
NeuroImage: Clinical 8 (2015) 606–610

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Handling changes in MRI acquisition parameters in modeling whole
brain lesion volume and atrophy data in multiple sclerosis subjects:
Comparison of linear mixed-effect models
Alicia S. ChuaMSa, Svetlana EgorovaMD, PhDa,b, Mark C. AndersonMSa, Mariann Polgar-TurcsanyiMSa,
Tanuja ChitnisMDa,b, Howard L. WeinerMDa,b, Charles R.G. GuttmannMDa,d,
Rohit BakshiMDa,b,d, Brian C. HealyPhDa,b,c,*
aPartners Multiple Sclerosis Center, Brigham and Women3s Hospital, Boston, MA, USA
bDepartment of Neurology, Harvard Medical School, Boston, MA, USA
cBiostatistics Center, Massachusetts General Hospital, Boston, MA, USA
dDepartment of Radiology, Brigham and Women3s Hospital, Boston, MA, USA
* Corresponding author at: Partners Multiple Sclerosis
602, Brookline, MA 02445, USA.

E-mail address: bchealy@partners.org (B.C. Healy).

http://dx.doi.org/10.1016/j.nicl.2015.06.009
2213-1582/© 2015 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 April 2015
Received in revised form 24 June 2015
Accepted 28 June 2015
Available online 2 July 2015

Keywords:
Multiple sclerosis
MRI
Brain atrophy
T2 lesion
Mixed-effect models
Magnetic resonance imaging (MRI) of the brain provides important outcome measures in the longitudinal eval-
uation of disease activity and progression in MS subjects. Two common measures derived from brain MRI scans
are the brain parenchymal fraction (BPF) and T2hyperintense lesion volume (T2LV), and thesemeasures are rou-
tinely assessed longitudinally in clinical trials and observational studies.Whenmeasuring each outcome longitu-
dinally, observed changes may be potentially confounded by variability in MRI acquisition parameters between
scans. In order to accurately model longitudinal change, the acquisition parameters should thus be considered in
statistical models. In this paper, several models for including protocol as well as individual MRI acquisition pa-
rameters in linear mixed models were compared using a large dataset of 3453 longitudinal MRI scans from
1341 subjects enrolled in the CLIMB study, and model fit indices were compared across the models. The model
that best explained the variance in BPF data was a random intercept and random slopewith protocol specific re-
sidual variance alongwith the following fixed-effects: baseline age, baseline disease duration, protocol and study
time. The model that best explained the variance in T2LV was a random intercept and random slope along with
the following fixed-effects: baseline age, baseline disease duration, protocol and study time. In light of these
findings, future studies pertaining to BPF and T2LV outcomes should carefully account for the protocol factors
within longitudinal models to ensure that the disease trajectory of MS subjects can be assessedmore accurately.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the cen-
tral nervous system (CNS) that results in impairment of a range of func-
tions, including physical disability and cognitive dysfunction (Krupp
et al., 1989; Rao et al., 1991; Steinman, 2001). Magnetic resonance im-
aging (MRI) of the brain is an established tool tomonitor disease activity
and disease progression bymeasuring brain volume loss and lesion load
accrual (Miller et al., 1998). Whole brain volume loss, which can be es-
timated by the brain parenchymal fraction (BPF), is a commonmeasure
of neurodegeneration; while, brain lesion load, assessed by the T2 hy-
perintense lesion volume (T2LV), is a common measure of the total ce-
rebral burden of inflammatory/demyelinating foci in MS (Bermel and
Center, 1 Brookline Place, Suite

. This is an open access article under
Bakshi, 2006; Filippi et al., 2002; Fisher et al., 2002; Wei et al., 2004).
Many cross-sectional studies have compared these measures in groups
of MS subjects to show that increased T2LV and lower BPF reflect more
advanced disease. In addition to cross-sectional studies, many longitu-
dinal studies including the most recent clinical trials have assessed the
changes in these measures over time (Rudick et al., 2000; Zivadinov
et al., 2007). When measuring cross-sectional and longitudinal change
in each MRI measure, researchers must consider the potential impact
of between-subject and within-subject variations due to MRI acquisi-
tion protocols. To address the potential confounding effects associated
with changes in acquisition parameters, most clinical trials require
that all of the sites use the same protocols, and significant effort is
expended to ensure similarity across scanners.

Even though a well-controlled clinical trial provides the best
evidence regarding short-term changes in MRI measures, these studies
are generally limited to 2–3 years. To study longer timelines, investiga-
tors may need to rely on “real world” observational studies. Such
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Demographic characteristics of study subjects.

N subjects 1341

N scans 3453
% males 26.0
Baseline visit age
(years, mean(SD))

43.7 (11.2)

Race (%)
American Indian/Alaska Native 0.2
Asian 0.5
Black/African-American 3.0
More than one race 1.8
Native Hawaiian/Pacific Islander 0.1
White 92.8
Unknown/unreported 1.6

Ethnicity (%)
Hispanic or Latino 3.4
Non-Hispanic or Latino 95.1
Unknown/unreported 1.5

Disease category (%)
RRMS 73.3
PPMS 5.1
SPMS 17.2
PRMS 1.0
CIS 3.3

EDSS closest to baseline scan
(median, IQR)

1.5 (0.0, 2.5)

Median scans per person
(n, range)

2.0 (1.0–12.0)

Mean follow-up time
(years, mean(SD))

1.6 (1.8)

Legend: RRMS: relapsing–remitting multiple sclerosis; PPMS: primary progressive multi-
ple sclerosis; SPMS: secondary progressivemultiple sclerosis; PRMS:progressive relapsing
multiple sclerosis; CIS: clinically isolated syndrome; EDSS: expanded disability status
scale.
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observational studies typically involve variations in scanner platform
and acquisition protocol to meet the demands of routine clinical care
and ever-changing acquisition platforms and protocols. Therefore,
there is an unmet need to consider what statistical approaches may be
necessary to address the challenge of providing unbiased estimates of
intra-subject and inter-subject changes with time in the face of hetero-
geneously obtained MRI data.

Linearmixed-effect (LME)models (Fitzmaurice et al., 2012; Verbeke
andMolenberghs, 2009) have been shown to be efficient in performing
group-based inference for neuroimaging data, as shown in studies ana-
lyzing both functional MRI (fMRI) and structural MRI data (Bernal-
Rusiel et al., 2013; Bowman, 2014; Lange, 1999). LME models account
for both between-subject and within-subject variance components,
enabling researchers to obtain subject-specific estimatedmeans and ac-
count for unbalanced data due tomeasurements at irregular time points
of observation (Fitzmaurice et al., 2012; Verbeke and Molenberghs,
2009). Within the past decade, several MS researchers have aimed to
study subject-specific atrophy rates via the mixed-effect modeling
framework (Anderson et al., 2007; Jones et al., 2013; Liguori et al.,
2011). More recently, Jones et al. demonstrated that a mixed-effect
model is superior to a linear regressionmodel in explaining the brain at-
rophy rate. These investigators proposed including acquisition protocol
in LME models using a categorical variable for protocol (Jones et al.,
2013). Despite this initial investigation of the impact of protocol on
modeling disease course in MS, a comprehensive evaluation of the
possible fixed and random effects including those associated with
acquisition parameters has not been completed. Such assessment is
warranted to appropriately identify the mean response trajectory for
MRI data such as BPF and T2LV. The aim of this study was to build a
comprehensive model for the BPF and T2LV including subject-specific
(random) effects and MRI acquisition parameter (individually or
combined) (fixed) effects.

2. Methods

2.1. Subjects

Longitudinal MRI scans from 1341 subjects were selected from the
Comprehensive Longitudinal Investigation of Multiple Sclerosis at the
Brigham andWomen3s Hospital, Partners MS Center (CLIMB), an ongo-
ingprospective observational cohort study that began enrolling subjects
in 2000 (Gauthier et al., 2006). Inclusion criteria for the CLIMB study are
age ≥18 years and a clinically isolated syndrome (CIS) or diagnosis ofMS
according to the revised McDonald criteria (Polman et al., 2005).
Subjects have clinical visits every 6 months that include complete neu-
rological examinations and Expanded Disability Status Scale (EDSS) rat-
ings (Kurtzke, 1983). All subjects from the CLIMB cohort with available
MRI scans up to 6 years after study entry were included in this study.
We limited the follow-up time to 6 years in order to ensure that the sub-
set of subjects followed for much longer periods did not have too much
leverage on this analysis. Hence, scans for subjects that are greater than
6 years from their baseline scan were excluded. Demographic and
clinical characteristics of subjects are provided in Table 1.

2.2. Image acquisition and processing

BPF and T2LVwere calculated by applying an image analysis pipeline
to dual-echo, conventional spin-echo images (DE-CSE). Over the years,
some acquisition parameter variations were included in the DE-CSE
pulse sequence. All MRI scans were acquired on various 1.5 T Signa GE
scanners at the Brigham and Women3s Hospital (BWH), Boston,
Massachusetts, using at times a standard quadrature head coil, and at
other times a multichannel head coil (8 Channel High Resolution Brain
Array (8HR BRAIN)). DE-CSE MRI protocols were acquired axially with
pulse sequences including various combinations of following parameter
ranges: TR = 2216–3000 ms, TE1/TE2 30/80 ms, slice thickness 3 mm,
with no interslice gaps, resulting in a pixel size of 0.7813–0.9375 mm.
In this study, nineteen unique DE-CSE MRI protocols (i.e., variably pa-
rametrized DE-CSE MRI pulse sequences) were used as detailed in
Table 2. The original standard protocol in the CLIMB study was protocol
A. Over the years, this protocol had to be adapted because of operational
considerations, resulting in the 19 distinct protocols in Table 2.
Quantitative image analysis was performed from the dual-echo images
using an automated template-driven segmentation pipelinewith partial
volume effect correction (TDS+) (Wei et al., 2002) followed bymanual
editing of output segmentationmaps by an experienced observer. Large
scale data management and analysis was enabled by an image analysis
workflowmanagement system linked to our Image Centered Oracle MS
Database (Liu et al., 2005). The pipeline involves a semi-automated skull-
stripping editing procedure to derive the intracranial volume (ICV)
followed by automated segmentation of gray matter (GM), CSF, white
matter (WM), and white matter lesions through TDS+ (Wei et al.,
2002). BPF was calculated by the following formula: BPF =
(GM + WM + lesions)/ICC (Wei et al., 2004), where ICC is the volume
of the intracranial cavity serving as reference for individual head size
(Kikinis et al., 1992). After the pipeline was completed, all of the MRI
scans reported in this study (N = 3453) underwent manual correction
of automatically generated segmentationmaps of T2 lesions, brain paren-
chymal compartments and CSF by expert readers using 3D Slicer software
(Liu et al., 2005). We note that no correction for misclassification of T1
hypointensities was performed in our pipeline, but recent work from
our grouphas demonstrated that these hypointensities have a limited im-
pact on measures of BPF (Dell3Oglio et al., 2015).
2.3. Statistical analysis

Statistical analyses were conducted using the MIXED procedure in
the Statistical Analysis System (SAS) version 9.3 (Cary, NC). A cube



Table 2
Magnetic resonance imaging acquisition parameters in the CLIMB study.

Protocol N scans Coil Pixel spacing (mm) Pixel bandwidth (mm) Repetition time (ms) Scanner Name

A 2125 Head 0.9375 84.9219 3000 BWHa: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
B 41 Head 0.9375 84.9219 3000 BWH: Pike 2 — 75 Francis St., Boston, MA (1.5 T Scanner)
C 210 Head 0.9375 81.4062 3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
D 63 Head 0.9375 84.9219 b3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
E 75 8 HR Brainb 0.9375 84.9219 3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
F 31 8 HR Brain 0.9375 81.4062 3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
G 104 8 HR Brain 0.8594 84.9219 3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
H 30 8 HR Brain 0.8594 81.4062 3000 BWH: Pike 1 — 75 Francis St., Boston, MA (1.5 T Scanner)
I 24 8 HR Brain 0.8594 81.4062 3000 BWH: Pike 2 — 75 Francis St., Boston, MA (1.5 T Scanner)
J 181 8 HR Brain 0.8594 84.9219 b3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
K 13 8 HR Brain 0.8594 81.4062 b3000 BWH: Pike 1 — 75 Francis St., Boston, MA (1.5 T Scanner)
L 47 8 HR Brain 0.8594 81.4062 b3000 BWH: Pike 2 — 75 Francis St., Boston, MA (1.5 T Scanner)
M 225 8 HR Brain 0.7813 84.9219 3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
N 89 8 HR Brain 0.7813 81.4062 3000 BWH: Pike 1 — 75 Francis St., Boston, MA (1.5 T Scanner)
O 19 8 HR Brain 0.7813 81.4062 3000 BWH: Pike 2 — 75 Francis St., Boston, MA (1.5 T Scanner)
P 136 8 HR Brain 0.7813 84.9219 b3000 BWH: 221 Longwood Ave., Boston, MA (1.5 T Scanner)
Q 16 8 HR Brain 0.7813 81.4062 b3000 BWH: Pike 1 — 75 Francis St., Boston, MA (1.5 T Scanner)
R 12 8 HR Brain 0.7813 81.4062 b3000 BWH: Pike 2 — 75 Francis St., Boston, MA (1.5 T Scanner)
S 12 8 HR Brain 0.8203 81.4062 3000 BWH: Pike 1 — 75 Francis St., Boston, MA (1.5 T Scanner)

a BWH: Brigham and Women3s Hospital, Boston, MA.
b 8 HR Brain: 8 Channel High Resolution Brain Array.

Table 3
Model comparisons for brain parenchymal fraction.

Model comparison Smaller model AIC Larger model AIC Preferred model

Covariance models
A1 vs. A2 14,390.1 14,149.4 A2
A1 vs. A3 14,390.1 13,995.4 A3
A2 vs. A3 14,149.4 13,995.4 A3

Mean models
B1 vs. B2 14,029.6 13,983.0 B2
B2 vs. B3 13,983.0 13,992.1 B2
B4 vs. B2 14,004.5 13,983.0 B2
B5 vs. B3 14,009.7 13,992.1 B3
B4 vs. B5 14,004.5 14,009.7 B4

Legend: AIC: Akaike Information Criterion; for full description of models A1–A3 and
models B1–B5, please refer to the Statistical analysis section.
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root transformationwas applied to T2LV prior to analysis to avoid viola-
tion ofmodel assumptions. In addition, BPFwasmodeled as a percent to
allow easier interpretation of the model coefficients. Since the goal of
our analysis was the estimation of both the mean BPF and T2LV trajec-
tories over time with a set of serial measurements from subjects, an
LME model was used. In the process of model selection, several models
were proposed and investigated, but two main considerations were of
interest. First, using the most complex mean model, several potential
models for the covariance/random effect structures were compared.
Once the covariance/random effects structures were compared, several
models for the impact of protocol parameterization on the fixed effects
were assessed (Diggle et al., 2002).

For the assessment of the covariance structure, the model included
protocol, baseline age, baseline disease duration, study time and an in-
teraction term between protocol and study time. In terms of covariance
structure/ random effects, we compared three models: (A1) subject-
specific random intercept only, (A2) subject-specific random intercept
and study time effect, and (A3) subject-specific intercept and study
time effect with protocol specific residual variance. Although assess-
ment of protocol specific random study time effects was of interest,
many protocols failed to havemultiple observations on the same subject
so these variance components were not estimable in our dataset. In
order to compare models, Akaike Information Criterion (AIC) with the
“smaller-is-better” criterion was used. The regression equation for
each model and the associated SAS code for fitting the model are
shown in the Appendix.

After selection of the best covariance parameter model, selection of
the fixed effects was performed based on five possible models. The
firstmodel (Model B1) included age at the time of the visit, baseline dis-
ease duration and protocol as fixed effects. Each of the 19 protocols in
the study was given a separate intercept in this model. This model is
the same as the model from Jones et al. without the additional covari-
ates. Despite the appeal of using age at scan as the time metric, this
model makes the assumption that the cross-sectional and longitudinal
effects of age are the same. To assess this assumption, study age was
broken into two components (baseline age and study time) in Model
B2, but protocol remained in the model as a fixed effect. The third
model (Model B3) added protocol by study time interactions to the pre-
vious model (Model B2), to assess whether the estimated change with
time was different across the protocols. The fourth and fifth models
(Models B4 and B5) were similar to Models B2 and B3, but rather than
using a separate intercept for each of the protocols, the components of
the protocols were included as separate fixed effects. This approach
reduced the number of parameters to estimate but added the assump-
tion that the effect of each component of the protocol was independent
and additive. For the protocols in this study, protocols were defined
using these parameters: type of coil, pixel bandwidth, pixel size, repeti-
tion time, and scanner (Table 2).We note that echo timewas always the
same across all protocols so this parameter was not included. The re-
gression equation for each of the models and SAS code for fitting the
models are shown in the Appendix. In order to compare the models,
the AIC was used, as described above.

3. Results

3.1. BPF

Comparison of models for the selection of covariance parameters is
presented in at the top of Table 3; additional statistics from each of
the models are presented in Supplementary Table 1. The random inter-
cept and slopemodel (Model A2) was superior to the random intercept
only model (Model A1), and the improvement was substantial. Further,
the random intercept and slope model with protocol specific residual
variance (Model A3) was superior to the random intercept and slope
model. Therefore, Model A3 was the chosen covariance structure.

Using this covariance structure, the fit of the model with the speci-
fied fixed effects are shown in Table 3; additional statistics from each
of the models are presented in Supplementary Table 2. The results
show that the lowest AIC was attained with Model B2. This model
includes separate estimates for cross-sectional effect of age and the
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longitudinal changewith age, demonstrating the potential problems as-
sociated with using age at the MRI visit as the time metric in longitudi-
nalmodels for BPF. Further, a protocol by study time interactionwas not
found to add significantly to the model since Model B3 did not lead to
improvement over Model B2. Finally, the model including fixed effects
for each of the components of the protocol provided an inferior fit com-
pared to a model with a protocol specific effect, demonstrating that the
parameters for the protocols do not have simple additive effects on BPF,
asmight have been expected, given that individual protocol parameters
might have complex interactions towards the resulting image contrast
and noise characteristics. The final parameter estimates from model
B2 are shown in Supplementary Table 3.

3.2. T2LV

Comparison of models for the selection of covariance parameters is
presented at the top of Table 4; additional statistics for each of the
fixed effects models are shown in Supplementary Table 4. The random
intercept and slope model (Model A2) was superior to the random in-
tercept only model (Model A1), and the improvement was substantial.
For T2LV, the random intercept and slope model with protocol specific
residual variance (Model A3) could not be fit because the residual vari-
ance associatedwith one of the protocolswas estimated to be equal to 0.
Given the inability to estimate some of the parameters, Model A2 was
chosen for further analysis.

Using this covariance structure, the fit of the model with the speci-
fied fixed effects are shown in Table 4; additional statistics for each of
the fixed effects models are shown in Supplementary Table 5. The re-
sults show that the lowest AIC was attained with Models B2 and B5.
As for BPF, the results show that including separate estimates for
cross-sectional effect of age and the longitudinal change with age
showed superior fit compared to a model using age at the MRI visit as
the time metric. Further, a protocol by study time interaction was not
found to add significantly to the model since Model B3 did not lead to
improvement over Model B2. Finally, the model including fixed effects
for each of the components of the protocol provided an inferior fit rela-
tive to a model with a protocol specific effect. Interestingly, Model B5
had a similar AIC as Model B2, but Model B2 is easier to interpret so
this model is chosen as superior. The final parameter estimates from
Model B2 are shown in Supplementary Table 6.

4. Discussion

The aim of this studywas to build comprehensive models for the es-
timation of mean BPF and T2LV in MS subjects encompassing subject-
specific (random) effects and acquisition parameter (fixed) effects. A
series of models with different covariance parameters and models
of different fixed-effects were compared, and the optimal model
for BPF and T2LV was the same in terms of the fixed effects but differed
in terms of the variance components. For the BPF, the variance
Table 4
Model comparisons for cube root transformed T2 lesion volume.

Model comparison Smaller model AIC Larger model AIC Preferred model

Covariance models
A1 vs. A2 704.8 475.6 A2
A1 vs. A3 704.8 Failed to converge A1
A2 vs. A3 475.6 Failed to converge A2

Mean models
B1 vs. B2 322.2 292.8 B2
B2 vs. B3 292.8 302.7 B2
B2 vs. B4 292.8 302.9 B2
B3 vs. B5 302.7 290.8 B5
B4 vs. B5 302.9 290.8 B5

Legend: AIC: Akaike Information Criterion; for full description of models A1–A3 and
models B1–B5, please refer to the Statistical analysis section.
components included a random intercept and slope as well as protocol
specific variance terms, indicating that the residual variability associat-
ed with each of the protocols differed. For the T2LV, the random inter-
cept and slope model with equal variance across the protocols was
chosen due to the inability to estimate all the protocol specific variance
parameters. For each of the outcomes, protocol by study time interac-
tions were not found to significantly improve the models, but separate
parameters for the cross-sectional effect of age at study entry and the
within subject longitudinal change provided a superior fit compared
to a model with a single parameter for age.

Within the analysis of the BPF, the residual variability associated
with each of the protocols was found to differ, demonstrated by the im-
provement in model fit comparing Models A2 and A3. This result indi-
cates that the homoscedasticity assumption of many commonly used
models may be inefficient when subjects are measured using different
scanning protocols. When the estimated residual variances were inves-
tigated in Supplementary Table 3, the protocols with the largest devia-
tions from protocol A had the largest difference in terms of residual
variability. These results show that accounting for heteroscedasticity
due to protocol may be an important consideration in modeling BPF
data frommultiple protocols. In addition to the impact of protocol on re-
sidual variance, protocol was found to have an impact on the intercept
(p b 0.001 for overall effect of protocol in Model B2), but there was no
protocol by study time interaction (p = 0.06 from Model B3). Further,
including the components of the protocol as additive fixed effects failed
to improve model relative to including protocol specific fixed effects.

Within the analysis of the cube root transformation of T2LV, the
model with protocol specific residual variance failed to converge be-
cause the residual variance for one of the protocols was found to be
equal to 0. When this protocol was removed, the model with protocol
specific residual variance was observed to lead to improved fit, but
this model failed to converge with other fixed effects. Therefore, the
model with just a random intercept and slope was chosen as optimal
based on our dataset, but heteroscedastic variancemight be appropriate
in other datasets. In addition to the variance components, the compari-
son of the fixed effectsmodels showed that protocol had a significant ef-
fect (p b 0.001 for the overall effect of protocol in Model B2), but there
was no protocol by study time interaction (p = 0.10 from Model B3).
Interestingly, a larger number of protocols had a highly significant effect
on the intercept for the T2LV compared to the BPF. This results shows
that the impact of protocol appears larger for the T2LV, demonstrating
the importance of incorporating this into the models.

For both outcome measures, separate parameters for the cross-
sectional effect of age and the within subject change with age were
found to lead to an improved fit relative to a single parameter for the ef-
fect of age. In both models, the within subject change in the outcomes
with age was found to be larger than the cross-sectional effect of age.
Therefore, estimating the change with age using a single parameter
would underestimate the change with time for a specific subject.
Further work assessing the impact of age may provide more insight re-
garding this finding.

For this analysis, model selection was based on the AIC. The AIC
includes a penalty for model complexity, but an alternative measure
for model selection is the Bayesian Information Criterion (BIC). The
BIC has a larger penalty for model complexity compared to the AIC;
therefore, models with fewer parameters are favored by the BIC more
than the AIC. The BIC for each of the model compared in this paper are
also provided in the supplementary tables. When the BIC is used for
model selection, the same variance components were chosen, but
Model B4 was found to be superior to Model B2 in each case. This result
is driven by the fact that Model B4 required fewer parameters. At the
same time, we prefer Model B2 because we had sufficient sample size
to estimate all of the parameters in our model so choosing the model
with fewer parameters was not viewed as an advantage.

Our study has several limitations that warrant further discussion.
First, our results are based on a specific MRI processing pipeline. In
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particular, the reported results regarding brain atrophy are based on
analysis of BPF measured two channel (PD/T2 weighted MRI) pipeline
inwhich two variables (lesion volume and brain atrophy) aremeasured
simultaneously, while other pipelines measure normalized brain
volume using alternative approaches. To assess whether these results
apply to other brain atrophymeasures and processing pipelines, similar
analyses must be completed. Second, we were unable to assess the
impact of protocol on the random effect variances due to the limited
number of subjects who had repeated observations on themany proto-
cols. Furthermore, we did not assess the potential role of changes in the
post-processing pipeline. Thismay be especially relevant to the combin-
ing of existing datasets from multiple centers that have already been
processed by different analysis pipelines. Thus, future work will be
required to fully assess the range of deviations that may have an impact
on the random effect distributions, which includes the inter-rater
reliability of scan editing for both ICC and final segmentation correction.
Third, the presence of steroid treatment for a relapse at the time of the
MRI scan could have impacted the modeling of longitudinal change.
Therefore, future work investigating the impact of steroids/relapses at
the time of an MRI scan in modeling the longitudinal change of BPF
and T2LV is warranted. Finally, we note that this is an observational
study following subjects longitudinally. Our analysis only assessed the
impact of protocol parameters described in Table 2, but other potential
sources of variability including scanner changes could have impacted
the longitudinal changes. Therefore, the impact of other sources of
variability on the modeling of longitudinal changes will be a subject of
further research.

In conclusion, we believe that our proposed models for both
outcomes provide a good fit to the data. In light of these findings, future
research pertaining to BPF and T2LV outcomes should carefully account
for protocol in the analysis to ensure that the true disease trajectory of
MS subjects can be assessed.
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