmission, GO:0008217~ regulation of blood pressure,

GO:0010459~ negative regulation of heart rate, GO:0010460~
positive regulation of heart rate, GO:0010763~ positive
regulation of fibroblast migration, GO:0010841~ positive
regulation of circadian sleep/wake cycle, wakefulness,

GO:0032224~ positive regulation of synaptic transmission,
cholinergic, GO:0032967~ positive regulation of collagen

biosynthetic process, GO:0033574~ response to testosterone,
GO:0035811~ negative regulation of urine volume,

GO:0035814~ negative regulation of renal sodium excretion,
GO:0042312~ regulation of vasodilation, GO:0042493~
response to drug, GO:0045597~ positive regulation of cell

differentiation, GO:0045766~ positive regulation of
angiogenesis,GO:0045776~ negative regulation of blood

pressure, GO:0045777~ positive regulation of blood pressure,
GO:0045909~ positive regulation of vasodilation, GO:0046005

~ positive regulation of circadian sleep/wake cycle, REM
sleep,GO:0046676~ negative regulation of insulin

secretion,GO:0048146~ positive regulation of fibroblast
proliferation,
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It was worth noting that some genes were involved in the
process of neuronal activity, such as CBR3, FZD6, NEFL,
PROX2, PRDM6, S100B, and GZMA. NEFL was found to be
involved in amyotrophic lateral sclerosis- (ALS-) related sig-
naling pathways at the same time. Here, we speculated that
when COPD occurred, these genes were regulated by macro-
phage polarization, which in turn affected motor neuron
activity, resulting in motor neuron atrophy, and motor weak-
ness and atrophy (like ALS). This may be the reason why
patients with COPD often accompany unexplained skeletal
muscle atrophy [34].

3.4. Relationship of the Candidate Genes with Immune Cells.
To explore the correlation between the candidate genes and
immunity, we analyzed the score of immune cells in the
COPD and normal samples, showing that only the score of
B cells had a significant difference between the COPD and
normal samples. Compared with normal samples, score of
the B cells was significantly reduced in the COPD samples
(p value < 0.05, Figure 3(a)). But, GEM, S100B and GZMA
were not significantly associated with the score of B cells
(all p value > 0.05, Figure 3(b)), which might be caused by
too small samples. To further study the correlation between
the candidate genes and B cells, we downloaded the 26
marker genes from a literature with Immunology Journal
[35]. Correlation of the candidate genes with the 26 marker
genes were displayed by a heatmap (Figure 3(c)), suggesting
that GEM was significantly negatively correlated with two
marker molecules (BLK and MICAL3, all p values < 0.05),
S100B was significantly positively correlated with one marker
molecule (GNG7, p value < 0.05), while GZMA was not cor-
related with any marker molecules. Thus, it can be seen that
GEM and S100Bmay participate in the progression of COPD
via regulating activity of B cells.

3.5. Involvement of the Candidate Genes in the B Cell Receptor
Signaling Pathway. The B cell receptor signaling pathway is
of great importance for B cell survival and proliferation.
The B cell receptor aberrantly expressed on B cells contrib-
utes to the multiple disease pathogenesis, and its signaling
pathway is currently the target of several therapeutic strate-
gies [36]. Therefore, we investigated the correlation of the
candidate genes with the genes in the B cell receptor signaling
pathway which were obtained from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Figure 4(a)). The
result indicated that GEM was highly associated with the
genes in the PI3K/Akt/GSK3β signaling pathway (AKT and
GSK3B, all p values < 0.05), regulation of the actin cytoskele-
ton (BCR, LYN, and RAC, all p values < 0.05), and the cal-
cium signaling pathway (SYK, PLCG2, NFAT5, and
NFATC1, all p values < 0.05) and might be partially related
to the NF-κB signaling pathway (only MALT1, IKBKB,
NFKB2, and IKB, all p values < 0.05). Besides, no correlation
between GEM and the MAPK signaling pathway was found
(Figure 4(b)). Genes and pathways significantly related to
GEMwere marked in Figure 4(a). These results indicated that
GEM might regulate B cell activity through the
PI3K/Akt/GSK3β signaling pathway, regulation of actin
cytoskeleton, and calcium signaling pathway, as well as the
NF-κB signaling pathway.

3.6. Construction of PPI Network. To further verify GEM-reg-
ulated genes in pathways, all genes were used to construct a
PPI network based on the screening of DEGs (Figure 5(a)),
in which GEM, S100B, and GZMA were signed. In the net-
work, red represents upregulated genes, and green represents
downregulated genes. Gray indicates that the element is a
predicted element. The solid line represents the proteins that
have been experimentally confirmed to have physical contact
with each other, and the dotted line represents that the
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interaction between the proteins is physically combined
without being confirmed by the interaction experiment.
The color of the line has no special meaning, and the arrow
represents the object of action. Then, to show the interactions
of GEM with other genes more clearly, we individually
selected the PPI network of GEM. As shown in Figure 5(b),
GEM was associated with Akt which was a gene that inter-

acted with the most genes. This was consistent with our
above results that GEM might participate in the regulation
of the PI3K/Akt/GSK3β signaling pathway.

3.7. Diagnostic Value of GEM. To investigate the accuracy of
the genes for distinguishing the COPD samples from normal
samples, we firstly constructed a LASSO model using the
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Figure 4: Association between candidate biomarkers and B cell receptor signaling pathway. (a) Regulation network of the B cell receptor
signaling pathway. (b) Heatmap exhibited the correlation between candidate biomarkers and the genes in the B cell receptor signaling
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Figure 5: Continued.
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three candidate genes (Figure 6(a)). The accuracy of the
LASSO model was verified by the ROC curve, and the AUC
was 0.717 (Figure 6(b)). Meanwhile, we plotted the other
ROC curves with only GEM, and the AUC was 0:844 >
0:717 (Figure 6(c)). These results suggested that GEM, rather
than the three candidate genes, possessed an excellent accu-
racy in distinguishing COPD from normal samples.

4. Discussion

COPD, characterized by persistent airflow obstruction, is an
irreversible and preventable disease [37]. Although from
1990 to 2015, the death rate of COPD has gone down [38,
39], COPD will become the third leading cause of death
worldwide in 2030 [40]. However, the diagnosis of COPD
mainly relied on the spirometry values and clinical symp-
toms, which is full of continual underdiagnosis [41]. Hence,
it is urgent to further study the molecular mechanism and

screen novel and reliable biomarkers to improve the diagno-
sis of COPD.

Notably, there are some researches that focused on the
GSE124180 dataset. For example, the authors uploaded the
GSE124180 dataset mainly compared the correlation of gene
expression across COPD-relevant tissues, including large-
airway epithelium, alveolar macrophage, and peripheral
blood, and explored the biological functions of overlapped
genes among three tissues [42]. On the other hand, Baschal
et al. compared the gene expressions across the lower airway,
sinus, and middle ear tissues using the GSE124180 dataset
and other data [43]. Different from these two researches,
our study mainly focused on the role of macrophage
polarization in COPD and identification of macrophage
polarization-related genes as the biomarkers of COPD based
on the peripheral blood of the GSE124180 dataset.

In our study, we identified 25 genes related to COPD and
macrophage polarization, which were considered candidate
genes for further analysis (Figure 2(b), Supplementary
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Table 5). Moreover, to further explore the functions of the 25
candidate genes, we performed the GO annotation and
KEGG enrichment analyses. We found that for the
biological process, these 25 candidate genes mainly
involved in immune response, signal transduction, cell
proliferation, negative regulation of skeletal muscle cell
differentiation, and so on (Table 1). The analysis of KEGG
pathway enrichment showed that these 25 genes mainly
related to metabolic pathways, Wnt signaling pathway,
Hippo signaling pathway, amyotrophic lateral sclerosis,
ECM-receptor interaction, and so on (Table 1). Increasing
evidence has revealed that obesity can affect the morbidity
of COPD [44, 45]. Thus, we speculated that metabolic
pathways may play an important role in COPD. In
addition, it has been suggested that Wnt signaling is
associated with the inflammatory response in lung alveolar
epithelial cells [46]. Especially, in macrophages, Wnt5a can

induce inflammatory response via FZD5 and Wnt3a can
mediate anti-inflammatory effects by the Wnt/β-catenin
signaling pathway [47]. Therefore, theses 25 genes might be
associated with the COPD.

Clearly, the results of functional annotations for the 25
genes suggested that GEM, S100B, and GZMA participated
in the immune response and were selected as the hub candi-
date genes (Table 1).GEM, a small GTP binding, is a member
of RAS superfamily of monomeric G-proteins [48]. It has
been suggested that GEM is involved in signal transduction
[49]. Although it was not reported that GEM was related to
COPD in recent studies, it has been suggested that GEM is
related to the skeletal muscle for type 2 diabetes [49]. Thus,
we speculated that GEM might be related to skeletal muscle
dysfunction of COPD. S100B, a member of the S100 protein
family for Ca2+-binding proteins of the EF-hand type, is
increasingly being studied in the central nervous system
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Figure 6: Investigation of the accuracy of the candidate biomarkers for distinguishing the COPD samples from normal samples. (a)
Construction of the LASSO model based on 3 candidate biomarkers: (A) image showed the log (lambda) value of the 3 candidate
biomarkers and (B) image showed the distribution of the log (lambda) value in the LASSO model. (c) ROC curve for the LASSO model.
(d) ROC curve for the GEM.
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[50]. Moreover, a recent study has proved that S100B is asso-
ciated with the reparative process in acute muscle injury and
muscular dystrophy by regulating the M1/M2 macrophage
levels [51]. In addition, it has been also found that S100B
upregulated TNF-α and M1 markers in RAW264.7 macro-
phages [52]. S100B could participate in the FGFR1-
mediated inflammatory response in osteoarthritis [53].
Besides, S100B was necessary for the progression of vascular
immune responses in neonatally infected rat brains [54].
GZMA, a member of the serine protease family, may play a
key role for the pathophysiology of different inflammatory
disorders by acting as a proinflammatory mediator [55–57].
Garzón-Tituaña et al. also found that GZMA could serve as
a proinflammatory mediator in macrophages by inducing
the TLR4-dependent expression of IL-6 and TNF-α [58].
On the other hand, it has been reported that GZMA is
involved in the COPD [59]. Notably, S100B and GZMA were
associated with ALS-related signaling pathways. It has been
demonstrated that muscle dysfunction is an important com-
plication for COPD patients. Generally, COPD patients
showed greater susceptibility muscle fatigue of the lower limb
compared to healthy people [60–62]. Moreover, muscle mass
loss or atrophy usually lead to the muscle dysfunction in
COPD patients [34, 63]. Thus, GEM, S100B, and GZMA
might be involved in the muscle dysfunction for COPD
patients by ALS-related signaling pathways and might partic-
ipate in the inflammatory response in COPD by regulating
macrophage polarization, and these genes might act as the
potential therapeutic targets for muscle atrophy of COPD
patients.

Interestingly,GEMwas significantly negatively correlated
with BLK andMICAL3, which are the two marker molecules
for B cells, and S100B was significantly positively correlated
with the GNG7 marker for B cells (Figure 3(c)). Moreover,
we found that GEM was highly associated with the genes in
the PI3K/Akt/GSK3β signaling pathway, regulation of actin
cytoskeleton, and calcium signaling pathway and might be
partially related to the NF-κB signaling pathway
(Figure 4(a)). Especially, GEM was related to the Akt in the
PPI network (Figure 5(b)). These findings suggested that
GEM and S100B might participate in the progression of
COPD via regulating the activity of B cells and GEM might
participate in the regulation of the PI3K/Akt/GSK3β signal-
ing pathway. Apart from the macrophages, T lymphocytes
also played an important role in COPD [64]. For example,
Gosman et al. revealed that the number of B cells in bronchial
biopsies of COPD was increased [65]. It has been revealed
that glycyrrhizic acid could alleviate inflammatory lung dis-
ease, including chronic obstructive pulmonary disease by
promoting the downstream PI3K/Akt/GSK3β signaling
pathway [66]. Furthermore, compelling evidence has sug-
gested that NF-κB signaling plays a key role in the airway
inflammation, including COPD [67]. Kim et al. also found
that PI3K/Akt and NF-κB signaling pathways were involved
in the emphysematous change in COPD [68]. Taken
together, these findings further suggested that S100B and
GEMmight serve as the therapeutic target and might become
the significant targets for drug identification and drug
designing of COPD.

Finally, we found GEM could more precisely distinguish
COPD from normal samples than the LASSO model
obtained by combined GEM, S100B, and GZMA
(Figure 6(c)). Hence, GEM could act as an independent
diagnostic biomarker for COPD.

5. Conclusions

In summary, our study for the first time analyzes the role of
macrophage polarization-related genes in COPD by
WGCNA. In the present study, we found that the GEM,
S100B, and GZMA might be the novel therapeutic targets
for COPD and GEM could act as an independent diagnostic
biomarker for COPD. Our findings may contribute to further
understanding the molecular mechanism and improving the
clinical diagnosis and treatment for COPD. However, there
are still many limitations in this study, for instance, sample
limitation and experiment limitation. Therefore, further
experimental studies are essential for further verifying the
functions and mechanisms of GEM, S100B, and GZMA in
COPD.
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