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Abstract 

B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing 
methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor 
profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune 
repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted 
transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scal- 
able pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the 
Open OnDemand frame w ork, or e v en local desktops. bcRflo w utiliz es institutional configurations pro vided b y nf-core to ensure maximum porta- 
bility and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples 
from COVID-19 patients and healthy controls. We ha v e sho wn that bcRflo w streamlines the analy sis of BCR repertoires from non-targeted 
transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is a v ailable at 
https:// github.com/ Bioinformatics- Core- at- Childrens/bcRflow . 
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 cells are instrumental in orchestrating the adaptive immune
esponse, and dysregulation of B cell function contributes to
he pathogenesis of many immune-mediated diseases. Each B
ell clone expresses a unique antigen receptor known as the
 cell receptor (BCR), or immunoglobulins (Ig). These Ig are
omposed of two heavy chains (IGHs), and two light chains
IGLs) ( 1 ). There is a large degree of diversity in BCRs to rec-
gnize a wide variety of antigens; this diverse range of BCRs
xpressed by the total B cell population of an individual is
nown as the BCR repertoire ( 2 ). The diversity of BCR reper-
oires is largely attributed to recombination in the variable
V), diversity (D) and joining (J) regions of IGH gene seg-
ents ( 1 ). BCR diversity is also driven by somatic hypermu-

ation (SHM), where antibodies produced by B cells are fur-
her diversified to increase antigen binding affinity, as well
s IGH class switching, in which deletion and recombination
ccurs in the constant region to generate new isotypes ( 1 ).
he third complementarity-determining region of the Ig heavy
hain (CDR3) also plays a critical role in antigen recognition
nd binding affinity ( 1 ). 
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Advances in targeted B cell sequencing at the bulk and
single cell level enable the in-depth profiling of the BCR
repertoire at an unprecedented level. Interrogation of anti-
body repertoires at the sequence level includes commonly used
techniques which are polymerase chain reaction-based (PCR,
or amplicon-based) such as Ig-seq ( 3 ), LIBRA-seq ( 4 ) and
capture-based target enrichment ( 5 ). Single cell approaches
include single cell immune profiling by 10X Genomics plat-
form, and plate-based approaches such as SMART-seq ( 6 ) and
SPEC-seq ( 7 ). As BCR sequencing is rapidly evolving and pro-
ducing vast, highly complex datasets, a growing number of
bioinformatics tools and algorithms have also been developed.

An alternative approach to BCR profiling is to use im-
munoglobulin transcripts present in bulk RNA-seq data. The
ready availability of RNA-seq datasets has become common
in both basic as well as clinical studies and can serve as
functionally relevant information on immune receptor reper-
toires at no additional cost, by allowing further profiling of
these repertoires in existing disease studies ( 8 ). Separate im-
mune repertoire profiling could often be limited by tissue
availability and increases the cost of sequencing. In addition,
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transcriptome sequencing based BCR characterization al-
lows for revealing novel BCR variants or gene fusions that
may have not been targeted in a traditional targeted ap-
proach, thereby providing new insights into BCR diversity and
evolution. 

Given the ubiquity of non-targeted sequencing in trans-
lational and systems-level research, there is a notable in-
crease in systematic computational workflows to analyze non-
targeted data for T cell repertoire characterization ( 9 ). An ex-
ample of a non-targeted immunoinformatic workflow is the
TCR_nextflow pipeline ( 10 ), which was designed for end-to-
end T-cell receptor (TCR) alignment and analysis from bulk
transcriptomics data. In recent years, various studies have also
focused on characterizing and understanding the BCR reper-
toire through targeted bulk and single-cell data. One notable
example is nf-core / airrflow ( 11 ), a Nextflow pipeline devel-
oped for immune receptor repertoire analysis (both BCR and
TCR). Improved understanding of the BCR repertoire has ap-
plications in cancer therapy, vaccine development, autoim-
mune diseases, S AR S-CoV-2 infection, organ transplant, an-
tibody therapy, and risk assessments for environmental ex-
posure ( 12–14 ) Several existing algorithms such as MiXCR
( 15 ), BASIC ( 16 ), BraCeR ( 17 ), BALDR ( 18 ) and TRUST4
( 19 ) are used for BCR reconstruction from bulk and single
cell datasets. In addition, downstream analyses such as diver-
sity analysis, gene usage, and clonal abundance are performed
using immcantation ( https:// immcantation.readthedocs.io/ en/
stable/about.html ), Platypus ( 20 ) and immunarch ( https://
github.com/ immunomind/ immunarch ). Although many stud-
ies have investigated the BCR repertoire by targeted high-
throughput sequencing, a gold standard in the form of a
Nextflow pipeline is still missing for non-targeted data. This is
due to the wide variety of library preparation protocols, study
designs, and differences in downstream analyses based on the
objectives of the study and the available metadata. 

To this end, the bcRflow pipeline will provide a comprehen-
sive framework for immunologists to profile BCR repertoires
using bulk and single cell transcriptome sequencing datasets
to inform future studies. Researchers can utilize this pipeline
in complement to T cell receptor workflows or as a standalone
analysis to get a more holistic picture of adaptive immune re-
sponse without incurring the cost of targeted methods. 

Materials and methods 

Nextflow Implementation 

The bcRflow pipeline was developed using base Nextflow ( 21 )
(ver. 23.04.2) with DSL 2 enabled. It was constructed using
separate modules for each sub-process in the MiXCR pipeline,
as well as utilizing custom R scripts for the downstream pro-
cessing. To profile BCRs with bcRflow, users should provide a
comma-separated sheet of file paths containing transcriptomic
data and associated metadata; an example of this required
input can be found through the bcRflow GitHub repository.
bcRflow is then able to process samples and analyze using the
user’s preferred computing resource. Output from bcRflow in-
cludes intermediate files from MiXCR and final figures from
downstream analyses. Intermediate outputs from MiXCR in-
clude the .tsv report, .vdjca alignments, .clna / .clns clonotypes
and alignments, and the .json file for the ImMunoGeneTics
(IMGT) reference ( 22 ) used. The final output includes a snap-
shot of the downstream R environment as an .RData file and
figures in .pdf and .tiff formats. Currently, bcRflow supports
the analysis of paired-end bulk RNA-seq and 10 × 5 

′ GEX 

single-cell RNA-seq data, with planned expansion for addi- 
tional single-cell modalities. Thanks to the containerization 

utilities of Nextflow and Docker ( 23 ), users are not required 

to download any external packages other than Nextflow itself 
and either Docker or Singularity ( 24 ), depending on the user’s 
system. All other software dependencies are made available 
as a Docker container, which is automatically downloaded 

upon execution, and all relevant databases and R scripts for 
downstream analyses and visualization are provided with the 
pipeline. Comprehensive documentation outlining pipeline in- 
put and templates for sample metadata are provided in the 
bcRflow GitHub repository. 

VDJ segment alignment and assembly 

Raw reads in the form of FASTQ files from paired-end bulk 

or single cell transcriptome sequencing are used as input to 

the MiXCR algorithm (Ver 4.6.0). Of the benchmarked meth- 
ods for BCR reconstruction ( 25 ), we used the MiXCR algo- 
rithm as it allows for the imputation of germline sequences in 

sparse alignments of variable regions and stringent parame- 
ters for CDR3 alignment. TRUST4 was the only other BCR 

reconstruction option from the benchmarking study by An- 
dreani et al. developed for non-targeted bulk sequencing data.
However, TRUST4 lacks the capability to impute germline 
sequences whereas MiXCR provides various presets for se- 
quencing modalities and features a two-stage assembly for 
short reads. Germline imputation by the MiXCR algorithm 

helps fill gaps in assembly where reads map only partially, en- 
abling the export of full-length clonal sequences. Additionally,
MiXCR provides the option to include or exclude include par- 
tial alignments in specific gene regions and, to specifically pre- 
vent partial alignments in the CDR3 region, which is critical 
for BCR sequence reconstruction and accurate clonal identi- 
fication. To ensure precise clone identification, bcRflow opts 
not to impute or extend the CDR3 regions. The initial stage of 
the pipeline is the alignment of raw data against the reference 
sequences of annotated BCR gene segments from the external 
ImMunoGeneTics (IMGT) database ( 22 ). Two iterations of 
assemblePartial by MiXCR are used to assemble alignments 
only partially matching to the regions outside of the CDR3 

sequence. Clones are then fully assembled by the VDJ region 

and exported based on the immune receptor chain of interest 
(eg: IGH for the B cell heavy chain analysis). Non-productive 
reads (out of frame and stop codon containing variants) are 
not considered for further analysis. Each unique combination 

of CDR3, V and J gene alignments are termed as unique BCR 

sequences. Germline sequences are critical to assess the degree 
of somatic mutations and maturity of the repertoire and are in- 
ferred for each observed sequence using the germline database 
from IMGT. 

Basic repertoire analysis 

The diversity of the BCR repertoire is mainly attributed to V 

and J gene recombination, which can reveal the unique pat- 
terns and quantitative features for the classification of data 
from different samples ( 1 ). bcRflow offers simple visualiza- 
tions for preliminary comparisons of receptor composition 

such as isotype frequency, CDR3 length distribution (mea- 
sured in amino acid residues), and sequence logos highlight- 
ing the proportion of hydrophobic amino acids in the CDR3 

region. 

https://immcantation.readthedocs.io/en/stable/about.html
https://github.com/immunomind/immunarch
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ene usage 

ll species have a collection of germline V, D and J genes to se-
ect from when generating antibodies. The detailed landscape
f germline gene expression output by bcRflow is determined
sing the IGHV and IGHJ gene counts. We analyzed V and
 gene usage by calculating the proportion of sequences as-
igned to the V and J gene families for each sample and rep-
esented these values as a heatmap of IGHV genes across the
amples, and chord diagrams for V and J gene pairs. Addi-
ionally, we performed an odds ratio calculation comparing
 gene usage against control samples, calculating summary

tatistics via Fisher’s exact test. 

i ver sity metrics 

mmune repertoire diversity is one of the key features to enable
road antigen recognition and can be calculated at various lev-
ls based on the diversity of the V, D and J segments, estima-
ion of available repertoire frequency diversity and antibody
ineage reconstruction. We utilized several standard metrics to
rofile the repertoire diversity between sample groups. Sam-
ling depth is a drawback of non-targeted sequencing, espe-
ially in the context of diversity estimation ( 26 ). To mitigate
his, MiXCR was chosen for its proven ability to accurately
econstruct immunoglobulin repertoires and its built-in error
orrection capabilities ( 9 ). Additionally, the bcRflow pipeline
ncludes a ‘downsample’ parameter, which defaults to ‘TRUE’,
own-sampling data to the size of the smallest sample reper-
oire prior to any downstream analysis, ensuring improved ac-
uracy in diversity metric calculations. 

ill numbers 
ill numbers estimate both richness and evenness, and calcu-

ating Hill diversity at different levels of the order parameter q
rovides a holistic measure of diversity. As q increases, the Hill
umber gives increasing weight to the most abundant clones,
roviding a measure of dominance for hyperexpanded clones.
ill numbers are calculated as follows: 

D q = 

( 

S ∑ 

i =1 

p 

q 
i 

) 

1 
1 −q 

here S is the total number of clones, p i is the proportional
bundance of the i th clone, and q is the order parameter. 

epertoire evenness 
venness is defined as the distribution of the clonotypes or the
elative abundance of the clonotypes, and can be calculated
sing the Pielou index ( 27 ): 

Piel ou = 

− ∑ S 
i =1 

n i 
N 

l o g 2 
n i 
N 

l o g 2 ( S ) 

here S is the total number of clones, n i is the number of reads
n clone i , and N is the sum of all reads in the BCR repertoire
f a given sample. 
Shannon diversity is also widely used in antigen receptor

iversity analysis to measure uncertainty about the identity of
lones in each sample ( 28 ,29 ), as well as characterize and ana-
yze the entropy of information in immune repertoires. Shan-
on diversity is defined as: 

H 

′ = −
S ∑ 

i =1 

ln p i 
P i 
where p i = n i / N is the proportion of individuals of the i th
species, n i is the number of individuals of the i th species, N
is the total number of individuals, and S is the total number
of species. The Shannon index considers both clonal richness
(the number of different clones) and clonal abundance (pro-
portionality of clones), considering how equally clones are dis-
tributed within a repertoire. 

As another measure of evenness , the Gini coefficient is used
to measure the heterogeneity of different clones, estimating
how far the distribution of clones has extended beyond an
equal distribution by calculating the normalized area between
the Lorenz curve of clonal distribution and a line of perfect
evenness ( 30 ). Values of the Gini coefficient range from 0 to
1, where 0 is a fully equal distribution and 1 is a fully unequal
distribution, and can be calculated as follows: 

G = 

2 

∑ n 
i =1 i y i 

n 

∑ n 
i =1 y i 

c − n + 1 

n 

where y i is the number of reads for a given clone y , and n is
the total number of clones in the repertoire. 

Clonal di ver sity, expansion and tracking 

The similarity, or overlap, between the samples of the BCR
repertoire is often assessed by estimating the proportion or
number of clonotypes in each sample that are common to both
samples and is highly sensitive to sample sizes. 

Morisita–Horn similarity index 

The Morisita–Horn index accounts for both the number of
common clonotypes, and the distribution of the clone sizes,
and is sensitive to the clone size of the dominant clonotypes.
The index is defined as: 

C MH 

= 

2 

∑ c 
i =1 f i g i ∑ c 

i =1 

(
f 2 i + g 2 i 

)
where f i = n 1 i / N 1 and g i = n 2 i / N 2 . Here, n 1 i and n 2 i are the
clone sizes of the i th clonotype (i.e. number of copies of each
distinct CDR3 sequence for the BCR heavy chain) in samples 1
and 2, and N 1 and N 2 are the total number of BCRs in samples
1 and 2, respectively. The summations in the numerator and
the denominator are over all c clonotypes in both samples.
This index ranges between 0 and 1, with 0 and 1 representing
minimal and maximal similarity , respectively . 

Jaccard similarity 

J ( X, Y ) = 

| X ∩ Y 

| 
| X 

| + 

| Y 

| − | X ∩ Y 

| 
The Jaccard index measures similarity between sample sets

and is defined as the size of the intersection divided by the
size of the union of the sample sets. Here, Jaccard similarity
is calculated for each pair of samples and visualized as a ma-
trix, with values ranging from 0 to 1, where 0 indicates no
correlation and 1 indicates full correlation. 

Cosine similarity 

cos 
(
a, b 

) = 

a ∗ b (‖ a ‖ ∗ ‖ b‖ )
Cosine similarity utilizes the normalized dot product be-

tween two vectors, in this case BCR clonal abundance, to com-
pare repertoires on a per-sample level (e.g. samples a and b ).



4 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results are visualized as a matrix, showing each pairwise
similarity score on a range from −1 to 1, where −1 indicates
the samples are entirely distinct, 0 indicates no correlation be-
tween the repertoires, and 1 indicates that the samples are
identical. 

Species richness 
Also referred to as alpha diversity, richness represents the total
number of unique sequences in a sample but is impacted by
the sampling depth. Richness can be used to compare the BCR
repertoire differences within and between individuals and can
be calculated using Chao1 and Abundance-based Coverage
Estimators (ACE). Additional inferences regarding alpha di-
versity that are less sensitive to sampling depth can be cal-
culated using the inverse of Simpson’s index and the Gini–
Simpson index. The first of these metrics, Chao1, is calculated
as follows: 

Chao1 = S obs + 

n 

2 
1 

2 n 2 
, 

where S obs is the observed number of species, n 1 is the num-
ber of singletons (samples with count = a ), and n 2 is the num-
ber of doubletons (samples with count = 2). 

Abundance-based coverage estimation (ACE) is a widely
used measure of species richness in ecological studies, and is
often employed in BCR and TCR studies for estimating the to-
tal clonal count based on the observed abundance of clones,
particularly applicable when the sample count is less than or
equal to 10, calculated by: 

A CE = S abund + 

(
S rare 

C ACE 

)
+ 

(
F 1 

C ACE 

)
γ 2 A CE

and 

C ACE = 1 − F 1 
N 

where S abund is the number of species with count greater than
or equal to 10, S rare is the number of species with count less
than or equal to 10, F 1 is the number of singletons (species
observed only once in the sample) and N is the total number
of individuals in the sample. The estimation of the coefficient
of variation, γ 2 

ACE , is given by: 

γ 2 
ACE = max 

[ 

S rare 
∑ 10 

i =1 i ( i − 1 ) F i 
C ACE ( N rare ) ( N rare − 1 ) 

− 1 , 0 

] 

;

and the number of rare species, N rare is calculated as: 

N rare = 

10 ∑ 

i =1 

i F i ; where F i is the number of species in with 

count = i 

Simpson’s index, while not a direct measurement of species
richness, is a more robust representation of the general equa-
tion underlying species richness; values of Simpson’s index
are comparable to those of standard richness measures but
are less sensitive to sampling depth ( 27 ). Several transforma-
tions of the Simpson index are utilized as common measures
of diversity, notably the inverse Simpson and Gini-Simpson
indices. Simpson’s index is calculated as follows, measuring
the probability that two randomly selected reads come from
the same clone: 

D = 

S ∑ 

i =1 

p 

2 
i 

where p i is the proportional abundance for each clone, and S 
is the total number of clones. The lower the value of D , the 
greater the diversity of the population. A more intuitive rep- 
resentation of this is the inverse Simpson index, a commonly 
presented metric where higher values correlate with higher al- 
pha diversity: 

Inv er se − Simpson = 

1 

D 

Similarly, the Gini-Simpson index estimates the probability 
that two random reads stem from different clones ( 31 ), and is 
calculated as: 

Gini − Simpson = 1 − D 

Diversity 50 (D50) 
The D50 metric refers to the number of unique CDR3 se- 
quences that are present in the top 50% of the sequences, with 

a small D50 index suggestive of large dominant clones and can 

be used to compare the degree of clonal expansion and clonal 
dominance during immune response. 

Class-switching recombination 

One of the critical steps for antibody maturation occurs pre- 
dominantly in the germinal centers and is termed as class- 
switch recombination (CSR), where the immunoglobulin class 
is changed from one isotype to another. We investigated the 
CSR events using the BrepPhylo package in R and the dna- 
pars utility for constructing maximum parismony trees be- 
tween clones and the germline sequence. CDR3 amino acid 

sequences are clustered with at least 70% similarity using 
Levenshtein distance, then processed by BrepPhylo to con- 
struct lineage trees. BrepPhylo then uses these trees com- 
pare clonal sequences to IMGT germline sequences and cal- 
culates CSR events. Phylogenetic trees and associated calcu- 
lations are saved in the user-specified output directory under 
‘CSR_batchAnalysis’. Analysis was limited to clusters with 3 

or more members. Phylogenetic trees and associated calcula- 
tions are saved in the user-specified output directory under 
‘CSR_batchAnalysis’. BrepPhylo produces a graphical sum- 
mary of the distribution of CSR events separated by sub- 
classes, as well as CSR event frequency and class-switch dis- 
tance from germline. IgM and IgD are co-expressed on naïve 
B-cells, and M-D switches are primarily due to alternative 
splicing rather than much rarer true CSR events ( 32 ). To re- 
flect their co-expression, CSR events involving M and D iso- 
types are grouped into one category (M / D) in the BrepPhylo 

graphical output as utilized in previous studies ( 33 ). 

S omatic h ypermutation 

B cells respond to infection or immunization through somatic 
hypermutation (SHM), a process which diversifies the anti- 
bodies they produce, and results in an increase in the antigen 

binding affinity of the antibodies ( 1 ). The rate of SHM allows 
us to estimate the repertoire mutation, and the type of muta- 
tion contributing to the emergence of high affinity antibodies,
which is an asset for B cell repertoire analysis. To calculate 
the SHM rate for each clone, sequences were grouped by V 
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nd J genes and clustered based on Levenshtein distance of up
o 3 residues between CDR3 amino acid sequences. A max-
mum edit distance of 3 was used to define a unique cluster
f CDR3 sequences. V and J nucleotide sequences from each
luster were then built into lineages and aligned against their
espective germline sequences collected from IMGT ( 22 ) to
alculate mutations following the immunarch SHM pipeline.
alculated lineages were then used to build a phylogenetic tree

temming from the germline sequence to the clonal V and J
equence alignments using the repAlignLineage and repClon-
lFamily functions. Finally, the number of mutations relative
o the germline sequence for each clone was calculated via the
epSomaticHypermutation function; the SHM rate for each
lone was calculated as the number of total mutations divided
y the total nucleotide sequence length, minus the length of the
DR3 region. 

onvergent clustering of global CDR3 sequences 

etwork-based analysis of convergent immune response al-
ows us to model each clone as a node in a global network in
he case of bulk data, and a cell in terms of the single cell data.
ocal and global network properties of the resulting clonal
lusters provide insights into the structural organization of the
mmune network across the sample cohorts ( 34 ). The iden-
ification of public clones shared across samples or sample
roups is a valuable resource for understanding shared im-
une challenges as well as differential immune response ( 35 ).
y profiling the sequence-related properties of the shared or
ivergent clusters in conjunction with results from other anal-
ses, such as diversity estimation and somatic hypermutation
oad, researchers can gain comprehensive insights into shared
ene usage and convergent immune responses in their groups
f interest. 
To create a set of convergent clusters across sample co-

orts, unique CDR3aa sequences from all samples regard-
ess of clinical severity were grouped by their specific V and J
ene names and their CDR3 amino acid (CDR3aa) sequence
ength. Levenshtein distance was calculated between CDR3aa
equences within these groups generating adjacency matri-
es of sequence similarity. CDR3 amino acid sequences from
hese groups were then clustered, with clusters defined by at
east 70% CDR3aa sequence similarity. For added flexibility,
cRflow includes a ‘threshold’ parameter that allows users to
et a sequence similarity threshold to adjust the stringency of
istance-based clustering. Large clusters of 10 or more unique
equences were subset for further analysis. Large clusters were
hen visualized using a bar plot ranked by cluster size, colored
y sample cohort and sized by the number of contributing
equences, for identification of convergent clusters shared be-
ween sample groups. 

Selected large clusters of clones from multiple sample co-
orts were visualized as sequence similarity networks to fur-
her profile convergent immune response between groups.
nique sequences are modeled as nodes in the network, and
dges are weighted by the Levenshtein distances between
DR3aa sequences. Undirected network diagrams were gen-

rated using the igraph R package, with node color indicating
roup designations and edge thickness signifying relative se-
uence similarity (ranging from 70–100%). As an additional
epresentation of sequence similarity, sequence logo plots were
reated to visualize the probability and charge of amino acids
ithin the clustered CDR3 sequences. 
Statistical tests and visualization 

Statistical analysis was performed in R (v 4.3.0). Fisher’s exact
test was used to assess the difference in gene usage segments
between the samples. To characterize the difference between
the samples, group-wise comparisons were performed using
the Kruskal–Wallis test. Unless indicated otherwise, multiple
hypothesis testing was corrected using the Holm–Bonferroni
method, and adjusted P -values < 0.05 were considered sig-
nificant. Data visualization was performed using the follow-
ing R packages: ggplot2 ( 36 ), BrepPhylo ( https://github.com/
Fraternalilab/BrepPhylo ), immunarch, igraph ( https://cran.r-
project.org/package=igraph ) and ComplexHeatmap ( 37 ). 

Results 

Repertoire reconstruction from bulk transcriptome 

data 

The step-by-step pipeline for the processing of BCR repertoire
from whole transcriptome data is summarized in Figure 1 . To
demonstrate the functionality and efficiency of the bcRflow
pipeline, we applied our pipeline to bulk transcriptome data
downloaded from the Gene Expression Omnibus (GEO) ( 38 ).
The bulk data consisted of longitudinal samples sequenced
from the peripheral blood mononuclear cells of 22 COVID-
19 patients exhibiting clinical heterogeneity ranging from
seronegative patients exposed to COVID-19 to severe symp-
toms, together with seven healthy controls collected prior to
the COVID-19 pandemic. Disease severity distinguishing the
mild and severe cohorts was determined in the original study
using a self-reported score screening for 38 different COVID-
19 symptoms developed by Duke University Medical Center,
with each symptom rated from 0 (none) to 4 (very severe), then
summed for a total score. Average scores were 12.8 ± 1.9 for
mild patients and 33.6 ± 2.4 for severe patients. The selected
sample cohort was composed of both male and female patients
and controls, and we utilized only seropositive mild and severe
samples for this study. In total there were 48 samples selected
(12 from each group), of which 45 samples were successfully
processed using the bcRflow pipeline, with 3 samples failing
due to low clonal counts. The characterization of B cell reper-
toire dynamics of immunoglobulin heavy chain (IGH) reper-
toires between healthy, exposed, mild, and severe disease were
tracked through measures of BCR diversity, CDR3 distribu-
tion, gene segment usage, SHM rate, isotypes, and CSR be-
tween the groups. The resulting analysis and output format
allow unified processing and comparison of immune reper-
toires between the different sample groups. 

Here, we implement the bcRflow pipeline based on the
MiXCR algorithm ( 15 ), which allows for alignment and as-
sembly of clonal sequences from short read data, and export
exhaustive information about each clone including nucleotide
and amino acid sequences of gene features, gene assignments,
read counts, start and end points of key gene regions, and
many other statistics. In total, MiXCR successfully aligned,
assembled, annotated and exported 17 613 heavy-chain B
cell clones across all the groups. The distribution of clonal
counts across the sample cohorts was comparable and is as
follows: healthy: 2458 (median = 229); exposed: 4045 (me-
dian = 335); mild: 4258 (median = 338); severe: 6852 (me-
dian = 323.5). Our case study provides detailed insights on
BCR repertoire in COVID-19 using bulk transcriptomic data,

https://github.com/Fraternalilab/BrepPhylo
https://cran.r-project.org/package=igraph
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Figure 1. Pipeline o v ervie w. A graphical representation of the bcRflow Nextflow pipeline, with colored chords for the separate bulk and single-cell 
pipelines demonstrating how samples are processed and analyzed, from user input to final plot generation. Nodes along the path represent distinct 
modules / steps in the pipeline, and file icons highlight the type of file produced by each step which is passed to the subsequent module. The pathway 
terminates in the Downstream Analysis module, where figure icons highlight the different analyses performed using custom R scripts and standard 
packages. Created in BioRender. BioRender.com / h85m170. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contributing to a better understanding of the humoral immune
response after infection. 

For users interested in the application of bcRflow to ana-
lyze single-cell RNAseq data, we have included a case study
in the GitHub repository that compares BCR repertoires be-
tween long COVID and non-long COVID patients ( 39 ). This
study utilizes 10 × 5 

′ single-cell RNAseq data retrieved from
GEO (accession number GSE235050). We have not included
this case study in the results section for brevity, as the primary
difference between the single-cell and bulk RNAseq analysis
occurs in the alignment stage (Figure 1 ). 

BCR gene usage differs in receptor composition 

across disease severity 

The immense diversity of the BCR repertoire is attributed
to the V(D)J recombination of V, D and J gene segments
in various combinations, and the heavy chain plays a ma-
jor role in antigen-binding interactions in most antibodies.
Hence, we explored the preferential BCR gene usage bias of
V gene (IGHV) segments in disease severity when compared
to healthy controls. For V gene segments in the heavy chain,
IGHV3, IGHV1 and IGHV2 gene families were frequently 
used in both COVID-19 samples as well as healthy controls,
especially with > 70% of all BCRs accounted by IGHV3 and 

IGHV1 family (Figure 2 A). Notably, similar IGHV genes were 
utilized in S AR S-CoV-2 studies using antibody sequencing. In 

addition, the frequencies of gene segments in each IGHV fam- 
ily were assessed between COVID-19 samples and healthy 
controls at a P -value < 0.05 (Fisher’s exact test), and odd 

ratio > 1. IGHV1-18, IGHV1-69, IGHV4-34 and IGHV4-4 

were significantly increased in exposed samples when com- 
pared to healthy controls (Figure 2 B). Previous studies have 
investigated the role of IGHV4-34 in producing self-reactive 
antibodies through specific sequence motifs not found in other 
IGHV gene segments ( 40 ,41 ). Increased use of IGHV1-69,
and IGHV3-30 were observed in mild versus healthy con- 
trols (Figure 2 B) whereas severe versus healthy controls show 

an increased use of IGHV3-9, IGHV3-30-3, IGHV3-30 and 

IGHV3-33 (Figure 2 B) of the IGHV3 family ( 42 ). Increased 

use of IGHV3-30 and IGHV3-33 were previously reported 

in the BCR analysis of COVID-19 recovery patients versus 
healthy controls using V(D)J sequencing data ( 43–45 ). Addi- 
tionally, increased IGHV3-30 usage has been associated with 
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Figure 2. A ctiv ated B cell proliferation: IGHV and IGHJ gene usage. ( A ) Heatmap sho wing frequency of IGHV gene usage across samples with v arying 
disease se v erity. Each ro w cor responds to a V gene, each column cor responds to a sample, and the blue-red color spectrum indicates the frequency of 
the gene in the repertoire. Genes were hierarchically clustered by usage level across samples, highlighted by the dendrogram on the left y-axis. ( B ) Dot 
plots of the differential analysis of gene usage for multiple pairwise comparisons between sample groups. The red dots represent P < 0.05 (by Fisher’s 
exact test), and the gray dots represent P > 0.05. Odds Ratio is indicated in the x-axes. ( C ) Circos plots show the V and J segment pairs frequency in the 
BCR repertoires in representative samples of the different conditions. Arcs represent IGHV and IGHJ gene types with size relative to frequency. Colored 
links between gene type arcs represent unique IGHV and IGHJ combinations. 
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igher levels of plasma neutralization of S AR S-CoV2 in con-
alescent patients ( 43 ). Taken together, these results highlight
he differential usage bias of IGHV gene segments detected
hrough BCR profiling of bulk data and how it corroborates
o similar results from V(D)J, and antibody sequencing BCR
ata analysis. 
We then examined the V and J gene recombination as it
ainly contributes to the diversity of the BCR repertoire.
-J pairs were visualized using chord plots for representa-

ive samples from each sample cohort. The chord diagrams
n Figure 2 C show gene segments from the healthy con-
trols (IGHV3-23,3–30,3–33,3–48,4–31,4–39), exposed
(IGHV1-18,3–11,3–21,3–23,3–48,4–4,4–55,4–59), mild
(IGHV1-69,2–5,3–1,13–21,3–23,3–30,3–33,3–48,3–9,4–
34,4–39,5–10-1,5–51) and severe (IGHV1-24,1–69,2–
5,3–21,3–23,3–30,3–33,3–9,4–4) gene families. In terms
of the J segment, IGHJ4 is the most frequently enriched
segment consistent with previous studies ( 42 ,46 ). IGHJ3,
IGHJ5 and IGHJ6 were other J gene frequencies observed
in samples with mild, moderate, and severe symptoms, and
consistent with results from single cell immune sequencing
results ( 43 ). 
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Quantifying B cell receptor di ver sity 

We assessed the diversity between the repertoires of each sam-
ple using the R packages Vegan ( 47 ) and immunarch and
chose several metrics to cover multiple aspects of diversity.
In the context of BCR repertoire profiling, we focus on clono-
type abundance, richness (number of unique clones), evenness
(degree to which the different clonotypes are equally repre-
sented in the samples), and CDR3 sequence similarity. These
different measures each place varying levels of importance on
specific clonal characteristics. 

The complementarity determining region 3 (CDR3) is a
highly variable region in the BCR and has a critical role in anti-
gen recognition of B cells ( 48 ). We next explored the character-
istics of CDR3 length, and Figure 3 A depicts the distribution
of the CDR3 length in the heavy chain with the curves of the
violin plot representing the density of the values. The length
of CDR3 was concentrated in two lengths, 15 and 20 amino
acid residues. The largest length of 40 amino acid residues was
observed in mild samples. The proportion of BCRs with dif-
ferent CDR3 length was highly consistent between diseased
and healthy samples. 

Hill indices in Figure 3 B are a generalization of the species
richness, Shannon entropy and the Gini–Simpson index, and
define the BCR repertoire diversity as a function of a continu-
ous parameter q . The Hill number gradually decreased in the
healthy samples as q increased, but the exposed cohort inter-
estingly surpassed the severe in q 3–6. 

We used multiple measures to estimate the dominance of
clones, or clonal evenness, in a repertoire as shown in Fig-
ure 3 C. Pielou evenness in Figure 3 C represents Shannon en-
tropy scaled by the maximum number of clones per sample
and demonstrates the evenness of clones on a range of 0 to 1,
with 1 representing total evenness and 0 representing total un-
evenness. Similarly, the Gini coefficient quantifies the evenness
of the distribution and is used to represent the clonal distribu-
tion of the BCR repertoire. The value ranges from 0 (max-
imal diversity of the repertoire) to 1 (representing extreme
inequality). Neither the Gini coefficient nor Pielou evenness
metrics showed any statistically significant difference across
the sample groups. Lastly, the Shannon diversity index is a
common estimator of evenness, with a higher score indicating
higher diversity within the group. None of the groups showed
statistically significant differences in the Shannon diversity
estimation. 

As the most common approach to measure similarity, we
profiled repertoire overlap by computing the Jaccard in-
dex, cosine similarity, and Morisita’s overlap index using the
CDR3aa sequence. Most of these indices have a value be-
tween 0 (no similarity) to 1 (total similarity), and Figure 3 D
shows very little overlap in repertoires across COVID-19 dis-
ease severity. 

Most of the diversity metrics are dependent on the number
of sampled B cells, and need to be addressed before the metrics
are being compared. An alternative to that is to subsample
the largest repertoire to match the size of the smallest ones for
comparison purposes ( 26 ,49 ). Thus, caution must be exercised
while interpreting and comparing immune repertoire diversity
metrics within and across samples. 

Clonal expansion and differentiation 

We investigated clonal expansion and distribution by using
clonality indices, which measure clonal volume and the pro-
portions occupied by the most and least abundant clones, both 

in terms of rank and relative abundance. 
To answer the question of how the clonal architecture of the 

repertoires varies by disease phenotype, we assessed the pro- 
portion of the repertoire occupied by the clones of a given size.
Ideally, a small clonal index indicates an expanded clonotype 
whereas a larger index indicates a small clonotype group. Al- 
though not significant, the diseased samples had larger clonal 
proportions in the top 101:1000 (shown in the x-axis of Fig- 
ure 4 A) than healthy controls. Relative abundance of all BCR 

clones in the repertoire were grouped into four categories 
ranging from small clones which take up < 1 / 10 000 of clonal 
space, to hyperexpanded clones which take up > 1 / 10th of 
clonal space. 

The clonality spectrum in Figure 4 B revealed that most of 
the COVID-19 sample repertoires were dominated by large 
clonotypes. Here a ‘large’ clonotype is defined as a clonotype 
with an abundance threshold falling within the range of 0.01–
1% of the total immune repertoire. In contrast, the BCR reper- 
toire of healthy samples primarily consisted of hyperexpanded 

clones. 
BCR repertoire richness (number of unique BCR sequences) 

provides an additional measure of expansion and differentia- 
tion, which we estimated using the Chao1, ACE and inverse 
Simpson metrics. The Chao1 metric (Figure 4 C) is an addi- 
tional estimator of richness based on the number of occur- 
rences of rare clones within a repertoire. Chao1 showed a 
significant difference between severe COVID-19 samples and 

healthy controls ( P < 0.05), suggesting lower BCR richness in 

the healthy samples. Richness measures using Chao1 estimates 
did not differ significantly between any other groups. 

The ACE (abundance-based coverage estimator) index in 

Figure 4 C estimates richness by comparing the number of rare 
clones and inflating them against the number of highly abun- 
dant clones. Here, we see that severe samples have a higher 
level of species richness compared to both the healthy and 

mild cohorts, with P < 0.05. 
The inverse Simpson index was used to assess the proba- 

bility of two randomly sampled reads belonging to the same 
clone. High values of the index indicate an even distribution 

of BCR clones, and lower values indicate enrichment of B 

cell clones. A significantly higher diversity was observed in se- 
vere COVID-19 samples when compared to the healthy con- 
trol (Figure 4 C). The trend was not observed in other sam- 
ple comparisons. It is of importance to note that the inverse 
Simpson index should only be used when the data contains 
high-frequency reads. 

The D50 diversity index of each repertoire was calculated 

(Figure 4 D) and corresponds to the percentage of unique 
CDR3 sequences that account for 50% of the total number 
of CDR3 in the sample. A smaller D50 value indicates lower 
diversity with a few dominant clonal expansions, and higher 
diversity corresponds to more small clonal expansions. Clono- 
typic expansions, with markedly higher and statistically signif- 
icant D50 diversity indices, were observed in severe COVID- 
19 samples compared to healthy controls. 

S omatic h ypermutation and class-switch 

recombination 

The Ig types in BCR analysis usually have a different degree of 
antibody affinity, and we compared the frequency of the iso- 
types between COVID-19 and healthy controls. Distribution 
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Figure 3. Repertoire diversity metrics. ( A ) Violin plot showing CDR3 length distributions across sample groups, where the y-axis indicates CDR3 length 
in amino acid residues. ( B ) Hill diversity dot plot showing trends in diversity estimates across increasing values of the order parameter shown on the X 
axis. Points represent samples, and lines colored by the grouping variable show the mean trend. ( C ) Bar and box plots displaying diversity and evenness 
metrics, where colors represent distinct groups, and larger y-axis values indicate higher diversity or evenness. P -values shown between groups were 
calculated using the Kruskal–Wallis test and adjusted using the Holm–Bonferroni method to determine if there was a significant difference in diversity or 
e v enness betw een an y tw o disease states. ( D ) Heatmaps of repertoire o v erlap scores across disease se v erity f or e v ery pairwise comparison, where 
o v erlap v alues are represented b y color. Larger degrees of o v erlap are indicated b y red coloration while smaller degrees of o v erlap are indicated b y blue 
coloration. 
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f the 10 Ig isotypes is depicted in Figure 5 A, with IGHM hav-
ng the largest proportion across all groups, highest ( > 60%)
n exposed samples. In contrast, IGHA1 has an increased rep-
esentation ( ∼20%) in exposed, mild and severe samples, con-
istent with single cell sequencing studies of COVID-19 ( 25 ). 

Many BCRs undergo class switch recombination (CSR)
hen the B cells respond to an antigen, generating differ-

nt antibody isotypes and serving as an additional mecha-
ism of affinity maturation. Constant (C) regions of BCRs
re typically organized in the following order during immune
esponse via CSR, where the C region is ‘switched’ while
he antigen-binding region is maintained: C μ (IGHM), C δ

IGHD), C γ (IGHG), C ε (IGHE) and C α (IGHA) ( 50 ). To
urther characterize the CSR profile in the samples, we as-
sessed the progression of CSR between the COVID-19 pa-
tients which is visualized in Figure 5 B. We can see that very
few mutations have been accumulated at the time of the
CSR in healthy samples at a very close distance from the
germline and mostly corresponding to IGHG1 to IGHE and
IGHG2 switches. Exposed samples depict CSR events from
IGHM / D to IGHG2, and IGHG1 at a farther distance from
the germline. Interestingly, mild, and severe samples appear
to have a higher mutational rate with most changes in mild
from IGHM / D to IGHG1, IGHG2 and IGHG3. Severe sam-
ples show high percentages of switches relative to the num-
ber of clusters with three or more members that demonstrated
CSR events. These switches are from IGHM / D to IGHG1, and
IGHG3. Severe and mild samples also demonstrate broader
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Figure 4. Clonal expansion and differentiation. ( A ) Top clonal proportions across disease states. The x-axis indicates the clonotypes ranked by frequency 
and grouped in sets of frequencies, while the y-axis shows the proportion of the groups of clonotypes in the entire repertoire. ( B ) Relative abundance of 
clonotypes across disease states where clonotype frequencies are indicated in the x-axis and relative abundance shown in the y-axis. ( C ) Bar and box 
plots displaying richness metrics, where colors represent distinct groups, and larger y-axis values indicate higher repertoire richness. P-values calculated 
using Kruskal-Wallis and Holm–Bonferroni correction. ( D ) Bar plot of the D50 metric, where the diversity index score is shown on the y-axis and disease 
states are shown on the x-axis. P-values shown above each bar were calculated by Kruskal–Wallis tests to determine significance between D50 values in 
an y tw o compared disease states. 

 

 

 

 

 

 

 

 

 

 

 

 

class switching at lower rates and further from the germline,
indicated by the much smaller bubbles. Previous studies have
also reported an increase in CSR to IGHG3 in viral infec-
tions when compared to healthy individuals ( 48 ,51 ) suggest-
ing a role of IGHG3 as a key factor in virus clearance. Com-
pared with other isotypes, IGHM / D isotypes extensively un-
dergo class switch in the COVID-19 samples in comparison
to healthy controls ( 48 ,51 ). 

We explored the somatic hypermutation (SHM) rates in
IGH repertoires which introduce point mutations in the an-
tibody variable region that encodes the antigen-binding sites,
thereby enhancing antibody neutralization, breadth, and po-
tency. The V and J germline, and clonal sequences were used
as the input to calculate the SHM rates comparing COVID-19 

severity to healthy controls. Reduced SHM is consistent with 

evidence from other S AR S-CoV-2 studies ( 2 ,51 ), and we ob- 
served the same across all severity groups (Figure 5 C) indicat- 
ing that activation of S AR S-CoV-2-specific antibody response 
is generated without extensive somatic mutations. When com- 
paring all the samples, mild severe patients have a slight in- 
crease in IGHG4, and IGHGP proportions. 

Convergent clustering of BCR clones 

Convergent clustering of CDR3 sequences among different 
groups provides insights into shared immune responses during 
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Figure 5. Antigen derived antibody affinity maturation. ( A ) Isotype frequency across IGH sequences per disease state where larger bars represent a 
higher proportion of a specific IGH isotype within a group. ( B ) Class switch recombination e v ents are shown in a bubble plot. Larger bubbles represent a 
higher percentage of clusters with three or more unique CDR3 sequences with the respective CSR events. Small bubbles, like in the Severe group 
highlight broader CSR e v ents, but at much lo w er rates relative to other events. The y-axis denotes the initial IGH class, the x-axis shows the class 
switched to, and bubble color reflects the degree of CSR with lighter colors indicating greater distance from the germline sequence. ( C ) B o x plots 
showing somatic hypermutation rates across IGH sequences among disease states. The y-axis indicates the SHM rate with larger values representing 
higher degrees of mutation. 
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arious stages of infection or disease progression. By examin-
ng clusters of shared clones, we can better understand the
evels of affinity maturation across different clinical severities.
o determine if there was increased clonal sharing in COVID-
9 patients compared to healthy individuals, we analyzed the
evenshtein distance between grouped CDR3 amino-acid se-
uences, considering shared V and J gene usage and equal
DR3 amino-acid sequence length. 
We then clustered the CDR3aa sequences within these

roups of clones, using a distance threshold of at least 70%
similarity, resulting in an annotated list of clustered sequences.
Of the 14 586 total clusters across all samples, 1537 (10.5%)
were shared between at least two of the samples, and 620
(4.25%) were shared between two or more groups. We fo-
cused on the 39 large clusters of 10 or more clones (Figure
6 A), a threshold utilized in previous studies to identify con-
vergence ( 34 ) and noticed that most of these clusters primar-
ily consisted of clones from either severe or healthy samples.
Notably, certain V genes like IGHV1-69 and IGHV3-30 were
prominent in these large clusters, indicating their association
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Figure 6. Con v ergent antibody response and OnDemand user interf ace. ( A ) B ar plot sho wing global clustering of IGHV clonot ypes where disease st ate 
groups were combined based on IGHV genes, IGHJ genes and CDR3 amino acid length. Clusters of 10 or more unique clones were used for visual 
comparison. Larger bar values represent more unique clones found in any cluster. ( B ) Similarity networks of heterogeneous clusters containing clones 
across disease states were visualized in undirected network graphs consisting of nodes representing unique clones and edges representing CDR3 
amino acid sequence similarity. The color of nodes indicates the disease state of the specific clone. Amino acid composition visualizations were used as 
an additional representation of CDR3 sequence similarity where colors represent the chemical nature of the amino acid side chains. The y-axis 
represents the frequency of any amino acid residue encountered at the sequence position indicated by the x-axis. ( C ) Screen capture of the bcRflow Pitt 
On-Demand instance, the graphical user interface for the implementation of bcRflow using the University of Pittsburgh’s Center f or R esearch Computing 
infrastr uct ure. 

 

 

 

 

 

 

 

 

 

 

 

with maturation (Figure 6 A). These V genes were also found
to be significant compared to healthy samples in our gene us-
age analysis (Figure 2 B). 

Network diagrams and sequence logo plots for key con-
vergent clusters (Figure 6 B) illustrate the similarity of specific
antigen sequences, across different sample groups. Nodes in
the network represent unique clones, and the weighted edges
represent sequence similarity ( ≥70%) based on Levenshtein
distance. The first cluster, IGHV1-69 / IGHJ4-length_17, has
a V gene that has been associated with affinity maturation
in COVID-19 patients, binding to the receptor binding site C
(RBS-C) epitope of the S AR S CoV-2 virus ( 41 ). The identified 

cluster suggests a more mature immune response in COVID- 
19 patients, potentially evolving with increased disease 
severity. 

Additionally, the second cluster, IGHV3-30 / IGHJ6- 
length_20 (Figure 6 B) consists of clones from all four groups,
suggesting the potential use of a versatile antigen for a broad 

immune response to various challenges, as observed in previ- 
ous studies ( 34 ,52 ). IGHV3-30 was also enriched in diseased 

samples compared to healthy controls, demonstrated in our 
gene usage analysis (Figure 2 B). 
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omputing resources and runtime 

t is recommended to use bcRflow with institutional high-
erformance computing (HPC) clusters or cloud-based sys-
ems like AWS for optimal performance. Local execution is
ossible for small sets of samples, but it is highly dependent
n the configuration and available memory of the user’s com-
uter. It is suggested to allocate at least 8–16 GB of RAM and
–4 CPUs per process for efficient processing. MiXCR align-
ent may take > 12 h for large bulk samples, but the average

lignment and processing time for the case study finished in 6
 with 8GB of RAM per sub-process. Users can specify mem-
ry and CPU allocation in the bcRflow configuration file to
ustomize their setup. Additional configurations for institu-
ional computing clusters and cloud-based systems are pro-
ided by default with bcRflow. 

nteractive interface using Open OnDemand 

he Nextflow community has grown and provides high-
uality, scalable bioinformatics pipelines that are reproducible
nd interoperable. Despite this progress, biologists still en-
ounter difficulties when using high-performance computing
nvironments and need visually engaging and interactive web
latforms to execute these pipelines. To address this, we have

ntroduced a graphical user interface for the Open OnDemand
ramework ( 53 ) utilizing the nextflow_schema.json file gen-
rated by parsing user input to configure the bcRflow run.
sers can specify the input parameters accepted by the bcR-
ow pipeline (as shown in Figure 6 C) through OnDemand’s
nteractive app and initiate the process by clicking ‘launch’.
he customized bcRflow run will then be sent to the local HPC
nvironment, and once the job is finished users can utilize the
eb-based file explorer to view the results. 

iscussion 

rofiling B cell receptor (BCR) repertoires is crucial for un-
erstanding the adaptive immune response and immune cell
unction in health and disease ( 54 ,55 ). Targeted sequencing
ata has been instrumental in revealing the diversity of BCR
epertoires, identifying clonal expansions, and shedding light
n B cell responses in various conditions. Analytical tools like
hange-O, SCOPer, Partis, MobiLLe, and fastBCR ( 56 ,57 ) are

ailored for analyzing targeted BCR sequencing data. The air-
flow pipeline ( 11 ), based on the immcantation framework,
tands out as the sole Nextflow pipeline offering a compre-
ensive analytical solution for processing targeted BCR data.
Leveraging transcriptomics data for B cell repertoire anal-

sis presents a cost-effective alternative to expensive targeted
equencing methods, enhancing our understanding of the im-
une response by linking it to gene expression and regula-

ory mechanisms. However, the lack of a streamlined work-
ow for BCR profiling from non-targeted data poses a sig-
ificant challenge in immunology research. To bridge this
ap, we introduce bcRflow, a robust computational pipeline
esigned for immune repertoire analysis from non-targeted
NA-seq reads. Powered by Nextflow, bcRflow incorporates
est practices for analysis, ensuring scalability , reproducibility ,
nd user-friendliness. Additionally, bcRflow offers accessible
isualization tools, customizable parameters, and publication-
eady plots, facilitating seamless integration of immunology
nd computational research. 
The case study we provided showcases the effectiveness of
the bcRflow pipeline in analyzing bulk transcriptome data. It
successfully processed 17613 heavy-chain B cell clones from
both COVID-19 patients and healthy controls, demonstrating
its ability to yield results comparable to targeted sequencing
methods ( 58 ). bcRflow’s reliability in capturing B cell reper-
toire dynamics is highlighted, particularly in revealing prefer-
ential V gene usage like IGHV1-69 and IGHV4-34 in COVID-
19 patients, corroborated with results from targeted sequenc-
ing analysis as important indicators of response and recov-
ery to the COVID-19 virus ( 40 ,41 ). The observed variations
in gene segment frequencies across disease severity levels em-
phasize its utility in capturing nuanced immune responses and
maturation. Additionally, the analysis of Ig isotype distribu-
tion, class switch recombination, and somatic hypermutation
rates offers valuable insights into antibody affinity and matu-
ration processes across disease severity levels. Despite insignif-
icant rates of mutation, greater CSR events were observed in
mild and severe cases. Furthermore, the convergent clustering
analysis revealed compelling similarities in antibody affinity
maturation between different COVID-19 severity levels, as de-
scribed in studies utilizing targeted sequencing methods ( 59 ).
These results affirm the utility of the bcRflow pipeline for com-
prehensive B cell repertoire analysis, providing deeper insights
into immune responses and disease pathogenesis in infectious
diseases like COVID-19. 

Regarding the application of bcRflow, it can be used
with bulk and 10 × 5-prime GEX single-cell transcrip-
tomic datasets. Thanks to Nextflow’s modular framework and
MiXCR’s presets for processing various sequencing modal-
ities, we plan to incorporate support for additional single-
cell technologies. Currently, the downstream analysis mod-
ule supports samples from two input species ( Homo sapiens
and Mus musculus ), but IMGT and MiXCR offer support for
many more species that can be integrated into the bcRflow
framework. 

Moreover, the integration of bcRflow into the OnDemand
portal aims to offer researchers a user-friendly interface for
seamless access and execution of bcRflow, eliminating the
requirement for advanced technical expertise. This enhance-
ment improves accessibility, resource management, collabora-
tion, and overall efficiency, catering to a broader user base.
The pipeline is extensively documented and includes a use-
case scenario for novice users. We anticipate the release of
the workflow and engage with the scientific community to in-
corporate user input, recommendations, and requests to en-
sure that bcRflow remains current and vibrant. Collabora-
tion and feature requests are encouraged through the bcRflow
GitHub repository ( https:// github.com/ Bioinformatics-Core-
at-Childrens/bcRflow ). 

Data availability 

Bulk transcriptomic data used in this study has been
downloaded from the NCBI Gene Expression Omnibus
(GEO) with the accession number GSE206263). All rel-
evant code and software dependencies have been made
open source under the MIT software license, available
in the form of a public GitHub repository ( https://
github.com/Bioinformatics- Core- at- Childrens/bcRflow ) and
corresponding Docker Hub image ( https://hub.docker.com/
repository/ docker/ bioinformaticscoreatchildrens/ bcrflow ). A

https://github.com/Bioinformatics-Core-at-Childrens/bcRflow
https://github.com/Bioinformatics-Core-at-Childrens/bcRflow
https://hub.docker.com/repository/docker/bioinformaticscoreatchildrens/bcrflow
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persistent version of bcRflow is available via FigShare (doi:
10.6084 / m9.figshare.25881103). 
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